Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.483
Filtrar
1.
Angew Chem Int Ed Engl ; : e202411905, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112373

RESUMO

Natural killer (NK) cell-based immunotherapy has received much attention in recent years. However, the practical application is still suffering from the decreased function, inadequate infiltration, and immunosuppressive microenvironment in solid tumor. Herein, we construct the light-responsive porphyrin Fe array-armed NK cells (denoted as NK@p-Fe) for cell behavior modulation via bioorthogonal catalysis. By installing cholesterol-modified porphyrin Fe molecules on NK cell surface, it forms a catalytic array with light-harvesting capabilities. This functionality transforms NK cells into cellular factories, capable of catalyzing the production of active agents in a light-controlled manner. The NK@p-Fe can generate active antineoplastic drug doxorubicin through bioorthogonal reactions to enhance the cytotoxic function of NK cells. Beyond drug synthesis, the NK@p-Fe can also bioorthogonally catalyze to produce FDA approved immune agonist, imiquimod (IMQ). The activated immune agonist plays a dual role by inducing DC maturation for NK cells activation and reshaping tumor immunosuppressive microenvironment for NK cells infiltration. This work represents a paradigm for modulation of adoptive cell behaviors to boost cancer immunotherapy by bioorthogonal catalysis.

2.
Cancer Immunol Immunother ; 73(10): 209, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39112670

RESUMO

BACKGROUND: Cancer immunotherapy approaches that elicit immune cell responses, including T and NK cells, have revolutionized the field of oncology. However, immunosuppressive mechanisms restrain immune cell activation within solid tumors so additional strategies to augment activity are required. METHODS: We identified the co-stimulatory receptor NKG2D as a target based on its expression on a large proportion of CD8+ tumor infiltrating lymphocytes (TILs) from breast cancer patient samples. Human and murine surrogate NKG2D co-stimulatory receptor-bispecifics (CRB) that bind NKG2D on NK and CD8+ T cells as well as HER2 on breast cancer cells (HER2-CRB) were developed as a proof of concept for targeting this signaling axis in vitro and in vivo. RESULTS: HER2-CRB enhanced NK cell activation and cytokine production when co-cultured with HER2 expressing breast cancer cell lines. HER2-CRB when combined with a T cell-dependent-bispecific (TDB) antibody that synthetically activates T cells by crosslinking CD3 to HER2 (HER2-TDB), enhanced T cell cytotoxicity, cytokine production and in vivo antitumor activity. A mouse surrogate HER2-CRB (mHER2-CRB) improved in vivo efficacy of HER2-TDB and augmented NK as well as T cell activation, cytokine production and effector CD8+ T cell differentiation. CONCLUSION: We demonstrate that targeting NKG2D with bispecific antibodies (BsAbs) is an effective approach to augment NK and CD8+ T cell antitumor immune responses. Given the large number of ongoing clinical trials leveraging NK and T cells for cancer immunotherapy, NKG2D-bispecifics have broad combinatorial potential.


Assuntos
Neoplasias da Mama , Linfócitos T CD8-Positivos , Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Humanos , Animais , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Camundongos , Linfócitos T CD8-Positivos/imunologia , Células Matadoras Naturais/imunologia , Feminino , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Receptor ErbB-2/imunologia , Linhagem Celular Tumoral , Imunoterapia/métodos , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo
3.
Sci Rep ; 14(1): 17916, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095563

RESUMO

Activating antibody-dependent cellular cytotoxicity (ADCC) by targeting claudin-18 isoform 2 (CLDN18.2) using zolbetuximab, a monoclonal antibody against CLDN18.2, has been considered a promising novel therapeutic strategy for gastric cancer (GC). However, the impact of CLDN18.2 expression on natural killer (NK) cells and monocytes/macrophages-crucial effector cells of ADCC-in GC has not been fully investigated. In the present study, we assessed the impact of CLDN18.2 expression on clinical outcomes, molecular features, and the frequencies of tumor-infiltrating NK cells and macrophages, as well as peripheral blood NK cells and monocytes, in GC by analyzing our own GC cohorts. The expression of CLDN18.2 did not significantly impact clinical outcomes of GC patients, while it was significantly and positively associated with Epstein-Barr virus (EBV) status and PD-L1 expression. The frequencies of tumor-infiltrating NK cells and macrophages, as well as peripheral blood NK cells and monocytes, were comparable between CLDN18.2-positive and CLDN18.2-negative GCs. Importantly, both CLDN18.2 expression and the number of tumor-infiltrating NK cells were significantly higher in EBV-associated GC compared to other molecular subtypes. Our findings support the effectiveness of zolbetuximab in CLDN18.2-positive GC, and offer a novel insight into the treatment of this cancer type, highlighting its potential effectiveness for CLDN18.2-positive/EBV-associated GC.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Claudinas , Células Matadoras Naturais , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Masculino , Feminino , Claudinas/metabolismo , Claudinas/genética , Pessoa de Meia-Idade , Idoso , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo
4.
Front Immunol ; 15: 1398468, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100660

RESUMO

Introduction: Heme oxygenase-1 (HO-1) is a stress-inducible heat shock protein (HSP32) that exerts cytoprotective effects against oxidative stress and inflammation, and is involved in the maintenance of cellular homeostasis. This study aimed to evaluate the expression of HO-1 in natural killer (NK) cells from individuals of different age groups after stimulation with various factors, and to analyze the relationships between the concentration of this cytoprotective protein and parameters corresponding to oxidative stress and inflammation, that is, NOD-like receptor protein 3 (NLRP3), glutathione (GSH), GSH disulfide (GSSG), and interleukin 6 (IL-6). Methods: The study population comprised three age groups: young adults (age range, 19-23 years), older adults aged under 85 years (age range, 73-84 years), and older adults aged over 85 years (age range, 85-92 years). NLRP3, GSH, and GSSG concentrations were measured in serum, whereas the HO-1 concentration and IL-6 expression were studied in NK cells cultivated for 48 h and stimulated with IL-2, lipopolysaccharide (LPS), or phorbol 12-myristate 13-acetate (PMA) with ionomycin. Results: The analysis of serum NLRP3, GSH, and GSSG concentrations revealed no statistically significant differences among the studied age groups. However, some typical trends of aging were observed, such as a decrease in GSH concentration and an increase in both GSSG level, and GSSG/GSH ratio. The highest basal expression of IL-6 and lowest basal content of HO-1 were found in NK cells of adults over 85 years of age. The NK cells in this age group also showed the highest sensitivity to stimulation with the applied factors. Moreover, statistically significant negative correlations were observed between HO-1 and IL-6 expression levels in the studied NK cells. Conclusions: These results showed that NK cells can express HO-1 at a basal level, which was significantly increased in activated cells, even in the oldest group of adults. The reciprocal relationship between HO-1 and IL-6 expression suggests a negative feedback loop between these parameters.


Assuntos
Envelhecimento , Heme Oxigenase-1 , Células Matadoras Naturais , Estresse Oxidativo , Humanos , Heme Oxigenase-1/metabolismo , Envelhecimento/imunologia , Idoso de 80 Anos ou mais , Idoso , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Masculino , Adulto Jovem , Feminino , Glutationa/metabolismo , Interleucina-6/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Adulto
5.
J Transl Med ; 22(1): 737, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103915

RESUMO

BACKGROUND: Cancer stem-like cells (CSCs) play an important role in initiation and progression of aggressive cancers, including esophageal cancer. Natural killer (NK) cells are key effector lymphocytes of innate immunity that directly attack a wide variety of cancer cells. NK cell-based therapy may provide a new treatment option for targeting CSCs. In this study, we aimed to investigate the sensitivity of human esophageal CSCs to NK cell-mediated cytotoxicity. METHODS: CSCs were enriched from human esophageal squamous cell carcinoma cell lines via sphere formation culture. Human NK cells were selectively expanded from the peripheral blood of healthy donors. qRT-PCR, flow cytometry and ELISA assays were performed to examine RNA expression and protein levels, respectively. CFSE-labeled target cells were co-cultured with human activated NK cells to detect the cytotoxicity of NK cells by flow cytometry. RESULTS: We observed that esophageal CSCs were more resistant to NK cell-mediated cytotoxicity compared with adherent counterparts. Consistently, esophageal CSCs showed down-regulated expression of ULBP-1, a ligand for NK cells stimulatory receptor NKG2D. Knockdown of ULBP-1 resulted in significant inhibition of NK cell cytotoxicity against esophageal CSCs, whereas ULBP-1 overexpression led to the opposite effect. Finally, the pro-differentiation agent all-trans retinoic acid was found to enhance the sensitivity of esophageal CSCs to NK cell cytotoxicity. CONCLUSIONS: This study reveals that esophageal CSCs are more resistant to NK cells through down-regulation of ULBP-1 and provides a promising approach to promote the activity of NK cells targeting esophageal CSCs.


Assuntos
Citotoxicidade Imunológica , Regulação para Baixo , Neoplasias Esofágicas , Células Matadoras Naturais , Células-Tronco Neoplásicas , Humanos , Células Matadoras Naturais/imunologia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Regulação para Baixo/efeitos dos fármacos , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos , Proteínas Ligadas por GPI/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
6.
Chem Biodivers ; : e202400806, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990829

RESUMO

Chrysin, a naturally occurring flavonoid in plant and bee products, demonstrates notable biological activities, including anti-cancer effects. These properties are partially attributed to its capability to activate immune cells. This study focused on exploring the immunomodulatory potential of chrysin on NK-92 and Jurkat-T cells targeting breast cancer cells (BCC). Chrysin leads to activation of NK-92 and T cells facilitated by the addition of human recombinant IL-2 and PHA-M. The anti-cancer efficacy of chrysin on these immune cells was evaluated in a co-culture setup with EGF-stimulated MCF-7 and MDA-MB-231 cells. Findings revealed that chrysin notably increased the cytotoxicity of NK-92 and T cells towards MCF-7 and MDA-MB-231 cells, with the most significant impact observed on MCF-7 cells (20%). The activation of NK-92 cells, marked by increased IFN-γ production and CD56 expression, correlated with enhanced secretion of cytokines. Additionally, the activation of these cells against BCC was linked with elevated levels of granzyme-B, TNF-α, and nitric oxide (NO). Similarly, the cytotoxic activation of Jurkat-T cells against BCC was characterized by increased production of granzyme-B, IL-2, and IFN-γ. Consequently, these results support the hypothesis that chrysin significantly contributes to the activation and functional enhancement of NK-92 and T-cells against two distinct BCC lines.

8.
Nutrients ; 16(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39064742

RESUMO

ß-(1,3/1,4)-glucan is a major component of cereal grains, such as oats and barley. In this study, we investigated the effects of cooked waxy barley, which contains ß-(1,3/1,4)-glucan, on upper respiratory tract physical symptoms and mood status by performing a randomized, parallel-group, comparative trial. The primary outcome was assessed using the Wisconsin Upper Respiratory Symptom Survey-21 and Profile of Mood States second edition. Twenty-seven healthy Japanese adult participants were supplemented with 100 g of cooked waxy barley (containing 1.8 g of ß-glucan) or 100 g of cooked white rice daily for 8 weeks. Participants receiving cooked waxy barley reported a reduction in cumulative days of sneezing (p < 0.05) and feeling tired (p < 0.0001) compared with the control group. After the intervention period, there were significantly less severe nasal symptoms, such as runny nose, plugged nose, and sneezing (p < 0.05), and a significantly greater reduction of the Tension-Anguish score (p < 0.05) in the barley group than in the control group. This study suggests that supplementation of cooked waxy barley containing ß-(1,3/1,4)-glucan prevents or alleviates nasal upper respiratory tract symptoms and improves mood status. The findings of this study should be confirmed by double-blind trials with a larger number of participants.


Assuntos
Hordeum , Humanos , Feminino , Masculino , Adulto , Japão , beta-Glucanas/administração & dosagem , Pessoa de Meia-Idade , Espirro , Adulto Jovem , Culinária/métodos , Afeto , Doenças Respiratórias/prevenção & controle , População do Leste Asiático
9.
Microorganisms ; 12(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39065122

RESUMO

In the setting of infectious diseases, antibodies show different functions beyond neutralizing activity. In this study, we investigated the activation of NK cells in vitro in the presence of human cytomegalovirus (HCMV)-specific antibodies and their potential role in the control of HCMV infection through antibody-dependent cell cytotoxicity (ADCC). Retinal pigmented epithelial cells (ARPE-19) infected with the HCMV strain VR1814 were co-cultured with cytokine-activated peripheral blood mononuclear cells (PBMCs) in the presence of sera collected from 23 HCMV-seropositive and 9 HCMV-seronegative donors. Moreover, 13 pregnant women sampled 3 and 6 months after HCMV primary infection and 13 pregnant women with pre-conception immunity were tested and compared. We determined the percentage of activated NK cells via the analysis of CD107a expression as a marker of degranulation. Significantly higher levels of NK-cell activation were observed using 1/100 and 1/10 dilutions of sera from HCMV-seropositive individuals, and when cells were infected for 96 and 120 h, suggesting that NK cells are activated by antibodies directed against late antigens. In the absence of serum NK cells, activation was negligible. In seropositive subjects, the median percentages of CD107a-positive NK cells in the presence of autologous serum and pooled HCMV-positive serum were similar (14.03% [range 0.00-33.56] and 12.42% [range 1.01-46.00], respectively), while NK-cell activation was negligible using an HCMV-negative serum pool. In HCMV-seronegative subjects, the median percentage of activated NK cells was 0.90% [range 0.00-3.92] with autologous serum and 2.07% [0.00-5.76] in the presence of the HCMV-negative serum pool, while it was 8.97% [0.00-26.49] with the pool of HCMV-positive sera. NK-cell activation using hyperimmune globulin is comparable to what is obtained using autologous serum. Sera from subjects at 3 and 6 months post primary infection showed a lower capacity of NK-cell activation than sera from subjects with past infection (p < 0.001). NK activation against HCMV-infected epithelial cells is dependent on the presence of HCMV-specific antibodies. This serum activity increases with time after the onset of HCMV infection. The protective role of NK-cell activation by HCMV-specific serum antibodies should be verified in clinical settings.

10.
Immunol Lett ; 269: 106900, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032911

RESUMO

Pemphigus vulgaris (PV) is a rare autoimmune disorder where autoantibodies target the desmosomal proteins resulting in blistering of oral mucosa and skin. While the pathogenesis of PV is mainly mediated by the adaptive immune system, key players of innate immunity are also emerging. This study outlines the phenotypic as well as functional attributes of NK cells in PV. Through in-depth analysis using flow cytometry we identified an increase in the frequency of CD56+ CD3- NK cells and their subtypes in periphery. Along with this there is an increased frequency of IFNγ+ CD56bright CD16dim NK cells. mRNA expression of sorted NK cells for differentially expressed genes, particularly key transcription factors such as T-bet and EOMES, as well as surface receptors like NKG2D and KIR2D, and the cytokine IFNγ, displayed significant upregulation. A significant activation of NK cells was seen in the disease state. The levels of perforin and IFNγ were significantly elevated in the culture supernatants of patients. Additionally, a significantly higher cytotoxicity of NK cells in PV was observed. In lesioned tissues of PV, NK related markers were significantly increased. Lastly, we observed NK cells using confocal microscopy in the tissue biopsies of patients which showed significant infiltration of CD56+ CD3- NK cells at the lesional sites. This study aimed to shed light on the pivotal role of NK cells in the immunopathology of PV, offering a thorough understanding of their behaviour and changes in expression which might help in contributing to the development of novel therapeutics.

11.
Cureus ; 16(6): e62870, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39040740

RESUMO

Thrombophilias, which include both hereditary and acquired illnesses, are a range of abnormalities that make persons more prone to developing thromboembolism. Thrombophilic conditions carry significant dangers during pregnancy, such as miscarriage in early pregnancy, intrauterine growth restriction, abruptio placenta, and preeclampsia. According to compiled statistics, an average of 15%-20% of pregnancies end in miscarriage. While the risk of miscarriage in a first pregnancy is 11%, this risk increases to between 13% and 17% in subsequent pregnancies, and after the third miscarriage, it reaches 38%. This research article presents a detailed case report that focuses on a patient who has experienced three previous failed pregnancies. The patient's genetic analysis indicates that she has two copies of a mutated version of the methylenetetrahydrofolate reductase (MTHFR) gene (Ala222Val) and a variation in the plasminogen activator inhibitor 1 (PAI-1) gene known as 4G/5G. In addition, an evaluation of immunological characteristics revealed increased amounts of natural killer (NK) cells with enhanced activity, along with the identification of embryotoxins in a blood test that suppress embryotoxicity in a blood test, assisted by DNA isolation and real-time polymerase chain reaction (PCR) DNA analysis.

12.
Immun Inflamm Dis ; 12(6): e1329, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39031850

RESUMO

BACKGROUND: Toxoplasma gondii is an obligate intracellular protozoan parasite that can invade all mammalian cells. It is well established that natural killer (NK) cells have critical protective roles in innate immunity during infections by intracellular pathogens. In the current study, we conducted an in vitro experiment to evaluate NK cell differentiation and activation from human umbilical cord blood mononuclear cells (UCB-MNCs) after infection with T. gondii tachyzoites. METHODS: UCB-MNCs were infected by fresh tachyzoites of type I (RH) or type II (PTG) strains of T. gondii pre-expanded in mesenchymal stem cells for 2 weeks in a medium enriched with stem cell factor, Flt3, IL-2, and IL-15. Flow cytometry analysis and western blot analysis were performed to measure the CD57+, CD56+, and Granzyme A (GZMA). RESULTS: Data revealed that incubation of UCB-MNCs with NK cell differentiation medium increased the CD57+, CD56+, and GZMA. UCB-MNCs cocultured with PTG tachyzoites showed a significant reduction of CD56+ and GZMA, but nonsignificant changes, in the levels of CD56+ compared to the control UCB-MNCs (p > .05). Noteworthy, 2-week culture of UCB-MNCs with type I (RH) tachyzoites significantly suppressed CD57+, CD56+, and GZMA, showing reduction of NK cell differentiation from cord blood cells. CONCLUSION: Our findings suggest that virulent T. gondii tachyzoites with cytopathic effects inhibit NK cell activation and eliminate innate immune responses during infection, and consequently enable the parasite to continue its survival in the host body.


Assuntos
Diferenciação Celular , Sangue Fetal , Células Matadoras Naturais , Toxoplasma , Humanos , Células Matadoras Naturais/imunologia , Sangue Fetal/citologia , Sangue Fetal/imunologia , Sangue Fetal/parasitologia , Diferenciação Celular/imunologia , Toxoplasma/imunologia , Células Cultivadas , Toxoplasmose/imunologia , Toxoplasmose/parasitologia , Imunidade Inata , Ativação Linfocitária/imunologia , Leucócitos Mononucleares/imunologia
13.
Front Immunol ; 15: 1374068, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39034990

RESUMO

Acute myeloid leukemia (AML) is a heterogenous disease characterized by the clonal expansion of myeloid progenitor cells. Despite recent advancements in the treatment of AML, relapse still remains a significant challenge, necessitating the development of innovative therapies to eliminate minimal residual disease. One promising approach to address these unmet clinical needs is natural killer (NK) cell immunotherapy. To implement such treatments effectively, it is vital to comprehend how AML cells escape the NK-cell surveillance. Signal transducer and activator of transcription 3 (STAT3), a component of the Janus kinase (JAK)-STAT signaling pathway, is well-known for its role in driving immune evasion in various cancer types. Nevertheless, the specific function of STAT3 in AML cell escape from NK cells has not been deeply investigated. In this study, we unravel a novel role of STAT3 in sensitizing AML cells to NK-cell surveillance. We demonstrate that STAT3-deficient AML cell lines are inefficiently eliminated by NK cells. Mechanistically, AML cells lacking STAT3 fail to form an immune synapse as efficiently as their wild-type counterparts due to significantly reduced surface expression of intercellular adhesion molecule 1 (ICAM-1). The impaired killing of STAT3-deficient cells can be rescued by ICAM-1 overexpression proving its central role in the observed phenotype. Importantly, analysis of our AML patient cohort revealed a positive correlation between ICAM1 and STAT3 expression suggesting a predominant role of STAT3 in ICAM-1 regulation in this disease. In line, high ICAM1 expression correlates with better survival of AML patients underscoring the translational relevance of our findings. Taken together, our data unveil a novel role of STAT3 in preventing AML cells from escaping NK-cell surveillance and highlight the STAT3/ICAM-1 axis as a potential biomarker for NK-cell therapies in AML.


Assuntos
Molécula 1 de Adesão Intercelular , Células Matadoras Naturais , Leucemia Mieloide Aguda , Fator de Transcrição STAT3 , Fator de Transcrição STAT3/metabolismo , Humanos , Leucemia Mieloide Aguda/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Vigilância Imunológica , Linhagem Celular Tumoral , Evasão Tumoral , Transdução de Sinais , Citotoxicidade Imunológica
14.
Mol Ther Oncol ; 32(3): 200823, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39006946

RESUMO

In the field of innovative cancer treatment strategies, oncolytic vaccinia virus (VV)es have gained traction as promising vectors. In the current study, we inserted the human C-type lectin domain family 2 member A (CLEC2A) gene into VV, creating a replicating therapeutic, oncoVV-CLEC2A. The findings reveal that oncoVV-CLEC2A effectively suppresses colorectal proliferation of mouse xenografts and a range of human cancer cell lines by augmenting viral reproduction capabilities, including the lung cancer H460 cell line, colorectal cancer cell lines (HCT116 and SW620), and hepatocellular carcinoma HuH-7 cell line. Moreover, it is evident that oncoVV-CLEC2A can induce antitumor immunity by boosting cytokine production but not antivirus response, and enhancing calreticulin expression. Further investigation indicates that oncoVV-CLEC2A can enhance antitumor capabilities by activating natural killer cells to produce interferon-γ and induce M1-like macrophage polarization. These findings shed light on the antitumor mechanisms of oncoVV-CLEC2A, provide a theoretical basis for oncolytic therapies, and lay the groundwork for novel strategies for modifying VVs.

15.
Artigo em Inglês | MEDLINE | ID: mdl-39009290

RESUMO

We present an exceptional case of a lung transplant recipient successfully treated by multiple courses of alemtuzumab for refractory acute cellular rejection. The patient experienced multiple episodes of acute cellular rejection following the transplantation procedure. Alemtuzumab was initiated as third-line rejection treatment and was repeated six times. Each treatment course resulted in complete recovery of the pulmonary function and depletion of T- and B-lymphocytes and NK cells. The onset of rejection was consistently preceded by the recovery of NK cells, while T- and B-lymphocytes remained depleted. This suggests a rejection process mediated by NK cells. This case contributes to recent research findings suggesting that NK cells play a significant role in acute cellular rejection in lung transplant recipients and stresses the importance to further investigate the role of NK cells in rejection. Furthermore, it demonstrates that acute cellular rejection following lung transplantation can be repeatedly managed by treatment with alemtuzumab. DATA AVAILABILITY STATEMENT: The authors confirm that the data supporting the findings of this study are available within the article.

16.
J Extracell Biol ; 3(7): e166, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39022723

RESUMO

Natural killer cell-derived extracellular vesicles (NK-EVs) are candidate biotherapeutics against various cancers. However, standardised potency assays are necessary for a reliable assessment of NK-EVs' cytotoxicity. This study aims to thoroughly evaluate a highly sensitive resazurin phenoxazine-based cell viability potency assay (measurement of the cellular redox metabolism) for quantifying the cytotoxicity of NK-EVs against leukaemia K562 cells (suspension model) and breast cancer MDA-MB-231 cells (adherent model) in vitro. The assay was evaluated based on common analytical parameters setforth by regulatory guidelines, including specificity, selectivity,accuracy, precision, linearity, range and stability. Our results revealed that this resazurin-based cell viability potency assay reliably and reproducibly measured a dose-response of NK-EVs' cytotoxic activity against both cancer models. The assay showed precision with 5% and 20% variation for intra-run and inter-run variability. The assay signal showed specificity and selectivity of NK-EVs against cancer target cells, as evidenced by the diminished viability of cancer cells following a 5-hour treatment with NK-EVs, without any detectable interference or background. The linearity analysis of target cancer cells revealed strong linearity for densities of 5000 K562 and 1000 MDA-MB-231 cells per test with a consistent range. Importantly, NK-EVs' dose-response for cytotoxicity showed a strong correlation (|ρ| ∼ 0.8) with the levels of known cytotoxic factors associated with the NK-EVs' corona (FasL, GNLY, GzmB, PFN and IFN-γ), thereby validating the accuracy of the assay. The assay also distinguished cytotoxicity changes in degraded NK-EVs, indicating the ability of the assay to detect the potential loss of sample integrity. Compared to other commonly reported bioassays (i.e., flow cytometry, cell counting, lactate dehydrogenase release assay, DNA-binding reporter assay and confluence assay), our results support this highly sensitive resazurin-based viability potency assay as a high-throughput and quantitative method for assessing NK-EVs' cytotoxicity against both suspension and adherent cancer models for evaluating NK-EVs' biotherapeutics.

18.
Inflamm Res ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028491

RESUMO

BACKGROUND: Invariant natural killer T (iNKT) cells play protective or pathogenic roles in a variety of immune and inflammatory diseases. However, whether iNKT cells contribute to the progression of acute neuroinflammation remains unclear. Thus, we addressed this question with a mouse model of lipopolysaccharide (LPS)-induced acute neuroinflammation. METHODS: For induction of acute neuroinflammation, wild-type (WT) C57BL/6 (B6) mice were injected intraperitoneally (i.p.) with LPS for either three or five consecutive days, and then these mice were analyzed for brain-infiltrating leukocytes or mouse behaviors, respectively. To examine the role of iNKT cell activation in LPS-induced neuroinflammation, mice were injected i.p. with the iNKT cell agonist α-galactosylceramide (α-GalCer) seven days prior to LPS treatment. Immune cells infiltrated into the brain during LPS-induced neuroinflammation were determined by flow cytometry. In addition, LPS-induced clinical behavior symptoms such as depressive-like behavior and memory impairment in mice were evaluated by the open field and Y-maze tests, respectively. RESULTS: We found that iNKT cell-deficient Jα18 mutant mice display delayed disease progression and decreased leukocyte infiltration into the brain compared with WT mice, indicating that iNKT cells contribute to the pathogenesis of LPS-induced neuroinflammation. Since it has been reported that pre-treatment with α-GalCer, an iNKT cell agonist, can convert iNKT cells towards anti-inflammatory phenotypes, we next explored whether pre-activation of iNKT cells with α-GalCer can regulate LPS-induced neuroinflammation. Strikingly, we found that α-GalCer pre-treatment significantly delays the onset of clinical symptoms, including depression-like behavior and memory impairment, while decreasing brain infiltration of pro-inflammatory natural killer cells and neutrophils, in this model of LPS-induced neuroinflammation. Such anti-inflammatory effects of α-GalCer pre-treatment closely correlated with iNKT cell polarization towards IL4- and IL10-producing phenotypes. Furthermore, α-GalCer pre-treatment restored the expression of suppressive markers on brain regulatory T cells during LPS-induced neuroinflammation. CONCLUSION: Our findings provide strong evidence that α-GalCer-induced pre-activation of iNKT cells expands iNKT10 cells, mitigating depressive-like behaviors and brain infiltration of inflammatory immune cells induced by LPS-induced acute neuroinflammation. Thus, we suggest the prophylactic potential of iNKT cells and α-GalCer against acute neuroinflammation.

20.
Cancer Immunol Immunother ; 73(9): 179, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960949

RESUMO

Adoptive cellular therapy (ACT) using memory-like (ML) natural killer (NK) cells, generated through overnight ex vivo activation with IL-12, IL-15, and IL-18, has shown promise for treating hematologic malignancies. We recently reported that a multifunctional fusion molecule, HCW9201, comprising IL-12, IL-15, and IL-18 domains could replace individual cytokines for priming human ML NK cell programming ("Prime" step). However, this approach does not include ex vivo expansion, thereby limiting the ability to test different doses and schedules. Here, we report the design and generation of a multifunctional fusion molecule, HCW9206, consisting of human IL-7, IL-15, and IL-21 cytokines. We observed > 300-fold expansion for HCW9201-primed human NK cells cultured for 14 days with HCW9206 and HCW9101, an IgG1 antibody, recognizing the scaffold domain of HCW9206 ("Expand" step). This expansion was dependent on both HCW9206 cytokines and interactions of the IgG1 mAb with CD16 receptors on NK cells. The resulting "Prime and Expand" ML NK cells exhibited elevated metabolic capacity, stable epigenetic IFNG promoter demethylation, enhanced antitumor activity in vitro and in vivo, and superior persistence in NSG mice. Thus, the "Prime and Expand" strategy represents a simple feeder cell-free approach to streamline manufacturing of clinical-grade ML NK cells to support multidose and off-the-shelf ACT.


Assuntos
Memória Imunológica , Células Matadoras Naturais , Proteínas Recombinantes de Fusão , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Humanos , Animais , Proteínas Recombinantes de Fusão/genética , Camundongos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Imunoterapia Adotiva/métodos , Interleucina-15/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...