Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34685263

RESUMO

One of the foremost missions in restorative dentistry is to discover a suitable material that can substitute lost and damaged tooth structure. To this date, most of the restorative materials utilized in dentistry are bio-inert. It is predicted that the addition of nano-HA-SiO2 to GIC matrix could produce a material with better ion-exchange between the restorative material and natural teeth. Therefore, the aim of the current study was to synthesize and investigate the transfer of specific elements (calcium, phosphorus, fluoride, silica, strontium, and alumina) between nano-hydroxyapatite-silica added GIC (nano-HA-SiO2-GIC) and human enamel and dentine. The novel nano-hydroxyapatite-silica (nano-HA-SiO2) was synthesized using one-pot sol-gel method and added to cGIC. Semi-quantitative energy dispersive X-ray (EDX) analysis was carried out to determine the elemental distribution of fluorine, silicon, phosphorus, calcium, strontium, and aluminum. Semi-quantitative energy dispersive X-ray (EDX) analysis was performed by collecting line-scans and dot-scans. The results of the current study seem to confirm the ionic exchange between nano-HA-SiO2-GIC and natural teeth, leading to the conclusion that increased remineralization may be possible with nano-HA-SiO2-GIC as compared to cGIC (Fuji IX).

2.
Saudi J Biol Sci ; 28(1): 870-878, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33424378

RESUMO

The study aims to assess the concentration of vascular endothelial growth factors (VEGF) with platelet rich fibrin (PRF) biomaterial, while using it separately or in combination with nanohydroxyapatite (nano-HA) for treating intra-bony defects (IBDs) using radiographic evaluation (DBS-Win software). Sixty patients with IBD (one site/patient) and chronic periodontitis were recruited randomly to test either autologous PRF platelet concentrate, nano-HA bone graft, a combination of PRF platelet concentrate and nano-HA, or alone conventional open flap debridement (OFD). Recordings of clinical parameters including probing depth (PD), gingival index (GI), and clinical attachment level (CAL) were obtained at baseline and 6 months, post-operatively. One-way analysis of variance (ANOVA) was used to compare four groups; whereas, multiple comparisons were done through Tukey's post hoc test. The results showed that CAL at baseline changed from 6.67 ± 1.23 to 4.5 ± 1.42 in group I, 6.6 ± 2.51 to 4.9 ± 1.48 in group II, 5.2 ± 2.17 to 3.1 ± 1.27 in group III, and 4.7 ± 2.22 to 3.7 ± 2.35 in group IV after 6 months. The most significant increase in bone density and fill was observed for IBD depth in group III that was recorded as 62.82 ± 24.6 and 2.31 ± 0.75 mm, respectively. VEGF concentrations were significantly increased at 3, 7, and 14 days in all groups. The use of PRF with nano-HA was successful regenerative periodontal therapy to manage periodontal IBDs, unlike using PRF alone. Increase in VEGF concentrations in all group confirmed its role in angiogenesis and osteogenesis in the early stages of bone defect healing.

3.
J Mech Behav Biomed Mater ; 71: 262-270, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28365543

RESUMO

Poly-D-L-lactide/nano-hydroxyapatite (PDLLA/nano-HA) can be used as the biological scaffold material in bone tissue engineering as it can be readily made into a porous composite material with excellent performance. However, constitutive modeling for the mechanical response of porous PDLLA/nano-HA under various stress conditions has been very limited so far. In this work, four types of fundamental compressible hyper-elastic constitutive models were introduced for constitutive modeling and investigation of mechanical behaviors of porous PDLLA/nano-HA. Moreover, the unitary expressions of Cauchy stress tensor have been derived for the PDLLA/nano-HA under uniaxial compression (or stretch), biaxial compression (or stretch), pure shear and simple shear load by using the theory of continuum mechanics. The theoretical results determined from the approach based on the Ogden compressible hyper-elastic constitutive model were in good agreement with the experimental data from the uniaxial compression tests. Furthermore, this approach can also be used to predict the mechanical behaviors of the porous PDLLA/nano-HA material under the biaxial compression (or stretch), pure shear and simple shear.


Assuntos
Materiais Biocompatíveis/análise , Durapatita/análise , Nanoestruturas/análise , Poliésteres/análise , Teste de Materiais , Porosidade , Alicerces Teciduais
4.
Mater Sci Eng C Mater Biol Appl ; 63: 96-105, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27040200

RESUMO

A nano-hydroxyapatite (HA) coating with appropriate thickness and morphology similar to that of human bone tissue was directly prepared onto the surfaces of carbon fibers (CFs). A mixed solution of nitric acid, hydrochloric acid, sulfuric acid, and hydrogen peroxide (NHSH) was used in the preparation process. The coating was fabricated by combining NHSH treatment and electrochemical deposition (ECD). NHSH treatment is easy to operate, produces rapid reaction, and highly effective. This method was first used to induce the nucleation and growth of HA crystals on the CF surfaces. Numerous O-containing functional groups, such as hydroxyl (-OH) and carboxyl (-COOH) groups, were grafted onto the CF surfaces by NHSH treatment (NHSH-CFs); as such, the amounts of these groups on the functionalized CFs increased by nearly 8- and 12-fold, respectively, compared with those on untreated CFs. After treatment, the NHSH-CFs not only acquired larger specific surface areas but retained surfaces free from serious corrosion or breakage. Hence, NHSH-CFs are ideal depositional substrates of HA coating during ECD. ECD was successfully used to prepare a nano-rod-like HA coating on the NHSH-CF surfaces. The elemental composition, structure, and morphology of the HA coating were effectively controlled by adjusting various technological parameters, such as the current density, deposition time, and temperature. The average central diameter of HA crystals and the coating density increased with increasing deposition time. The average central diameter of most HA crystals on the NHSH-CFs varied from approximately 60 nm to 210 nm as the deposition time increased from 60 min to 180 min. Further studies on a possible deposition mechanism revealed that numerous O-containing functional groups on the NHSH-CF surfaces could associate with electrolyte ions (Ca(2+)) to form special chemical bonds. These bonds can induce HA coating deposition and improve the interfacial bonding strength between the HA coating and NHCH-CFs. The results of this study and the proposed preparation of uniform and dense nano-HA coating provide theoretical and practical guidance for future investigations of active HA coatings on fiber materials for medical products and implants. This work also lays the foundation for the wider use of HA-coated CFs/HA composite implants in clinical application.


Assuntos
Carbono/química , Materiais Revestidos Biocompatíveis/química , Durapatita/química , Ácidos/química , Fibra de Carbono , Humanos , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
5.
Dent Mater ; 32(3): 385-93, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26822965

RESUMO

OBJECTIVES: This study investigates the role of acetone, as a carrier for nano-hydroxyapatite (nano-HA) in solution, to enhance the infiltration of fully demineralized dentin with HA nanoparticles (NPs). METHODS: Dentin specimens were fully demineralized and subsequently infiltrated with two types of water-based nano-HA solutions (one containing acetone and one without). Characterization of the dentin surfaces and nano-HA particles was performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The surface wettability and infiltration capacity of the nano-HA solutions were quantified by means of contact angle measurements and energy dispersive X-ray spectroscopy (EDS), respectively. Contact angle measurements were taken at baseline and repeated at regular intervals to assess the effect of acetone. The P and Ca levels of infiltrated dentin specimens were measured and compared to sound dentin and non-infiltrated controls. RESULTS: The presence of acetone resulted in an eight-fold decrease in the contact angles of the nano-HA solutions recorded on the surface of demineralized dentin compared to nano-HA solutions without acetone (one-way ANOVA, p<0.05). Perfect wetting of the demineralized dentin surface was achieved 5min after the application of the nano-HA solution containing acetone. Infiltration of demineralized dentin with the nano-HA solution containing acetone restored the lost mineral content by 50%, whereas the mean mineralization values for P and Ca in dentin treated with the acetone-free nano-HA solution were less than 6%. SIGNIFICANCE: Acetone was shown to act as a vehicle to enhance the capacity to infiltrate demineralized dentin with HA NPs. The successful infiltration of dentin collagen with HA NPs provides a suitable scaffold, whereby the infiltrated HA NPs have the potential to act as seeds that may initiate heterogenous mineral growth when exposed to an appropriate mineral-rich environment.


Assuntos
Acetona/química , Dentina/química , Durapatita/química , Nanopartículas/química , Teste de Materiais , Microscopia Eletrônica , Espectrometria por Raios X , Propriedades de Superfície , Desmineralização do Dente , Molhabilidade
6.
Ann Stomatol (Roma) ; 5(3): 108-14, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25506416

RESUMO

This study aims to critically summarize the literature about nano-hydroxyapatite. The purpose of this work is to analyze the benefits of using nano-hydroxyapatite in dentistry, especially for its preventive, restorative and regenerative applications. We also provide an overview of new dental materials, still experimental, which contain the nano-hydroxyapatite in its nano-crystalline form. Hydroxyapatite is one of the most studied biomaterials in the medical field for its proven biocompatibility and for being the main constituent of the mineral part of bone and teeth. In terms of restorative and preventive dentistry, nano-hydroxyapatite has significant remineralizing effects on initial enamel lesions, certainly superior to conventional fluoride, and good results on the sensitivity of the teeth. The nano-HA has also been used as an additive material, in order to improve already existing and widely used dental materials, in the restorative field (experimental addition to conventional glass ionomer cements, that has led to significant improvements in their mechanical properties). Because of its unique properties, such as the ability to chemically bond to bone, to not induce toxicity or inflammation and to stimulate bone growth through a direct action on osteoblasts, nano-HA has been widely used in periodontology and in oral and maxillofacial surgery. Its use in oral implantology, however, is a widely used practice established for years, as this substance has excellent osteoinductive capacity and improves bone-to-implant integration.

7.
Dent Mater ; 30(3): 249-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24444789

RESUMO

OBJECTIVE: This study investigates the potential of a novel guided tissue regeneration strategy, using fully demineralized dentin infiltrated with silica and hydroxyapatite (HA) nanoparticles (NPs), to remineralize dentin collagen that is completely devoid of native hydroxyapatite. METHODS: Dentin blocks were fully demineralized with 4N formic acid and subsequently infiltrated with silica and HA NPs. The remineralizing potential of infiltrated dentin was assessed following a twelve week exposure to an artificial saliva solution by means of TEM, EDS and micro-CT. Measurements were taken at baseline and repeated at regular intervals for the duration of the study to quantify the P and Ca levels, the mineral volume percentage and mineral separation of the infiltrated dentin specimens compared to sound dentin and non-infiltrated controls. RESULTS: Infiltration of demineralized dentin with nano-HA restored up to 55% of the P and Ca levels at baseline. A local increase in the concentration of calcium phosphate compounds over a period of twelve weeks resulted in a higher concentration in P and Ca levels within the infiltrated specimens when compared to the non-infiltrated controls. Remineralization of demineralized dentin with silica NPs by immersion in artificial saliva was the most effective strategy, restoring 20% of the P levels of sound dentin. Micro-CT data showed a 16% recovery of the mineral volume in dentin infiltrated with silica NPs and a significant decrease in the mineral separation to levels comparable to sound dentin. SIGNIFICANCE: Demineralized dentin infiltrated with silica NPs appears to encourage heterogeneous mineralization of the dentin collagen matrix following exposure to an artificial saliva solution.


Assuntos
Colágeno/química , Dentina/química , Durapatita/química , Dióxido de Silício/química , Remineralização Dentária/métodos , Fosfatos de Cálcio/química , Colágeno/fisiologia , Dentina/fisiopatologia , Durapatita/farmacologia , Humanos , Técnicas In Vitro , Microscopia Eletrônica de Transmissão , Nanopartículas , Saliva Artificial , Dióxido de Silício/farmacologia , Espectrometria por Raios X , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...