Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
J Sep Sci ; 47(19): e202400277, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39385440

RESUMO

Nitrosamine-related impurities (N-nitrosomethylamino butyric acid [NMBA], N-nitrosodiethylamine [NDEA], N-nitrosodiisopropylamine [NDIPA], N-nitrosomethylphenylamine [NMPA], N-nitrosodibutylamine [NDBA], N-nitrosodimethylamine [NDMA], and N-nitrosoethylisopropylamine [NEIPA]) and 5-[4'-(azidomethyl)-[1,1'-biphenyl]-2-yl]-2H-tetrazole (AZBT) formed during the manufacture of sartan medicines have been classified into human mutagens and carcinogens after long-term treatment. The study developed a simple, economical but highly sensitive procedure for the simultaneous quantification of seven nitrosamines and AZBT impurities in sartan pharmaceuticals. After extraction with methanol (MeOH) 50%, the compounds were analyzed with a reversed-phase liquid chromatography-tandem mass spectroscopy with atmospheric-pressure chemical ionization (APCI) mode (APCI[+] for nitrosamines and APCI[-] for AZBT), selected reaction monitoring, C18 column, gradient elution with 0.1% formic acid in water and in MeOH, respectively. The validated procedure obtained high extraction efficiency (>90%), wide linear range (0.2-50.0 ng/mL NMBA, NDEA, NDIPA, NMPA, and NDBA; 0.5-50.0 ng/mL NDMA and NEIPA; 2.0-100 ng/mL AZBT), limit of quantification < 10% of the acceptance level, recovery range of 85%-115% with relative standard deviation < 15% and minimum matrix effects for all impurities. The procedure was applied to test 16 commercial losartan samples. As a result, eight samples contained AZBT within the current regulatory limits, but no nitrosamine impurities were detected in all samples.


Assuntos
Contaminação de Medicamentos , Losartan , Nitrosaminas , Espectrometria de Massas em Tandem , Tetrazóis , Nitrosaminas/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Losartan/análise , Tetrazóis/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-39226451

RESUMO

Detailed analysis of dietary nitrosamine exposure for the U.S. population has been limited, yet it is critical for evaluating the amount of nitrosamines in the American diet. The dietary exposures to N-nitrosamines from consumption of food and beverages were estimated for the U.S. population aged 2 years and older and children aged 2 to 5 years using 2-day food consumption data from the publicly available, combined 2015-2018 National Health and Nutrition Examination Survey (NHANES) and data on residual volatile N-nitrosamine levels in food available from our recent comprehensive literature review. The estimated eaters-only mean dietary exposure to N-nitrosamines ranged from 0.1 µg/person/day for U.S. children aged 2-5 years to 0.2 µg/person/day for the U.S. population aged 2 years and older. For the U.S. population aged 2 years and older, over 40% of the daily dietary exposure to N-nitrosamines resulted from the consumption of processed cured meats.

3.
Artigo em Chinês | MEDLINE | ID: mdl-39223051

RESUMO

Objective: To establish a method for the determination of eight N-nitrosamines (N-nitrosodimethylamine, N-nitrosodimethylamine, N-nitrosomethylmethylamine, N-nitrosodibutylamine, N-nitrosopropylamine, N-nitrosomorpholine, N-nitrosodianiline and N-nitrosopiperidine) in the air of workplace by gas chromatography-tandem mass spectrometry (GC-MS/MS) . Methods: From January to August 2023, eight N-nitrosamines in the air of workplace were collected by ThermoSorb/N column, eluted with 4 ml methanol-dichloromethane (1∶1 volume ratio), separated by VF-624 ms capillary column, detected by multiple reaction monitoring mode and quantified by external standard method. The detection limit and precision of the method were also analyzed. Results: The linear range of the method for the determination of eight N-nitrosamines was 1.0-20.0 µg/L, the correlation coefficient was 0.9993-0.9999, the detection limit was 0.051-0.132 µg/L, and the minimum quantitative concentration was 0.030-0.078 µg/m(3) (calculated by collecting 22.5 L of air sample and eluting with 4.0 ml stripping liquid). The within-run precisions were 2.05%-6.89% and the between-run precisions were 2.41%-8.26%. The desorption rates were 67.20%-102.60%. The sample can be kept at least 7 days at 4 ℃. Conclusion: GC-MS/MS method for the determination of eight N-nitrosamines in workplace air has high sensitivity and good precision, and can accurately determine the content of eight N-nitrosamines in workplace air.


Assuntos
Poluentes Ocupacionais do Ar , Cromatografia Gasosa-Espectrometria de Massas , Nitrosaminas , Espectrometria de Massas em Tandem , Local de Trabalho , Nitrosaminas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Poluentes Ocupacionais do Ar/análise , Exposição Ocupacional/análise , Dimetilnitrosamina/análise , Monitoramento Ambiental/métodos
4.
Lancet Reg Health Southeast Asia ; 29: 100457, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39258248

RESUMO

Background: India has the highest incidence worldwide of smokeless tobacco (SLT)-associated oral cancer, accounting for nearly 70% of all SLT users globally. Nicotine and tobacco-specific N-nitrosamines (TSNA) play critical roles in the addictive and carcinogenic potential, respectively, of SLT products. Our group has previously reported substantial variability in nicotine and TSNA levels across a small SLT product sample in India, calling for systematic surveillance. However, there is no information available on the current levels of these constituents in Indian SLT. Methods: We analysed 321 samples representing 57 brands of eight popular types of manufactured SLT products purchased from five local markets in Mumbai, India between August, and September 2019. The sampling locations were Mumbai Central, Kurla, Thane, Vashi, and Airoli. Product pH, moisture content, total and unprotonated (biologically available) nicotine, and TSNA levels were measured at the Advanced Centre for Treatment, Research, and Education in Cancer (ACTREC) in Mumbai. Findings: Total nicotine content ranged from 0.45 to 35.1 mg/g across products. The unprotonated nicotine fraction contributed 0.1-100% of the total nicotine content. The carcinogenic TSNA levels ranged 0.06-76 ug/g for N'-nitrosonornicotine (NNN), 0.02-19.2 ug/g for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and 0.01-6.51 ug/g for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). Consistent with our previous study, we observed substantial variations across different brands of the same product type. Interpretation: This is the most extensive and the first within-country study to report brand-specific nicotine and TSNA levels in SLT products marketed in Mumbai, India. Our results show that levels of these constituents remain extremely variable across Indian SLT and are strikingly high in many products. Enhanced public education and continued efforts to reduce SLT use prevalence in India are critical for reducing the global burden of SLT-associated morbidity and mortality. Regulation of nicotine and TSNA levels in SLT products should be considered. Funding: This work was supported by the National Institutes of Health (USA) grant R01-TW010651 and, in part, by grants R01-CA180880 and R50-CA211256. The LC-MS/MS analysis was supported in part by XII Plan project funding from the Department of Atomic Energy, Government of India.

5.
Regul Toxicol Pharmacol ; 153: 105709, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39343352

RESUMO

Accurately determining the mutagenicity of small-molecule N-nitrosamine drug impurities and nitrosamine drug substance-related impurities (NDSRIs) is critical to identifying mutagenic and cancer hazards. In the current study we have evaluated several approaches for enhancing assay sensitivity for evaluating the mutagenicity of N-nitrosamines in the bacterial reverse mutagenicity (Ames) test. Preincubation assays were conducted using five activation conditions: no exogenous metabolic activation and metabolic activation mixes employing both 10% and 30% liver S9 from hamsters and rats pretreated with inducers of enzymatic activity. In addition, preincubations were conducted for both 60 min and 30 min. These test variables were evaluated by testing 12 small-molecule N-nitrosamines and 17 NDSRIs for mutagenicity in Salmonella typhimurium tester strains TA98, TA100, TA1535, and TA1537, and Escherichia coli strain WP2 uvrA (pKM101). Eighteen of the 29 N-nitrosamine test substances tested positive under one or more of the testing conditions and all 18 positives could be detected by using tester strains TA1535 and WP2 uvrA (pKM101), preincubations of 30 min, and S9 mixes containing 30% hamster liver S9. In general, the conditions under which NDSRIs were mutagenic were similar to those found for small-molecule N-nitrosamines.

6.
Talanta ; 282: 126752, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39341057

RESUMO

N-nitrosamines (NAs) are potentially highly carcinogenic compounds that have recently been detected in traces in various drug products (DPs). Due to the different physicochemical properties of NAs and active pharmaceutical ingredients (APIs), there is a lack of appropriate analytical methods for simultaneously determining multiple NAs in various DPs. To overcome these limitations, a versatile and innovative analytical approach was developed using a unique sample clean-up procedure by solid phase extraction based on hydrophilic interaction chromatography, which retains high amounts of APIs and polar excipients while allowing NAs of interest to pass through. The samples were analyzed by liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry. The proposed highly sensitive, selective, and robust method was successfully validated, resulting in excellent linearity (R2 > 0.999), accuracy (85-115 %), and precision (RSD <10 %) with adequate recoveries (>80 %), achieving limits of quantitation of at least 42.5 % of regulatory limits. Furthermore, robustness was confirmed for ten DPs (recoveries >80 % and RSD <15 % for all NAs), including those containing up to three APIs. The analytical approach was utilized to examine 26 commercially available and expired DPs. Three NAs (N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine, and N-nitroso-di-n-butylamine) were detected, only NDMA exceeded the limits in expired DPs by up to 32-fold. It was found that special care should be taken when handling samples as NDMA content can be decreased by almost 50 % if samples are not prepared immediately. The approach was tested on 59 different APIs and was confirmed as reliable tool for routine monitoring of 15 NAs in various DPs. Due to its flexibility, the method can be further adapted to the specific API of interest or extended to the newly emerging NA drug substance-related impurities to ensure the safety of DPs and thereby mitigate potential health risks.

7.
Regul Toxicol Pharmacol ; : 105704, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326488

RESUMO

The carcinogenicity potency categorization approach (CPCA) derived and harmonized by Health Authorities was a significant milestone, as it defined molecular properties that allowed for the rapid evaluation of the chemical structures of N-nitrosamine drug substance related impurities (NDSRIs) and the assignment of associated lifetime Acceptable Intake limits to inform on appropriate impurity control strategies in certain drug products. Nonetheless, it is important to continue to refine and improve on the CPCA based upon data-derived evidence. Herein, we focus on the default CPCA AI for NDSRIs, which is largely based on the small molecule N-nitrosamines (NAs). Considering the carcinogenic potency of NAs with a molecular weight > 200 Da (NDSRIs molecular weight is typically 200-600 Da), we propose that in the absence of any compound specific data, the lowest lifetime Acceptable Intake for NAs, such as NDSRIs, should be 10x less (i.e., 150 ng/day) than the ICH M7 Threshold of Toxicological Concern of 1500 ng/day, (even for NDSRIs that are considered CPCA Category 1 and 2) which would conservatively result in a theoretical cancer risk of <1 in 100,000.

8.
Compr Rev Food Sci Food Saf ; 23(5): e70000, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39217507

RESUMO

Food processing unavoidably introduces various risky ingredients that threaten food safety. N-Nitrosamines (NAs) constitute a class of food contaminants, which are considered carcinogenic to humans. According to the compiled information, pretreatment methods based on solid-phase extraction (SPE) were widely used before the determination of volatile NAs in foods. The innovation of adsorbents and hybridization of other methods have been confirmed as the future trends of SPE-based pretreatment methods. Moreover, technologies based on liquid chromatography and gas chromatography were popularly applied for the detection of NAs. Recently, sensor-based methods have garnered increasing attention due to their efficiency and flexibility. More portable sensor-based technologies are recommended for on-site monitoring of NAs in the future. The application of artificial intelligence can facilitate data processing during high-throughput detection of NAs. Natural bioactive compounds have been confirmed to be effective in mitigating NAs in foods through antioxidation, scavenging precursors, and regulating microbial activities. Meanwhile, they exhibit strong protective activities against hepatic damage, pancreatic cancer, and other NA injuries. Further supplementation of data on the bioavailability of bioactives can be achieved through encapsulation and clinical trials. The utilization of bioinformatics tools rooted in various omics technologies is suggested for investigating novel mechanisms and finally broadening their applications in targeted therapies.


Assuntos
Contaminação de Alimentos , Nitrosaminas , Nitrosaminas/química , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Humanos , Inocuidade dos Alimentos/métodos , Extração em Fase Sólida/métodos , Análise de Alimentos/métodos
9.
J Hazard Mater ; 478: 135396, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39121736

RESUMO

Quaternary ammonium compounds (QACs) are widely detected in the aquatic environment due to their extensive use in a wide array of antibacterial products during the pandemic. In the current study, UV/monochloramine (UV/NH2Cl) was used to degrade three typical QACs, namely benzalkonium compounds (BACs), dialkyl dimethyl ammonium compounds (DADMACs), and alkyl trimethyl ammonium compounds (ATMACs). This process achieved high efficiency in removing BACs from water samples. The transformation products of QACs treated with UV/NH2Cl were identified and characterized using a high-resolution mass spectrometer, and transformation pathways were proposed. The formation of N-nitroso-N-methyl-N-alkylamines (NMAs) and N-nitrosodimethylamine (NDMA) were observed during QAC degradation. The molar formation yield of NDMA from C12-BAC was 0.04 %, while yields of NMAs reached 1.05 %. The ecotoxicity of NMAs derived from QACs was predicted using ECOSAR software. The increased toxicity could be attributed to the formation of NMAs with longer alkyl chains; these NMAs, exhibited a one order of magnitude increase in toxicity compared to their parent QACs. This study provides evidence that QACs are the specific and significant precursors of NMAs. Greater attention should be given to NMA formation and its potential threat to the ecosystem, including humans.


Assuntos
Cloraminas , Compostos de Amônio Quaternário , Raios Ultravioleta , Poluentes Químicos da Água , Compostos de Amônio Quaternário/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Poluentes Químicos da Água/análise , Cinética , Cloraminas/química , Dimetilnitrosamina/química , Nitrosaminas/química , Nitrosaminas/análise
10.
Int J Environ Health Res ; : 1-10, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39086174

RESUMO

Volatile N-nitrosamines (VNAs) are probably and possibly carcinogenic compounds to humans and widely found in processed meat products. In this study, the dietary exposure distribution and probabilistic cancer risk for main VNAs (N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosomethylethylamine, N-nitrosopiperidine, N-nitrosodibutylamine, and N-nitrosodi-n-propylamine) were calculated by Monte Carlo simulation (MCS). The lowest and highest mean concentrations of these six NAs were related to NDBA and NDEA as 0.350 and 2.655 µg/kg, respectively. In the 95th percentile, chronic daily intake of total VNAs for children (3-14 years) and adults (15-70 years) were calculated to be 2.83 × 10-4 and 5.90 × 10-5 mg/kg bw/day, respectively. The cancer risk caused by the consumption of chicken sausages was less than 10-4, indicating low concern for the Iranian population. According to principal component analysis and heat map results, NDEA, NPIP and frying showed a positive correlation, highlighting that the variables follow a similar trend.

11.
Anal Bioanal Chem ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126504

RESUMO

Water, renowned for its sustainability and minimal toxicity, is an ideal candidate for environmentally friendly solvent-based microextraction. However, its potential as an extractant solvent in miniaturized sample preparation remains largely unexplored. This paper pioneers using water as the extraction solvent in headspace single-drop microextraction (HS-SDME) for N-nitrosamines from losartan tablets. Autonomous HS-SDME is executed by an Arduino-controlled, lab-made Cartesian robot, using water for the online preconcentration of enriched extracts through direct injection into a column-switching system. Critical experimental parameters influencing HS-SDME performance are systematically explored through univariate and multivariate experiments. While most previously reported methods for determining N-nitrosamines in pharmaceutical formulations rely on highly selective mass spectrometry detection techniques to handle the strong matrix effects typical of pharmaceutical samples, the water-based HS-SDME method efficiently eliminates the interfering effects of a large amount of the pharmaceutical active ingredient and tablet excipients, allowing straightforward analysis using high-performance liquid chromatography with ultraviolet detection (HPLC-UV-Vis). Under optimized conditions, the developed method exhibits linear responses from 100 to 2400 ng g-1, demonstrating appropriate detectability, precision, and accuracy for the proposed application. Additionally, the environmental sustainability of the method is assessed using the AGREEprep methodology, positioning it as an outstanding green alternative for determining hazardous contaminants in pharmaceutical products.

12.
Gut Microbes ; 16(1): 2391521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39193618

RESUMO

N-Nitrosamine disinfection by-products (NAs-DBPs) have been well proven for its role in esophageal carcinogenesis. However, the role of intratumoral microorganisms in esophageal squamous cell carcinoma (ESCC) has not yet been well explored in the context of exposure to NAs-DBPs. Here, the multi-omics integration reveals F. periodonticum (Fp) as "facilitators" is highly enriched in cancer tissues and promotes the epithelial mesenchymal transition (EMT)-like subtype formation of ESCC. We demonstrate that Fp potently drives de novo synthesis of fatty acids, migration, invasion and EMT phenotype through its unique FadAL adhesin. However, N-nitrosomethylbenzylamine upregulates the transcription level of FadAL. Mechanistically, co-immunoprecipitation coupled to mass spectrometry shows that FadAL interacts with FLOT1. Furthermore, FLOT1 activates PI3K-AKT/FASN signaling pathway, leading to triglyceride and palmitic acid (PA) accumulation. Innovatively, the results from the acyl-biotin exchange demonstrate that FadAL-mediated PA accumulation enhances Wnt3A palmitoylation on a conserved cysteine residue, Cys-77, and promotes Wnt3A membrane localization and the translocation of ß-catenin into the nucleus, further activating Wnt3A/ß-catenin axis and inducing EMT phenotype. We therefore propose a "microbiota-cancer cell subpopulation" interaction model in the highly heterogeneous tumor microenvironment. This study unveils a mechanism by which Fp can drive ESCC and identifies FadAL as a potential diagnostic and therapeutic target for ESCC.


Assuntos
Transição Epitelial-Mesenquimal , Carcinoma de Células Escamosas do Esôfago , Nitrosaminas , Proteína Wnt3A , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Proteína Wnt3A/metabolismo , Proteína Wnt3A/genética , Nitrosaminas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/microbiologia , Carcinoma de Células Escamosas do Esôfago/genética , Linhagem Celular Tumoral , Lipoilação , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Animais , Camundongos , Movimento Celular/efeitos dos fármacos , Transdução de Sinais
13.
Regul Toxicol Pharmacol ; 152: 105681, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067806

RESUMO

The finding of N-nitrosodiethylamine (NDEA) and N-nitrosodimethylamine (NDMA) in marketed drugs has led to implementation of risk assessment processes intended to limit exposures to the entire class of N-nitrosamines. A critical component of the risk assessment process is establishing exposure limits that are protective of human health. One approach to establishing exposure limits for novel N-nitrosamines is to conduct an in vivo transgenic rodent (TGR) mutation study. Existing regulatory guidance on N-nitrosamines provides decision making criteria based on interpreting in vivo TGR mutation studies as an overall positive or negative. However, point of departure metrics, such as benchmark dose (BMD), can be used to define potency and provide an opportunity to establish relevant exposure limits. This can be achieved through relative potency comparison of novel N-nitrosamines with model N-nitrosamines possessing robust in vivo mutagenicity and carcinogenicity data. The current work adds to the dataset of model N-nitrosamines by providing in vivo TGR mutation data for N-nitrosopiperidine (NPIP). In vivo TGR mutation data was also generated for a novel N-nitrosamine impurity identified in sitagliptin-containing products, 7-nitroso-3-(trifluoromethyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo-[4,3-a]pyrazine (NTTP). Using the relative potency comparison approach, we have demonstrated the safety of NTTP exposures at or above levels of 1500 ng/day.


Assuntos
Contaminação de Medicamentos , Mutação , Nitrosaminas , Animais , Medição de Risco , Nitrosaminas/toxicidade , Mutação/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Camundongos , Relação Dose-Resposta a Droga , Dimetilnitrosamina/toxicidade , Animais Geneticamente Modificados , Dietilnitrosamina/toxicidade , Humanos , Carcinógenos/toxicidade , Ratos , Masculino
14.
Foods ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998527

RESUMO

The objective of this research was to investigate the impact of inoculating autochthonous starter cultures on the alterations in microorganisms, biogenic amines, nitrite, and N-nitrosamines in Chinese traditional fermented fish products (CTFPs) during in vitro human digestion. The results revealed that gastric digestion significantly (p < 0.05) inhibited the proliferation of lactic acid bacteria, yeast, Staphylococcus, and Enterobacteriaceae, whereas various microorganisms proliferated extensively during small intestine digestion. Meanwhile, small intestine digestion could significantly increase (p < 0.05) levels of putrescine, cadaverine, and tyramine. The reduced content observed in inoculated fermentation groups suggests that starter cultures may have the ability to deplete biogenic amines in this digestion stage. Gastric digestion significantly (p < 0.05) inhibited nitrite accumulation in all CTFPs samples. Conversely, the nitrite content increased significantly (p < 0.05) in all groups during subsequent small intestine digestion. However, the rise in the inoculated fermentation groups was smaller than that observed in the spontaneous fermentation group, indicating a potentially positive role of inoculated fermentation in inhibiting nitrite accumulation during this phase. Additionally, gastric digestion significantly (p < 0.05) elevated the levels of N-nitrosodimethylamine (NDMA) and N-nitrosopiperidine in CTFPs. Inoculation with L. plantarum 120, S. cerevisiae 2018, and mixed starter cultures (L. plantarum 120, S. cerevisiae 2018, and S. xylosus 135 [1:1:1]) effectively increased the degree of depletion of NDMA during this digestion process.

15.
Nanomaterials (Basel) ; 14(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38998722

RESUMO

The rapid expansion of urban areas and the increasing demand for water resources necessitate substantial investments in technologies that enable the reuse of municipal wastewater for various purposes. Nonetheless, numerous challenges remain, particularly regarding disinfection by-products (DBPs), especially carcinogenic compounds such as N-nitrosamines (NTRs). To tackle the ongoing issues associated with reverse osmosis (RO) membranes, this study investigated the rejection of NTRs across a range of commercially available RO membranes. In addition, the research aimed to improve rejection rates by integrating molecular plugs into the nanopores of the polyamide (PA) layer. Hexylamine (HEX) and hexamethylenediamine (HDMA), both linear chain amines, have proven to be effective as molecular plugs for enhancing the removal of NTRs. Given the environmental and human health concerns associated with linear amines, the study also aimed to assess the feasibility of diamine molecules as potential alternatives. The application of molecular plugs led to changes in pore size distribution (PSD) and effective pore number, resulting in a decrease in membrane permeability (from 5 to 33%), while maintaining levels suitable for RO processes. HEX and HDMA exhibited a positive effect on NTR rejection with ACM1, ACM5 and BW30LE membranes. In particular, NDMA rejection, the smallest molecule of the tested NTRs, with ACM1 was improved by 65.5% and 70.6% after treatment with HEX and HDMA, respectively.

16.
Huan Jing Ke Xue ; 45(7): 3930-3940, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022941

RESUMO

N-nitrosamines are a type of nitrogen-containing organic pollutant with high carcinogenicity and mutagenicity. In the main drinking water sources of small and medium-sized towns in China, the contamination levels of N-nitrosamines remain unclear. In addition, there is still lack of research on the concentration of N-nitrosamines and their precursors in tributary rivers. In this study, eight N-nitrosamines and their formation potentials (FPs) were investigated in the Qingjiang River, which is a primary tributary of the Yangtze River. The sewage discharge sites were also monitored, and the environmental influencing factors, carcinogenic and ecological risks caused by N-nitrosamines, and their precursors were evaluated. The results showed that six N-nitrosamines were detected in water samples of the Qingjiang River, among which NDMA [(10 ±15) ng·L-1], NDEA [(9.3 ±9.3) ng·L-1], and NDBA [(14 ±7.8) ng·L-1] were the dominant N-nitrosamines, whereas seven N-nitrosamines were detected in chloraminated water samples, among which NDMA-FP [(46 ±21) ng·L-1], NDEA-FP [(26 ±8.3) ng·L-1], and NDBA-FP [(22 ±13) ng·L-1] were the dominant N-nitrosamine FPs. The concentrations of N-nitrosamines in the middle reaches of the Qingjiang River were higher than those in the upper and lower reaches. Furthermore, the concentrations of N-nitrosamines in the sample sites of sewage discharge and tributaries were significantly higher than those in other sampling sites. The monitoring results at the direct sewage discharge points indicated that the main source of N-nitrosamines in river water was the sewage carrying N-nitrosamines and their precursors. In addition, the concentrations of the three dominant N-nitrosamines including NDMA, NDBA, and NDEA were positively correlated with each other, mainly because of their similar sewage sources. The average carcinogenic risk to residents due to N-nitrosamine in drinking water sources was 2.4×10-5, indicating a potential carcinogenic risk. Moreover, due to the high concentrations of N-nitrosamine formation potentials in the Qingjiang River, the carcinogenic risk of drinking water may be even higher. The ecological risk assessment showed that the ecological risk quotient values of N-nitrosamines in the Qingjiang River watershed were lower than 0.002, which was negligible.


Assuntos
Monitoramento Ambiental , Nitrosaminas , Poluentes Químicos da Água , Poluição Química da Água , Nitrosaminas/análise , Medição de Risco , Poluição Química da Água/estatística & dados numéricos , Poluentes Químicos da Água/análise , China , Exposição Ambiental/estatística & dados numéricos , Água Potável/análise , Rios
17.
Environ Geochem Health ; 46(7): 255, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884657

RESUMO

The discharge of electroplating wastewater, containing high concentrations of N-nitrosamines, poses significant risks to human health and aquatic ecosystems. Karst aquatic environment is easily impacted by N-nitrosamines due to the fragile surface ecosystem. However, it's still unclear in understanding N-nitrosamine transformation in karst water systems. To explore the response and transport of nine N-nitrosamines in electroplating effluent within both karst surface water and groundwater, different river and groundwater samples were collected from both the upper and lower reaches of the effluent discharge areas in a typical karst industrial catchment in Southwest China. Results showed that the total average concentrations of N-nitrosamines (∑NAs) in electroplating effluent (1800 ng/L) was significantly higher than that in the receiving river water (130 ng/L) and groundwater (70 ng/L). The dynamic nature of karst aquifers resulted in comparable average concentrations of ∑NAs in groundwater (70 ng/L) and river water (79 ng/L) at this catchment. Based on the principal component analysis and multiple linear regression analysis, the electroplating effluent contributed 89% and 53% of N-nitrosamines to the river water and groundwater, respectively. The results based on the species sensitivity distribution model revealed N-nitrosodibutylamine as a particularly toxic compound to aquatic organisms. Furthermore, the average N-nitrosamine carcinogenic risk was significantly higher in lower groundwater reaches compared to upper reaches. This study represents a pioneering effort in considering specific N-nitrosamine properties in evaluating their toxicity and constructing species sensitivity curves. It underscores the significance of electroplating effluent as a primary N-nitrosamine source in aquatic environments, emphasizing their swift dissemination and significant accumulation in karst groundwater.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Nitrosaminas , Rios , Poluentes Químicos da Água , Nitrosaminas/análise , Poluentes Químicos da Água/análise , China , Água Subterrânea/química , Rios/química , Águas Residuárias/química , Resíduos Industriais/análise , Galvanoplastia , Animais , Ecossistema
18.
Onco Targets Ther ; 17: 395-409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774818

RESUMO

Background: Humans are frequently exposed to N-nitrosamines through various sources, including diet, cigarette smoking, contaminated water, the atmosphere, and endogenous nitrosation. Exposure to these carcinogens may also contribute to the gender-specific incidence of liver cancer, which is significantly higher in males than in females, possibly due to the influence of endogenous hormones such as testosterone. However, the effect of testosterone on N-nitrosamine-induced liver cancer and its underlying mechanism remains unclear. Purpose: To investigate the effect of testosterone on the development of liver cancer induced by N-nitrosamines exposure. Patients and Methods: Histopathological and immunohistochemical staining techniques were employed to analyze the expression levels and nuclear localizations of key signaling molecules, including androgen receptor (AR), ß-catenin, and HMGB1, in both tumor and non-tumor regions of liver samples obtained from human patients and mice. Results: The findings demonstrated a strong correlation between AR and ß-catenin in the nuclear region of tumor areas. AR also showed a significant correlation with HMGB1 in the cytoplasmic region of non-tumor areas in both human and mice samples. The study further analyzed the expression levels and patterns of these three proteins during the progression of liver tumors. Conclusion: This study confirms that AR has the ability to modulate the expression levels and patterns of ß-catenin and HMGB1 in vivo, thereby exacerbating the progression of liver cancer induced by environmental N-nitrosamines exposure. Importantly, the effect of testosterone on the formation of liver cancer induced by environmental N-nitrosamine exposure intensifies this progression. These findings have important implications for drug safety in clinical practice and emphasize the significance of reducing N-nitrosamines exposure through conscious choices regarding diet and lifestyle to ensure environmental safety.

19.
Talanta ; 276: 126235, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761654

RESUMO

N-nitrosamines (NAs) are highly carcinogenic compounds commonly found in food, beverages, and consumer products. Due to their wide polarity range, it is challenging to find a suitable carbon adsorbent that can simultaneously adsorb and enrich both polar and nonpolar NAs with good recovery. In this study, nitrogen-doped magnetic mesoporous carbon nanospheres (M-MCN) were prepared and employed as an adsorbent for magnetic solid-phase extraction (MSPE) to extract and concentrate four NAs. The introduction of nitrogen functional groups enhanced the hydrophilicity of the carbon material, allowing M-MCN to achieve a balance between hydrophilicity and hydrophobicity, resulting in good recovery for both polar and nonpolar NAs. A method combining MSPE with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of NAs in processed meat and alcoholic beverages. The method exhibited a good linear range (1-100 ng g-1, r2 > 0.9967) and trace-level detection (0.53-6.6 ng g-1). The recovery rates for the four NAs ranged between 85.7 and 110.7 %, with intra-day precision expressed as relative standard deviation (RSD) between 4.1 and 10.7 %, and inter-day precision between 4.8 and 12.9 %. The results demonstrated not only good accuracy and precision but also provided a new adsorbent for the enrichment of trace-level NAs in processed meat and alcoholic beverage samples.


Assuntos
Carbono , Cromatografia Gasosa-Espectrometria de Massas , Indóis , Nanosferas , Nitrogênio , Nitrosaminas , Polímeros , Extração em Fase Sólida , Nitrogênio/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Porosidade , Nanosferas/química , Carbono/química , Polímeros/química , Nitrosaminas/análise , Nitrosaminas/isolamento & purificação , Indóis/química , Extração em Fase Sólida/métodos , Adsorção , Óxido Ferroso-Férrico/química
20.
Food Chem Toxicol ; 188: 114649, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599275

RESUMO

Several epidemiological studies have reported a positive association between the consumption of processed meats containing N-nitrosamines (NAs) and the incidence of hepatocellular and colon cancer. The health risk assessment in this investigation was based on the concentration of six volatile N-nitrosamines (VNAs) (N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosomethylethylamine, N-nitrosopiperidine, N-nitrosodibutylamine, and N-nitrosodi-n-propylamine) found in processed meat products (sausage and kielbasa) in the Iranian market. Direct supported liquid membrane two-phase hollow fiber electromembrane extraction coupled to gas chromatography/mass spectrometry was used to analyse six VNAs. The mean concentration of the six VNAs in sausages and kielbasa was 38.677 ± 27.56 and 48.383 ± 35.76 µg/kg, respectively. The 95th percentile for the chronic daily intake of total VNAs for children (3-14 years) and adults (15-70 years) were calculated to be 5.06 × 10-4 and 1.09 × 10-4 mg/kg bw/day, respectively. The cancer risk assessment showed that the risk associated with NDEA was the highest among the other VNAs studied in Iranian processed meat, with a 95th percentile for the child and adult groups. Based on an incremental lifetime cancer risk (ILCR) value of ≤10-4 for the carcinogenic effects of exposure to a total of six VNAs, it indicates low concern for all age groups.


Assuntos
Exposição Dietética , Produtos da Carne , Nitrosaminas , Análise de Componente Principal , Humanos , Nitrosaminas/análise , Produtos da Carne/análise , Adulto , Medição de Risco , Exposição Dietética/análise , Adolescente , Criança , Pessoa de Meia-Idade , Adulto Jovem , Pré-Escolar , Irã (Geográfico) , Contaminação de Alimentos/análise , Idoso , Cromatografia Gasosa-Espectrometria de Massas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...