Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 893
Filtrar
1.
Expert Rev Clin Immunol ; : 1-12, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365123

RESUMO

OBJECTIVE: To probe the involvement of long noncoding RNA zinc finger antisense 1 (ZFAS1)/microRNA (miR)-186-5p axis in inhibiting oxidative stress in myocardial ischemia-reperfusion injury (MIRI) by targeting B-cell translocation gene 2 (BTG2). METHODS: The MIRI mice model was established by ligating the left anterior descending branch of the left coronary artery in C57BL/6 mice. The in vitro MIRI model was constructed by hypoxia and reoxygenation of HL-1 cardiomyocytes. Cardiomyocyte apoptosis and the extent of myocardial injury in mice were detected. The apoptosis rates, malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in HL-1 cells were assessed. The relationship among ZFAS1, miR-186-5p, and BTG2 was verified. RESULTS: High ZFAS1 and BTG2 levels and low miR-186-5p levels were demonstrated in I/R-injured myocardial tissues and in H/R-treated cardiomyocytes. Interference with ZFAS1 or elevation of miR-186-5p inhibited apoptosis and oxidative stress in H/R model cardiomyocytes and I/R-injured myocardial tissues. Overexpressing BTG2 impaired the ameliorative effects of miR-186-5p on MIRI. ZFAS1 negatively regulated miR-186-5p expression by acting as a molecular sponge. miR-186-5p targeted to regulate BTG2 negatively. CONCLUSION: Interfering with ZFAS1 can upregulate miR-186-5p and thus inhibit BTG2 expression, thereby ameliorating MIRI.

2.
J Cardiothorac Surg ; 19(1): 553, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354539

RESUMO

OBJECTIVE: We aim to investigate the association between prognosis and outcomes following myocardial ischemia-reperfusion injury, as well as peripheral blood levels of NLRP3 and the triglyceride-glucose index (TyG). METHODS: A total of 100 patients who underwent emergency coronary intervention following myocardial infarction confirmed by coronary angiography at our hospital between October 2021 and May 2023 were included in this study. Patients were stratified into two groups based on their prognoses: the control group (n = 73), which did not experience new myocardial infarctions or require hospitalization for heart failure or suffer sudden cardiac death post-interventional treatment; and the observation group (n = 27), which experienced one or more cardiovascular events post-treatment. Patient demographics were obtained from clinical records while biochemical analyses assessed peripheral blood triglycerides, blood glucose levels, and TyG index. Additionally, ELISA measurements determined levels of NLRP3 as well as inflammatory factors IL-6, TNF-α, and CRP in peripheral blood samples. Cardiac function was evaluated according to NYHA standards. Univariable Cox regression analysis identified factors influencing patient prognosis while Pearson correlation analysis examined relationships among prognosis, outcomes following myocardial ischemia-reperfusion injury, TyG index, and peripheral blood NLRP3. RESULTS: No significant differences were observed in the general characteristics between the two patient groups (P > 0.05). However, the observation group exhibited higher levels of peripheral blood triglycerides, blood glucose, and TyG index compared to the control group (P < 0.05). Additionally, levels of NLRP3 and inflammatory factors IL-6, TNF-α, and CRP were elevated in the observation group compared to the control group (P < 0.05). Cardiac function impairment was more pronounced in the observation group (P < 0.05). Notably, TyG index and peripheral blood NLRP3 demonstrated higher risk ratios compared to other biomarkers (P < 0.05), indicating their significance in prognosis and outcomes. Elevated levels of NLRP3 and TyG index were associated with poorer recovery of cardiac function, increased rehospitalization rates, and higher mortality (P < 0.05). CONCLUSION: Elevated NLRP3 levels and an increased TyG index are strongly associated with impaired cardiac function and heightened risk of cardiovascular events. These findings suggest that these biomarkers may serve as crucial prognostic indicators following myocardial ischemia-reperfusion injury.


Assuntos
Glicemia , Traumatismo por Reperfusão Miocárdica , Proteína 3 que Contém Domínio de Pirina da Família NLR , Triglicerídeos , Humanos , Masculino , Feminino , Prognóstico , Proteína 3 que Contém Domínio de Pirina da Família NLR/sangue , Pessoa de Meia-Idade , Triglicerídeos/sangue , Traumatismo por Reperfusão Miocárdica/sangue , Glicemia/análise , Glicemia/metabolismo , Idoso , Biomarcadores/sangue
3.
BMC Cardiovasc Disord ; 24(1): 531, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354361

RESUMO

BACKGROUND: Myocardial ischemia-reperfusion injury (MI/RI) is an unavoidable risk event for acute myocardial infarction, with ferroptosis showing close involvement. We investigated the mechanism of MI/RI inducing myocardial injury by inhibiting the ferroptosis-related SLC7A11/glutathione (GSH)/glutathione peroxidase 4 (GPX4) pathway and activating mitophagy. METHODS: A rat MI/RI model was established, with myocardial infarction area and injury assessed by TTC and H&E staining. Rat cardiomyocytes H9C2 were cultured in vitro, followed by hypoxia/reoxygenation (H/R) modeling and the ferroptosis inhibitor lipoxstatin-1 (Lip-1) treatment, or 3-Methyladenine or rapamycin treatment and overexpression plasmid (oe-SLC7A11) transfection during modeling. Cell viability and death were evaluated by CCK-8 and LDH assays. Mitochondrial morphology was observed by transmission electron microscopy. Mitochondrial membrane potential was detected by fluorescence dye JC-1. Levels of inflammatory factors, reactive oxygen species (ROS), Fe2+, malondialdehyde, lipid peroxidation, GPX4 enzyme activity, glutathione reductase, GSH and glutathione disulfide, and SLC7A11, GPX4, LC3II/I and p62 proteins were determined by ELISA kit, related indicator detection kits and Western blot. RESULTS: The ferroptosis-related SLC7A11/GSH/GPX4 pathway was repressed in MI/RI rat myocardial tissues, inducing myocardial injury. H/R affected GSH synthesis and inhibited GPX4 enzyme activity by down-regulating SLC7A11, thus promoting ferroptosis in cardiomyocytes, which was averted by Lip-1. SLC7A11 overexpression improved H/R-induced cardiomyocyte ferroptosis via the GSH/GPX4 pathway. H/R activated mitophagy in cardiomyocytes. Mitophagy inhibition reversed H/R-induced cellular ferroptosis. Mitophagy activation partially averted SLC7A11 overexpression-improved H/R-induced cardiomyocyte ferroptosis. H/R suppressed the ferroptosis-related SLC7A11/GSH/GPX4 pathway by inducing mitophagy, leading to cardiomyocyte injury. CONCLUSIONS: Increased ROS under H/R conditions triggered cardiomyocyte injury by inducing mitophagy to suppress the ferroptosis-related SLC7A11/GSH/GPX4 signaling pathway activation.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Modelos Animais de Doenças , Ferroptose , Glutationa , Mitofagia , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Masculino , Ratos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Linhagem Celular , Ferroptose/efeitos dos fármacos , Glutationa/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Espécies Reativas de Oxigênio/metabolismo
4.
J Adv Res ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357647

RESUMO

INTRODUCTION: Myocardial ischemia-reperfusion injury (MIRI) remains a prevalent clinical challenge globally, lacking an ideal therapeutic strategy. Macrophages play a pivotal role in MIRI pathophysiology, exhibiting dynamic inflammatory and resolutive functions. Macrophage polarization and metabolism are intricately linked to MIRI, presenting potential therapeutic targets. Pubescenoside C (PBC) from Ilex pubescens showed significantly anti-inflammatory effects, however, the effect of PBC on MIRI is unknown. OBJECTIVES: This study aimed to assess the cardioprotective effects of PBC against MIRI and elucidate the underlying mechanisms. METHODS: Sprague-Dawley rats, H9c2 and RAW264.7 macrophages were used to establish the in vitro and in vivo models of MIRI. TTC/Evans blue staining, immunohistochemical staining, metabonomics analysis, chemical probe, surface plasmon resonance (SPR), co-immunoprecipitation (CO-IP) assays were used for pharmacodynamic and mechanism study. RESULTS: PBC administration effectively reduced myocardial infarct size, decreased ST-segment elevation, and lowered CK-MB levels, concurrently promoting macrophage M2 polarization in MIRI. Furthermore, PBC-treated macrophages and their conditioned culture medium attenuated the apoptosis of H9c2 cells induced by oxygen-glucose deprivation/reoxygenation (OGD/R). Metabonomics analysis revealed that PBC increased the production of itaconic acid (ITA) and malic acid (MA) in macrophages, which conferred protection against OGD/R injury in H9c2 cells. Mechanistic investigations indicated that ITA exerted its effects by covalently modifying pyruvate kinase M2 (PKM2) at Cys474, Cys424, and Lys151, thereby facilitating PKM2's mitochondrial translocation and enhancing the PKM2/Bcl2 interaction, subsequently leading to decreased degradation of Bcl2. SPR assays further revealed that PBC bound to HSP90, facilitating the interaction between HSP90 and GSK3ß and resulting in the inactivation of GSK3ß activity and upregulation of key metabolic enzymes for ITA and MA production (Acod1 and Mdh2). CONCLUSION: PBC alleviates MIRI-induced cardiomyocyte apoptosis by modulating the HSP90/ITA/PKM2 axis. Furthermore, pharmacological upregulation of ITA emerges as a promising therapeutic approach for MIRI, hinting at PBC's potential as a candidate drug for MIRI therapy.

5.
Mol Med Rep ; 30(6)2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-39364741

RESUMO

The present study aimed to investigate the role of PI3K­mediated ferroptosis signaling induced by mild therapeutic hypothermia (MTH), which was defined as a temperature of 34˚C, in protecting against myocardial ischemia-reperfusion (I/R) injury (MIRI). To meet this aim, H9C2 cells underwent hypoxia­reperfusion (H/R) and/or MTH. The MTT assay was used to assess cell viability, cytotoxicity was measured using a lactate dehydrogenase cytotoxicity assay, and Annexin V­FITC/PI flow cytometric analysis was used to analyze early and late cell apoptosis. In addition, 84 healthy adult male Sprague­Dawley rats were randomly divided into seven groups (n=12), and underwent I/R and various treatments. Hemodynamics were monitored, and the levels of myocardial injury marker enzymes and oxidative stress markers in myocardial tissue were measured using ELISA. The expression levels of PI3K, AKT, transient receptor potential cation channel subfamily M member 7 (TRPM7), glutathione peroxidase 4 (GPX4) and acyl­CoA synthetase long chain family member 4 (ACSL4) in animals and cells were measured using western blot analysis. These experiments revealed that MTH could effectively reduce myocardial infarct size, improve hemodynamic performance following MIRI and suppress myocardial apoptosis, thereby contributing to the recovery from H/R injury. Mechanistically, MTH was revealed to be able to activate the PI3K/AKT signaling pathway in cells, upregulating GPX4, and downregulating the expression levels of TRPM7 and ACSL4. Treatment with 2­aminoethoxydiphenyl borate (an inhibitor of TRPM7) could further strengthen the myocardial protective effects of MTH, whereas treatment with erastin (promoter of ferroptosis) and wortmannin (inhibitor of PI3K) led to the effective elimination of the myocardial protective effects of MTH. Compared with in the I/R group, the PI3K/AKT activation level and the expression levels of GPX4 were both significantly increased, whereas the expression levels of TRPM7 and ACSL4 were significantly decreased in the I/R + MTH group. Taken together, the results of the present study indicated that MTH may activate the PI3K/AKT signaling pathway to inhibit TRPM7 and suppress ferroptosis induced by MIRI.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Canais de Cátion TRPM , Animais , Ferroptose/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Masculino , Ratos , Hipotermia Induzida/métodos , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
6.
Biomed Pharmacother ; 180: 117568, 2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39405898

RESUMO

Apoptosis is a crucial pathological process in myocardial ischemia/reperfusion injury (MIRI). Verapamil (Ver), normally used to treat hypertension or heart rhythm disorders, also attenuates MIRI. The potential of Ver to inhibit apoptosis and thereby attenuate MIRI remains unclear, as does the mechanism. We established an in vivo mouse ischemia/reperfusion (I/R) model by occlusion of the left anterior descending coronary. To construct a hypoxia/reoxygenation model in vitro, H9c2 cardiomyocytes were immersed in a hypoxic buffer in a hypoxia/anaerobic workstation. Ver significantly improved cardiac function and reduced myocardial infarction size in I/R mice, while decreasing apoptosis. Both in vivo and in vitro, application of Ver activated the JAK2/STAT3 signaling pathway and elevated Bcl-2 expression, while decreasing Bax and cleaved caspase-3 levels. Treatment with AG490, a JAK2 inhibitor, partially counteracted the anti-apoptotic and the cardioprotective effect of Ver. Thus, we conclude that Ver alleviates MIRI by reducing apoptosis via the JAK2/STAT3 signaling pathway activation. These findings provide a novel mechanism of Ver in the treatment of MIRI.

7.
Zhen Ci Yan Jiu ; 49(9): 902-908, 2024.
Artigo em Chinês | MEDLINE | ID: mdl-39401826

RESUMO

OBJECTIVES: To observe the effect of electroacupuncture(EA) on adenosine 5'-monophosphate-activated protein kinase (AMPK)/Kruppel-like factor 2 (KLF2) signaling pathway in ischemic myocardial tissues of rats, so as to explore the underlying mechanism of EA in attenuating myocardial ischemia-reperfusion injury (MIRI) through mediating angiogenesis. METHODS: Male SD rats were randomly divided into sham operation group, model group and EA group, with 10 rats in each group. The MIRI model was established by ligation of the anterior descending branch of the left coronary artery. Twenty-four hours after modeling, the rats in the EA group were given EA (2 Hz/100 Hz, 2 mA) at "Neiguan" (PC6) for 20 min each time, once a day for 5 consecutive days. Echocardiography was used to detect cardiac ejection fraction (EF) to evaluate cardiac function. HE staining was used to observe the morphological changes in rat myocardial tissue. Immunohistochemistry was used to detect the density of neovascularization in rat ischemic myocardium. Western blot and ELISA were used to detect the phosphorylated(p)-AMPK, AMPK, KLF2, vascular endothelial growth factor (VEGF) protein expression levels, and VEGF receptor 2 (VEGFR2) content in rat ischemic myocardial tissue, respectively. RESULTS: After modeling, compared with the sham operation group, rats in the model group had decreased EF(P<0.01), significant myocardial fiber damage with inflammatory cell infiltration, increased neovascular density (P<0.05), increased p-AMPK, AMPK, VEGF protein expression levels and VEGFR2 content in myocardial ischemic tissues(P<0.05, P<0.01), and decreased protein expression level of KLF2 (P<0.05). After EA intervention, compared with the model group, rats in the EA group had elevated EF(P<0.01), significantly reduced myocardial fiber damage, reduced inflammatory cell infiltration, increased neovascular density(P<0.01), and elevated p-AMPK, AMPK, KLF2, and VEGF protein expression levels and VEGFR2 content in the myocardial ischemic tissue (P<0.01). CONCLUSIONS: EA may promote angiogenesis, attenuate myocardial injury, and achieve cardioprotective effects in MIRI rats by regulating the expression of AMPK/KLF2 signaling pathway in myocardial tissues.


Assuntos
Proteínas Quinases Ativadas por AMP , Eletroacupuntura , Fatores de Transcrição Kruppel-Like , Traumatismo por Reperfusão Miocárdica , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Masculino , Ratos , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Humanos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/terapia , Neovascularização Fisiológica , Pontos de Acupuntura , Miocárdio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Angiogênese
8.
ACS Nano ; 18(41): 28154-28169, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39373010

RESUMO

Myocardial ischemia-reperfusion (IR) injury is a severe rhythmic disease with a high prevalence in the early morning. IR injury has a significant circadian rhythm in reactive oxygen species (ROS) and inflammation levels. The development of rhythmic drugs has become a priority in myocardial IR injury. In this study, resveratrol (RES) and proanthocyanidins (OPC) were utilized to design nanoparticles (NPs), with hyaluronic acid (HA) as the core, grafted with MMP-targeting peptides to improve delivery to injured myocardial regions (HA-RES-OPC-MMP NPs). NPs significantly scavenged ROS, attenuated inflammation, and activated the rhythm gene. Notably, the difference in therapeutic effects on myocardial IR injury in mice at Zeitgeber time (ZT)1 and ZT13 confirms that NPs are rhythm-dependent drugs. At ZT13, echocardiographic and MRI confirm that IR injury in mice was not as severe as at ZT1, yet NPs were also less effective in treatment. Further, Per1/2 knockout mice confirmed the rhythm-dependent treatment of myocardial IR injury by NPs. Molecular studies have shown that rhythmic characteristics of inflammation and Sirt1 transcript levels are the main reasons for the different rhythmic therapeutic effects of NPs. Circadian rhythm-dependent treatment of HA-RES-OPC-MMP NPs has excellent potential for more precise treatment of myocardial IR injury in the future.


Assuntos
Ritmo Circadiano , Traumatismo por Reperfusão Miocárdica , Nanopartículas , Resveratrol , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Nanopartículas/química , Camundongos , Resveratrol/farmacologia , Resveratrol/química , Ritmo Circadiano/efeitos dos fármacos , Camundongos Knockout , Masculino , Proantocianidinas/química , Proantocianidinas/farmacologia , Ácido Hialurônico/química , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Sirtuína 1/metabolismo , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Polifenóis/química , Polifenóis/farmacologia
9.
Front Pharmacol ; 15: 1482986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39411064

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) is a significant factor in the development of cardiac dysfunction following a myocardial infarction. Ferroptosis, a type of regulated cell death driven by iron and marked by lipid peroxidation, has garnered growing interest for its crucial involvement in the pathogenesis of MIRI.This review comprehensively examines the mechanisms of ferroptosis, focusing on its regulation through iron metabolism, lipid peroxidation, VDAC signaling, and antioxidant system dysregulation. We also compare ferroptosis with other forms of cell death to highlight its distinct characteristics. Furthermore, the involvement of ferroptosis in MIRI is examined with a focus on recent discoveries concerning ROS generation, mitochondrial impairment, autophagic processes, ER stress, and non-coding RNA regulation. Lastly, emerging therapeutic strategies that inhibit ferroptosis to mitigate MIRI are reviewed, providing new insights into potential clinical applications.

10.
Cardiovasc Toxicol ; 24(11): 1236-1252, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39264521

RESUMO

Uremic cardiomyopathy (UC) represents a complex syndrome characterized by different cardiac complications, including systolic and diastolic dysfunction, left ventricular hypertrophy, and diffuse fibrosis, potentially culminating in myocardial infarction (MI). Revascularization procedures are often necessary for MI management and can induce ischemia reperfusion injury (IR). Despite this clinical relevance, the role of fine particulate matter (PM2.5) in UC pathology and the underlying subcellular mechanisms governing this pathology remains poorly understood. Hence, we investigate the impact of PM2.5 exposure on UC susceptibility to IR injury. Using a rat model of adenine-induced chronic kidney disease (CKD), the animals were exposed to PM2.5 at 250 µg/m3 for 3 h daily over 21 days. Subsequently, hearts were isolated and subjected to 30 min of ischemia followed by 60 min of reperfusion to induce IR injury. UC hearts exposed to PM2.5 followed by IR induction (Adenine + PM_IR) exhibited significantly impaired cardiac function and increased cardiac injury (increased infarct size and apoptosis). Analysis at the subcellular level revealed reduced mitochondrial copy number, impaired mitochondrial bioenergetics, decreased expression of PGC1-α (a key regulator of mitochondrial biogenesis), and compromised mitochondrial quality control mechanisms. Additionally, increased mitochondrial oxidative stress and perturbation of the PI3K/AKT/AMPK signaling axis were evident. Our findings therefore collectively indicate that UC myocardium when exposed to PM2.5 is more vulnerable to IR-induced injury, primarily due to severe mitochondrial impairment.


Assuntos
Apoptose , Cardiomiopatias , Modelos Animais de Doenças , Metabolismo Energético , Mitocôndrias Cardíacas , Traumatismo por Reperfusão Miocárdica , Material Particulado , Transdução de Sinais , Uremia , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/induzido quimicamente , Material Particulado/toxicidade , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Masculino , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/fisiopatologia , Apoptose/efeitos dos fármacos , Uremia/metabolismo , Uremia/induzido quimicamente , Uremia/patologia , Uremia/complicações , Metabolismo Energético/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/metabolismo , Poluentes Atmosféricos/toxicidade , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-akt/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Adenina/toxicidade , Adenina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/fisiopatologia , Fosfatidilinositol 3-Quinase/metabolismo
11.
Int Immunopharmacol ; 142(Pt A): 113097, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39260311

RESUMO

Hydroxyl Safflower Yellow A (HSYA) is the primary bioactive compound derived from Safflower, which has been scientifically proven to possess anti-inflammatory, anti-apoptotic, and ameliorative properties against mitochondrial damage during acute myocardial ischemia-reperfusion injury (MIRI); however, its effects during the recovery stage remain unknown. Angiogenesis plays a crucial role in the rehabilitation process. AIM OF THE STUDY: The objective of this study was to investigate the long-term angiogenic effect of HSYA and its contribution to recovery after myocardial ischemia, as well as explore its underlying mechanism using non-targeted metabolomics and network pharmacology. MATERIALS AND METHODS: The MIRI model in rat was established by ligating the left anterior descending branch of the coronary artery. The effect of HSYA was assessed based on myocardial infarction volume and histopathology. Immunofluorescence staining was employed to evaluate angiogenesis, while ELISA was used to detect markers of myocardial injury. Additionally, a rat myocardial microvascular endothelial cell (CMECs) injury model was established using oxygen-glucose deprivation/reoxygenation (OGD/R), followed by scratch assays, migration assays, and tube formation experiments to assess angiogenesis. Western blot analysis was conducted to validate the underlying mechanism. RESULTS: Our findings provide compelling evidence for the therapeutic efficacy of HSYA in reducing myocardial infarction size, facilitating cardiac functional recovery, and reversing pathological alterations within the heart. Furthermore, we elucidate that HSYA exerts its effects on promoting migration and generation of myocardial microvascular endothelial cells through activation of the HIF-1α-VEGFA-Notch1 signaling pathway. CONCLUSION: These results underscore how HSYA enhances cardiac function via angiogenesis promotion and activation of the aforementioned signaling cascade.


Assuntos
Chalcona , Subunidade alfa do Fator 1 Induzível por Hipóxia , Traumatismo por Reperfusão Miocárdica , Neovascularização Fisiológica , Quinonas , Ratos Sprague-Dawley , Receptor Notch1 , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Animais , Chalcona/análogos & derivados , Chalcona/farmacologia , Chalcona/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Quinonas/farmacologia , Quinonas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Receptor Notch1/metabolismo , Ratos , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Modelos Animais de Doenças , Células Cultivadas , Carthamus tinctorius , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Angiogênese
12.
Biomed Pharmacother ; 179: 117383, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232383

RESUMO

Ischemic heart disease (IHD) is a significant global health concern, resulting in high rates of mortality and disability among patients. Although coronary blood flow reperfusion is a key treatment for IHD, it often leads to acute myocardial ischemia-reperfusion injury (IRI). Current intervention strategies have limitations in providing adequate protection for the ischemic myocardium. DJ-1, originally known as a Parkinson's disease related protein, is a highly conserved cytoprotective protein. It is involved in enhancing mitochondrial function, scavenging reactive oxygen species (ROS), regulating autophagy, inhibiting apoptosis, modulating anaerobic metabolism, and exerting anti-inflammatory effects. DJ-1 is also required for protective strategies, such as ischemic preconditioning, ischemic postconditioning, remote ischemic preconditioning and pharmacological conditioning. Therefore, DJ-1 emerges as a potential target for the treatment of myocardial IRI. Our comprehensive review delves into its protective mechanisms in myocardial IRI and the structural foundations underlying its functions.


Assuntos
Traumatismo por Reperfusão Miocárdica , Proteína Desglicase DJ-1 , Proteína Desglicase DJ-1/metabolismo , Humanos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Animais , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos
13.
Nanomedicine (Lond) ; : 1-21, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316570

RESUMO

Aim: This study aimed to construct an ischemic cardiomyocyte-targeted and ROS-responsive drug release system to reduce myocardial ischemia-reperfusion injury (MI/RI).Methods: We constructed thioketal (TK) and cardiac homing peptide (CHP) dual-modified liposomes loaded with puerarin (PUE@TK/CHP-L), which were expected to deliver drugs precisely into ischemic cardiomyocytes and release drugs in response to the presence of high intracellular ROS levels. The advantages of PUE@TK/CHP-L were assessed by cellular pharmacodynamics, in vivo fluorescence imaging and animal pharmacodynamics.Results: PUE@TK/CHP-L significantly inhibited apoptosis and ferroptosis in H/R-injured cardiomyocytes and also actively targeted ischemic myocardium. Based on these advantages, PUE@TK/CHP-L could significantly enhance the drug's ability to attenuate MI/RI.Conclusion: PUE@TK/CHP-L had potential clinical value in the precise treatment of MI/RI.


[Box: see text].

14.
J Integr Med ; 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39343710

RESUMO

OBJECTIVE: Myocardial ischemia/reperfusion injury (MIRI) is an obstacle to the success of cardiac reperfusion therapy. This study explores whether luteolin can mitigate MIRI by regulating the p53 signaling pathway. METHODS: Model mice were subjected to a temporary surgical ligation of the left anterior descending coronary artery, and administered luteolin. The myocardial infarct size, myocardial enzyme levels, and cardiac function were measured. Latent targets and signaling pathways were screened using network pharmacology and molecular docking. Then, proteins related to the p53 signaling pathway, apoptosis and oxidative stress were measured. Hypoxia/reoxygenation (HR)-incubated HL1 cells were used to validate the effects of luteolin in vitro. In addition, a p53 agonist and an inhibitor were used to investigate the mechanism. RESULTS: Luteolin reduced the myocardial infarcted size and myocardial enzymes, and restored cardiac function in MIRI mice. Network pharmacology identified p53 as a hub target. The bioinformatic analyses showed that luteolin had anti-apoptotic and anti-oxidative properties. Additionally, luteolin halted the activation of p53, and prevented both apoptosis and oxidative stress in myocardial tissue in vivo. Furthermore, luteolin inhibited cell apoptosis, JC-1 monomer formation, and reactive oxygen species elevation in HR-incubated HL1 cells in vitro. Finally, the p53 agonist NSC319726 downregulated the protective attributes of luteolin in the MIRI mouse model, and both luteolin and the p53 inhibitor pifithrin-α demonstrated a similar therapeutic effect in the MIRI mice. CONCLUSION: Luteolin effectively treats MIRI and may ameliorate myocardial damage by regulating apoptosis and oxidative stress through its targeting of the p53 signaling pathway. Please cite this article as: Zhai P, Ouyang XH, Yang ML, Lin L, Li JY, Li YM, Cheng X, Zhu R, Hu DS. Luteolin protects against myocardial ischemia/reperfusion injury by reducing oxidative stress and apoptosis through the p53 pathway. J Integr Med. 2024; Epub ahead of print.Please cite this article as: Zhai P, Ouyang XH, Yang ML, Lin L, Li JY, Li YM, Cheng X, Zhu R, Hu DS. Luteolin protects against myocardial ischemia/reperfusion injury by reducing oxidative stress and apoptosis through the p53 pathway. J Integr Med. 2024; Epub ahead of print.

15.
J Ethnopharmacol ; 337(Pt 1): 118738, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222757

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dehydrocorydaline (DHC), an active component of Corydalis yanhusuo (Y.H. Chou & Chun C. Hsu) W.T. Wang ex Z.Y. Su & C.Y. Wu (Papaveraceae), exhibits protective and pain-relieving effects on coronary heart disease, but the underlying mechanism still remains unknown. AIM OF THE STUDY: Network pharmacology and experimental validation both in vivo and in vitro were applied to assess whether DHC can treat myocardial ischemia-reperfusion injury (MIRI) by regulating the forkhead box O (FoxO) signalling pathway to inhibit apoptosis. MATERIALS AND METHODS: DHC and MIRI targets were retrieved from various databases. Molecular docking and microscale thermophoresis (MST) determined potential binding affinity. An in vivo mouse model of MIRI was established by ligating the left anterior descending coronary artery. C57BL/6N mice were divided into sham, MIRI, and DHC (intraperitoneal injection of 5 mg/kg DHC) groups. Haematoxylin and eosin, Masson, and immunohistochemical stainings verified DHC treatment effects and the involved signalling pathways. In vitro, H9c2 cells were incubated with DHC and underwent hypoxia/reoxygenation. TUNEL, JC-1, and reactive oxygen species stainings and western blots were used to explore the protective effects of DHC and the underlying mechanisms. RESULTS: Venny analysis identified 120 common targets from 121 DHC and 23,354 MIRI targets. DHC exhibited high affinity for CCND1, CDK2, and MDM2 (<-7 kcal/mol). In vivo, DHC attenuated decreases in left ventricular ejection fraction and fractional shortening, reduced infarct sizes, and decreased cTnI and lactate dehydrogenase levels. In vitro, DHC alleviated apoptosis and oxidative stress in the hypoxia/reoxygenation model by attenuating ΔΨm disruption; reducing the production of reactive oxygen species; upregulating Bax and CCND1 via the FoxO signalling pathway, as well as cleaved-caspase 8; downregulating the apoptosis-associated proteins Bcl-2, Bid, cleaved-caspase 3, and cleaved-caspase 9; and promoting the phosphorylation of FOXO1A and MDM2. CONCLUSION: By upregulating the FoxO signaling pathway to inhibit apoptosis, DHC exerts a cardioprotective effect, which could serve as a potential therapeutic option for MIRI.

16.
Lab Anim Res ; 40(1): 32, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237965

RESUMO

Ischemic heart disease is the most prevalent cause of death worldwide affecting both the gender of all age groups. The high mortality rate is due to damage of myocardial tissue that emanates at the time of myocardial ischemia and re-oxygenation, thus averting reperfusion injury is recognized as a potential way to reduce acute cardiac injury and subsequent mortality. Flavonoids are polyphenol derivatives of plant origin and empirical shreds of evidence substantiate their numerous activities such as antioxidant, anti-inflammatory, anti-apoptotic, and anti-thrombotic activity, leading to their role in cardio protection. Recent investigations have unveiled the capacity of flavonoids to impede pivotal regulatory enzymes, signaling molecules, and transcription factors that orchestrate the mediators participating in the inflammatory cascade. The present comprehensive review, dwells on the preclinical studies on the effectiveness of flavonoids from the year 2007 to 2023, for the prevention and therapeutics for myocardial ischemia-reperfusion injury.

17.
Int J Biol Sci ; 20(11): 4458-4475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247823

RESUMO

This study investigated the mechanism by which NR4A1 regulates mitochondrial fission factor (Mff)-related mitochondrial fission and FUN14 domain 1 (FUNDC1)-mediated mitophagy following cardiac ischemia-reperfusion injury(I/R). Our findings showed that the damage regulation was positively correlated with the pathological fission and pan-apoptosis of myocardial cell mitochondria. Compared with wild-type mice (WT), NR4A1-knockout mice exhibited resistance to myocardial ischemia-reperfusion injury and mitochondrial pathological fission, characterized by mitophagy activation. Results showed that ischemia-reperfusion injury increased NR4A1 expression level, activating mitochondrial fission mediated by Mff and restoring the mitophagy phenotype mediated by FUNDC1. The inactivation of FUNDC1 phosphorylation could not mediate the normalization of mitophagy in a timely manner, leading to an excessive stress response of unfolded mitochondrial proteins and an imbalance in mitochondrial homeostasis. This process disrupted the normalization of the mitochondrial quality control network, leading to accumulation of damaged mitochondria and the activation of pan-apoptotic programs. Our data indicate that NR4A1 is a novel and critical target in myocardial I/R injury that exertsand negative regulatory effects by activating Mff-mediated mito-fission and inhibiting FUNDC1-mediated mitophagy. Targeting the crosstalk balance between NR4A1-Mff-FUNDC1 is a potential approach for treating I/R.


Assuntos
Camundongos Knockout , Dinâmica Mitocondrial , Proteínas Mitocondriais , Mitofagia , Traumatismo por Reperfusão Miocárdica , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Camundongos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Masculino , Camundongos Endogâmicos C57BL , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Apoptose , Mitocôndrias Cardíacas/metabolismo
18.
Tissue Cell ; 91: 102555, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39276487

RESUMO

PURPOSE: The present study aims to investigate the biological function of Tyrobp in myocardial ischemia-reperfusion injury (MIRI) and to clarify its potential reaction mechanisms. METHODS: AC16 cells were induced by oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate the MIRI in vitro. The cell transfection technology was used to downregulate Tyrobp, followed by assessment of cell damage, apoptosis and cytokines production via Cell Counting Kit (CCK)-8 assay, lactate dehydrogenase (LDH) release assay, TUNEL and ELISA assays, respectively. Immunofluorescence assay was performed to assess GSDMD. Corresponding proteins were detected via western blotting, and Co-immunoprecipitation (Co-IP) assay was used to validate proteins interaction. RESULTS: Tyrobp was upregulated in OGD/R-exposed AC16 cells, and Tyrobp deficiency significantly alleviated OGD/R-caused cell viability loss, LDH release and cell apoptosis in AC16 cells. Meanwhile, Tyrobp deficiency inhibited the activation of NLRP3 inflammasome, reduced the production of cytokines and inhibited GSDMD intensity and GSDMD-N expression. Additionally, Tyrobp could interact with Syk and regulate Syk/NF-κB signaling. The rescue experiments showed that the above effects of Tyrobp deficiency on OGD/R-exposed AC16 cells were partly weakened by Syk overexpression. CONCLUSION: Tyrobp deficiency alleviated MIRI by inhibiting NLRP3-mediated inflammation and pyroptosis through regulating Syk, providing a novel target for the treatment of MIRI.

19.
Phytother Res ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225191

RESUMO

Reperfusion therapy is the primary treatment strategy for acute myocardial infarction (AMI). Paradoxically, it can lead to myocardial damage, namely myocardial ischemia/reperfusion injury (MIRI). This study explored whether oroxylin A (OA) protects the myocardium after MIRI by inhibiting ferroptosis and the underlying mechanism. In vivo, we established an MIRI model to investigate the protective effect of OA. In vitro, H9C2 cells were used to explore the regulation of ferroptosis by OA through immunofluorescence staining, western blotting, assay kits, etc. Additionally, RNA sequencing analysis (RNA-seq) and network pharmacology analyses were conducted to elucidate the molecular mechanisms. Our results showed that MIRI caused cardiac structural and functional damage in rats. MIRI promoted ferroptosis, which was consistently observed in vitro. However, pretreatment with OA reversed these effects. The mitogen-activated protein kinases (MAPK) signaling pathway participated in the MIRI process, with dual-specificity phosphatase 10 (DUSP10) found to regulate it. Further confirmation was provided by knocking down DUSP10 using small interfering RNA (siRNA), demonstrating the activation of the DUSP10/MAPK-Nrf2 pathway by OA to protect H9C2 cells from ferroptosis. Our research has demonstrated the mitigating effect of OA on MIRI and the improvement of myocardial function for the first time. The inhibition of ferroptosis has been identified as one of the mechanisms through which OA exerts its myocardial protective effects. Moreover, we have first unveiled that DUSP10 serves as an upstream target involved in mediating ferroptosis, and the regulation of the DUSP10/MAPK-Nrf2 pathway by OA is crucial in inhibiting ferroptosis to protect the myocardium.

20.
Adv Sci (Weinh) ; : e2403542, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264262

RESUMO

Despite the widespread adoption of emergency coronary reperfusion therapy, reperfusion-induced myocardial injury remains a challenging issue in clinical practice. Following myocardial reperfusion, S100A8/A9 molecules are considered pivotal in initiating and regulating tissue inflammatory damage. Effectively reducing the S100A8/A9 level in ischemic myocardial tissue holds significant therapeutic value in salvaging damaged myocardium. In this study, HA (hemagglutinin)- and RAGE (receptor for advanced glycation end products)- comodified macrophage membrane-coated siRNA nanoparticles (MMM/RNA NPs) with siRNA targeting S100A9 (S100A9-siRNA) are successfully prepared. This nanocarrier system is able to target effectively the injured myocardium in an inflammatory environment while evading digestive damage by lysosomes. In vivo, migration of MMM/RNA NPs to myocardial injury lesions is confirmed in a myocardial ischemia-reperfusion injury (MIRI) mouse model. Intravenous injection of MMM/RNA NPs significantly reduced S100A9 levels in serum and myocardial tissues, further decreasing myocardial infarction area and improving cardiac function. Targeted reduction of S100A8/A9 by genetically modified macrophage membrane-coated nanoparticles may represent a new therapeutic intervention for MIRI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...