Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 92: 104852, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33831542

RESUMO

The resistance of mosquito vectors to insecticides is one of the biological obstacles in the fight against malaria. Understanding of the status and mechanisms underlying the insecticide resistance in Anopheles gambiae species is necessary for success of vector control efforts. The study aimed to determine the molecular forms of An. gambiae from four districts in Sierra Leone during May and June 2018, and the level of N1575Y mutation. The molecular form identification of adult female An. gambiae mosquitoes reared from larvae were carried out using polymerase chain reaction and sequencing. And the N1575Y mutations were detected using SNaPshot and sequencing. As a result, significant differences were found in the distribution of An. gambiae molecular forms among regions (P < 0.001). And a total of 638 An. gambiae sensu stricto, 106 An. coluzzi, and 4 hybrid individuals were identified. Moreover, the overall N1575Y mutation frequency was 10.2% with no statistical difference among regions (χ2 = 3.009, P = 0.390). In addition, no significant differences in N1575Y mutation frequency were found among different An. gambiae molecular forms (P = 0.383). In conclusion, the N1575Y mutation in An. gambiae populations in Sierra Leone was reported for the first time in the present study. It provides key evidence for the necessity of monitoring vector susceptibility levels to insecticides used in this country.


Assuntos
Anopheles/genética , Mutação/genética , Animais , Anopheles/efeitos dos fármacos , Feminino , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/genética , Malária/dietoterapia , Malária/parasitologia , Mosquitos Vetores/genética , Taxa de Mutação , Serra Leoa
2.
Genes (Basel) ; 11(12)2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255805

RESUMO

The emergence and spread of insecticide resistance among the main malaria vectors is threatening the effectiveness of vector control interventions in Senegal. The main drivers of this resistance in the Anopheles gambiae complex (e.g., An. gambiae and Anopheles coluzzii) remains poorly characterized in Senegal. Here we characterized the main target site and metabolic resistances mechanisms among the An. gambiae and An. coluzzii populations from their sympatric and allopatric or predominance area in Senegal. Larvae and pupae of An. gambiae s.l. were collected, reared to adulthood, and then used for insecticides susceptibility and synergist assays using the WHO (World Health Organisation) test kits for adult mosquitoes. The TaqMan method was used for the molecular characterization of the main target site insecticide resistance mechanisms (Vgsc-1014F, Vgsc-1014S, N1575Y and G119S). A RT-qPCR (Reverse Transcriptase-quantitative Polymerase Chaine Reaction) was performed to estimate the level of genes expression belonging to the CYP450 (Cytochrome P450) family. Plasmodium infection rate was investigated using TaqMan method. High levels of resistance to pyrethroids and DDT and full susceptibility to organophosphates and carbamates where observed in all three sites, excepted a probable resistance to bendiocarb in Kedougou. The L1014F, L1014S, and N1575Y mutations were found in both species. Pre-exposure to the PBO (Piperonyl butoxide) synergist induced a partial recovery of susceptibility to permethrin and full recovery to deltamethrin. Subsequent analysis of the level of genes expression, revealed that the CYP6Z1 and CYP6Z2 genes were over-expressed in wild-resistant mosquitoes compared to the reference susceptible strain (Kisumu), suggesting that both the metabolic resistance and target site mutation involving kdr mutations are likely implicated in this pyrethroid resistance. The presence of both target-site and metabolic resistance mechanisms in highly pyrethroid-resistant populations of An. gambiae s.l. from Senegal threatens the effectiveness and the sustainability of the pyrethroid-based tools and interventions currently deployed in the country. The Kdr-west mutation is widely widespread in An. coluzzii sympatric population. PBO or Duo nets and IRS (Indoor Residual Spraying) with organophosphates could be used as an alternative measure to sustain malaria control in the study area.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/genética , Resistência a Inseticidas/genética , Animais , Sistema Enzimático do Citocromo P-450/genética , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/genética , Malária/parasitologia , Controle de Mosquitos/métodos , Mosquitos Vetores/genética , Mutação/efeitos dos fármacos , Mutação/genética , Permetrina/farmacologia , Fenilcarbamatos/farmacologia , Pupa/efeitos dos fármacos , Pupa/genética , Piretrinas/farmacologia , Senegal
3.
Malar J ; 18(1): 244, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31315630

RESUMO

BACKGROUND: In recent years, the scale-up of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) has greatly reduced malaria transmission. However, malaria remains a global public health concern with the majority of the disease burden in sub-Saharan Africa. Insecticide resistance is a growing problem among Anopheles vector populations, with potential implications for the continued effectiveness of available control interventions. Improved understanding of current resistance levels and underlying mechanisms is essential to design appropriate management strategies and to mitigate future selection for resistance. METHODS: Anopheles gambiae sensu lato mosquitoes were collected from three villages in Faranah Prefecture, Guinea and their levels of susceptibility to seven insecticides were measured using CDC resistance intensity bioassays. Synergist assays with piperonyl butoxide (PBO) were also undertaken to assess the role of elevated mixed-function oxidases in resistance. Five hundred and sixty-three mosquitoes underwent molecular characterization of vector species, presence of target site mutations (L1014F kdr, N1575Y and G119S Ace-1), Plasmodium falciparum infection, and relative expression of three metabolic genes (CYP6M2, CYP6P3 and GSTD3). RESULTS: In Faranah, resistance to permethrin and deltamethrin was observed, as well as possible resistance to bendiocarb. All assayed vector populations were fully susceptible to alpha-cypermethrin, pirimiphos-methyl, clothianidin and chlorfenapyr. Plasmodium falciparum infection was detected in 7.3% (37/508) of mosquitoes tested. The L1014F kdr mutation was found in 100% of a sub-sample of 60 mosquitoes, supporting its fixation in the region. The N1575Y mutation was identified in 20% (113/561) of individuals, with ongoing selection evidenced by significant deviations from Hardy-Weinberg equilibrium. The G119S Ace-1 mutation was detected in 62.1% (18/29) of mosquitoes tested and was highly predictive of bendiocarb bioassay survival. The metabolic resistance genes, CYP6M2, CYP6P3 and GSTD3, were found to be overexpressed in wild resistant and susceptible An. gambiae sensu stricto populations, compared to a susceptible G3 colony. Furthermore, CYP6P3 was significantly overexpressed in bendiocarb survivors, implicating its potential role in carbamate resistance in Faranah. CONCLUSIONS: Identification of intense resistance to permethrin and deltamethrin in Faranah, is of concern, as the Guinea National Malaria Control Programme (NMCP) relies exclusively on the distribution of pyrethroid-treated LLINs for vector control. Study findings will be used to guide current and future control strategies in the region.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas/fisiologia , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Animais , Anopheles/genética , Anopheles/fisiologia , Feminino , Guiné , Resistência a Inseticidas/genética , Malária/prevenção & controle , Mosquitos Vetores/genética , Mosquitos Vetores/fisiologia
4.
Genes (Basel) ; 9(10)2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282959

RESUMO

Bioassays and molecular diagnostics are routinely used for the monitoring of malaria vector populations to support insecticide resistance management (IRM), guiding operational decisions on which insecticides ought to be used for effective vector control. Previously developed TaqMan assays were optimised to distinguish the wild-type L1014 from the knockdown resistance (kdr) point mutations 1014F and 1014S (triplex reaction), and the N1575 wild-type from the point mutation 1575Y (duplex reaction). Subsequently, artificial pools of Anopheles gambiae (An. gambiae) specimens with known genotypes of L1014F, L1014S, and N1575Y were created, nucleic acids were extracted, and kdr mutations were detected. These data were then used to define a linear regression model that predicts the allelic frequency within a pool of mosquitoes as a function of the measured ΔCt values (Ct mutant - Ct wild type probe). Polynomial regression models showed r2 values of >0.99 (p < 0.05). The method was validated with populations of variable allelic frequencies, and found to be precise (1.66⁻2.99%), accurate (3.3⁻5.9%), and able to detect a single heterozygous mosquito mixed with 9 wild type individuals in a pool of 10. Its pilot application in field-caught samples showed minimal differences from individual genotyping (0.36⁻4.0%). It allowed the first detection of the super-kdr mutation N1575Y in An. gambiae from Mali. Using pools instead of individuals allows for more efficient resistance allele screening, facilitating IRM.

5.
Wellcome Open Res ; 2: 71, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018842

RESUMO

Background. The intensification of insecticide use for both public health and agriculture in Africa has contributed to growing insecticide resistance. Today, resistance to World Health Organization (WHO)-approved insecticide classes is widespread. In an agricultural area of Southern Côte d'Ivoire, the main malaria vector Anopheles coluzzii shows multiple resistance across insecticides mediated by both target site mutation and metabolic mechanisms. To plan new vector control strategies and avert future resistance liabilities caused by cross-resistance mechanisms extant within populations, it is crucial to monitor the development and spread of both resistance and mechanisms. Methods.  Larvae of Anopheles gambiae were collected from natural breeding sites in Tiassalé and Elibou, between April and November 2016 and raised to adults . Adult female non-blood fed mosquitoes, three to five days old, were exposed to deltamethrin in WHO bioassays. Extracted DNA samples from exposed mosquitoes were used for species characterisation and genotyping. Results. Most adult An. gambiae tested were resistant to deltamethrin, with mortality rates of only 25% in Tiassalé and 4.4% in Elibou. Molecular analysis of DNA from samples tested showed the presence of both An. coluzzii and An. gambiae s.s in Elibou and only An. coluzzii for Tiassalé. As previously, the L1014F kdr mutation was present at high frequency (79%) in Tiassalé and the L1014S mutation was absent. The N1575Y mutation, which amplifies resistance conferred by L1014F was detected in a single unique individual from a Tiassalé An. coluzzii female whereas in Elibou 1575Y was present in 10 An. gambiae s.s, but not in An. coluzzii. Conclusion. This is the first report of the N1575Y mutation in Côte d'Ivoire, and as in other populations, it is found in both dominant West African malaria vector species. Continued monitoring of N1575Y is underway, as are studies to elucidate its contribution to the resistance of local vector populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...