Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.027
Filtrar
1.
Methods Mol Biol ; 2850: 171-196, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39363072

RESUMO

Golden Gate cloning has revolutionized synthetic biology. Its concept of modular, highly characterized libraries of parts that can be combined into higher order assemblies allows engineering principles to be applied to biological systems. The basic parts, typically stored in Level 0 plasmids, are sequence validated by the method of choice and can be combined into higher order assemblies on demand. Higher order assemblies are typically transcriptional units, and multiple transcriptional units can be assembled into multi-gene constructs. Higher order Golden Gate assembly based on defined and validated parts usually does not introduce sequence changes. Therefore, simple validation of the assemblies, e.g., by colony polymerase chain reaction (PCR) or restriction digest pattern analysis is sufficient. However, in many experimental setups, researchers do not use defined parts, but rather part libraries, resulting in assemblies of high combinatorial complexity where sequencing again becomes mandatory. Here, we present a detailed protocol for the use of a highly multiplexed dual barcode amplicon sequencing using the Nanopore sequencing platform for in-house sequence validation. The workflow, called DuBA.flow, is a start-to-finish procedure that provides all necessary steps from a single colony to the final easy-to-interpret sequencing report.


Assuntos
Sequenciamento por Nanoporos , Biologia Sintética , Sequenciamento por Nanoporos/métodos , Biologia Sintética/métodos , Clonagem Molecular/métodos , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Reação em Cadeia da Polimerase/métodos , Nanoporos , Fluxo de Trabalho
2.
Comput Struct Biotechnol J ; 23: 3430-3444, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39391372

RESUMO

Nanopore sequencing provides a rapid, convenient and high-throughput solution for nucleic acid sequencing. Accurate basecalling in nanopore sequencing is crucial for downstream analysis. Traditional approaches such as Hidden Markov Models (HMM), Recurrent Neural Networks (RNN), and Convolutional Neural Networks (CNN) have improved basecalling accuracy but there is a continuous need for higher accuracy and reliability. In this study, we introduce BaseNet (https://github.com/liqingwen98/BaseNet), an open-source toolkit that utilizes transformer models for advanced signal decoding in nanopore sequencing. BaseNet incorporates both autoregressive and non-autoregressive transformer-based decoding mechanisms, offering state-of-the-art algorithms freely accessible for future improvement. Our research indicates that cross-attention weights effectively map the relationship between current signals and base sequences, joint loss training through adding a pair of forward and reverse decoder facilitate model converge, and large-scale pre-trained models achieve superior decoding accuracy. This study helps to advance the field of nanopore sequencing signal decoding, contributes to technological advancements, and provides novel concepts and tools for researchers and practitioners.

3.
Elife ; 132024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373634

RESUMO

Most malaria rapid diagnostic tests (RDTs) detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and PfHRP3, but deletions of pfhrp2 and phfrp3 genes make parasites undetectable by RDTs. We analyzed 19,313 public whole-genome-sequenced P. falciparum field samples to understand these deletions better. Pfhrp2 deletion only occurred by chromosomal breakage with subsequent telomere healing. Pfhrp3 deletions involved loss from pfhrp3 to the telomere and showed three patterns: no other associated rearrangement with evidence of telomere healing at breakpoint (Asia; Pattern 13-TARE1); associated with duplication of a chromosome 5 segment containing multidrug-resistant-1 gene (Asia; Pattern 13-5++); and most commonly, associated with duplication of a chromosome 11 segment (Americas/Africa; Pattern 13-11++). We confirmed a 13-11 hybrid chromosome with long-read sequencing, consistent with a translocation product arising from recombination between large interchromosomal ribosome-containing segmental duplications. Within most 13-11++ parasites, the duplicated chromosome 11 segments were identical. Across parasites, multiple distinct haplotype groupings were consistent with emergence due to clonal expansion of progeny from intrastrain meiotic recombination. Together, these observations suggest negative selection normally removes 13-11++pfhrp3 deletions, and specific conditions are needed for their emergence and spread including low transmission, findings that can help refine surveillance strategies.


Assuntos
Antígenos de Protozoários , Plasmodium falciparum , Proteínas de Protozoários , Translocação Genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Plasmodium falciparum/genética , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Duplicações Segmentares Genômicas/genética , Humanos , Deleção de Genes , Malária Falciparum/parasitologia
4.
mSystems ; : e0108024, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373471

RESUMO

Genomic surveillance enables the early detection of pathogen transmission in healthcare facilities and contributes to the reduction of substantial patient harm. Fast turnaround times, flexible multiplexing, and low capital requirements make Nanopore sequencing well suited for genomic surveillance purposes; the analysis of Nanopore data, however, can be challenging. We present NanoCore, a user-friendly method for Nanopore-based genomic surveillance in healthcare facilities, enabling the calculation and visualization of cgMLST-like (core-genome multilocus sequence typing) sample distances directly from unassembled Nanopore reads. NanoCore implements a mapping, variant calling, and multilevel filtering strategy and also supports the analysis of Illumina data. We validated NanoCore on two 24-isolate data sets of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). In the Nanopore-only mode, NanoCore-based pairwise distances between closely related isolates were near-identical to Illumina-based SeqSphere+ distances, a gold standard commercial method (average differences of 0.75 and 0.81 alleles for MRSA and VRE; sd = 0.98 and 1.00), and gave an identical clustering into closely related and non-closely related isolates. In the "hybrid" mode, in which only Nanopore data are used for some isolates and only Illumina data for others, increased average pairwise isolate distance differences were observed (average differences of 3.44 and 1.95 for MRSA and VRE, respectively; sd = 2.76 and 1.34), while clustering results remained identical. NanoCore is computationally efficient (<15 hours of wall time for the analysis of a 24-isolate data set on a workstation), available as free software, and supports installation via conda. In conclusion, NanoCore enables the effective use of the Nanopore technology for bacterial pathogen surveillance in healthcare facilities. IMPORTANCE: Genomic surveillance involves sequencing the genomes and measuring the relatedness of bacteria from different patients or locations in the same healthcare facility, enabling an improved understanding of pathogen transmission pathways and the detection of "silent" outbreaks that would otherwise go undetected. It has become an indispensable tool for the detection and prevention of healthcare-associated infections and is routinely applied by many healthcare institutions. The earlier an outbreak or transmission chain is detected, the better; in this context, the Oxford Nanopore sequencing technology has important potential advantages over traditionally used short-read sequencing technologies, because it supports "real-time" data generation and the cost-effective "on demand" sequencing of small numbers of bacterial isolates. The analysis of Nanopore sequencing data, however, can be challenging. We present NanoCore, a user-friendly software for genomic surveillance that works directly based on Nanopore sequencing reads in FASTQ format, and demonstrate that its accuracy is equivalent to traditional gold standard short read-based analyses.

5.
Comp Cytogenet ; 18: 183-198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39363903

RESUMO

Ribosomal RNA (18S, 5.8S, 28S) gene clusters in genomes form regions that consist of multiple tandem repeats. They are located on a single or several pairs of chromosomes and play an important role in the formation of the nucleolus responsible for the assembly of ribosome subunits. The rRNA gene cluster sequences are widely used for taxonomic studies, however at present, complete information on the avian rDNA repeat unit structure including intergenic spacer sequence is available only for the chicken (Gallusgallusdomesticus Linnaeus, 1758). The GC enrichment and high-order repeats peculiarities within the intergenic spacer described for the chicken rDNA cluster may be responsible for these failures. The karyotype of the Japanese quail (Coturnixjaponica Temminck et Schlegel, 1849) deserves close attention because, unlike most birds, it has three pairs of nucleolar organizer bearing chromosomes, two of which are microchromosomes enriched in repeating elements and heterochromatin that carry translocated terminal nucleolar organizers. Here we assembled and annotated the complete Japanese quail ribosomal gene cluster sequence of 21166 base pairs (GenBank under the registration tag BankIt2509210 CoturnixOK523374). This is the second deciphered avian rDNA cluster after the chicken. Despite the revealed high similarity with the chicken corresponding sequence, it has a number of specific features, which include a slightly lower degree of GC content and the presence of bendable elements in the content of both the transcribed spacer I and the non-transcribed intergenic spacer.

6.
BMC Res Notes ; 17(1): 286, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358791

RESUMO

OBJECTIVES: Indonesia's location at the convergence of multiple tectonic plates results in a unique geomorphological feature with abundant hot springs. This study pioneers the metagenomic exploration of Indonesian hot springs, harbouring unique life forms despite high temperatures. The microbial community of hot springs is taxonomically versatile and biotechnologically valuable. 16s rRNA amplicon sequencing of the metagenome is a viable option for the microbiome investigation. This study utilized Oxford Nanopore's long-read 16 S rRNA sequencing for enhanced species identification, improved detection of rare members, and a more detailed community composition profile. DATA DESCRIPTION: Water samples were taken from three hot springs of the Bali, Indonesia (i) Angseri, 8.362503 S, 115.133452 E; (ii) Banjar, 8.210270 S, 114.967063 E; and (iii) Batur, 8.228806 S, 115.404829 E. BioLit Genomic DNA Extraction Kit (SRL, Mumbai, India) was used to isolate DNA from water samples. The quantity and quality of the DNA were determined using a NanoDrop™ spectrophotometer and a Qubit fluorometer (Thermo Fisher Scientific, USA). The library was created using Oxford Nanopore Technology kits, and the sequencing was done using Oxford Nanopore's GridION platform. All sequencing data was obtained in FASTQ files and filtered using NanoFilt software. This dataset is valuable for searching novel bacteria diversity and their existence.


Assuntos
Fontes Termais , Sequenciamento por Nanoporos , RNA Ribossômico 16S , Fontes Termais/microbiologia , Indonésia , RNA Ribossômico 16S/genética , Sequenciamento por Nanoporos/métodos , Microbiota/genética , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Metagenoma/genética , Metagenômica/métodos , Microbiologia da Água , Filogenia , DNA Bacteriano/genética , DNA Bacteriano/análise , Análise de Sequência de DNA/métodos
7.
Genome Res ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358016

RESUMO

DNA modifications in bacteria present diverse types and distributions, playing crucial functional roles. Current methods for detecting bacterial DNA modifications via nanopore sequencing typically involve comparing raw current signals to a methylation-free control. In this study, we found that bacterial DNA modification induces errors in nanopore reads. And these errors are found only in one strand but not the other, showing a strand-specific bias. Leveraging this discovery, we developed Hammerhead, a pioneering pipeline designed for de novo methylation discovery that circumvents the necessity of raw signal inference and a methylation-free control. The majority (14 out of 16) of the identified motifs can be validated by raw signal comparison methods or by identifying corresponding methyltransferases in bacteria. Additionally, we included a novel polishing strategy employing duplex reads to correct modification-induced errors in bacterial genome assemblies, achieving a reduction of over 85% in such errors. In summary, Hammerhead enables users to effectively locate bacterial DNA methylation sites from nanopore FASTQ/FASTA reads, thus holds promise as a routine pipeline for a wide range of nanopore sequencing applications, such as genome assembly, metagenomic binning, decontaminating eukaryotic genome assembly, and functional analysis for DNA modifications.

8.
J Clin Microbiol ; : e0108324, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365069

RESUMO

Whole genome sequencing is an essential cornerstone of pathogen surveillance and outbreak detection. Established sequencing technologies are currently being challenged by Oxford Nanopore Technologies (ONT), which offers an accessible and cost-effective alternative enabling gap-free assemblies of chromosomes and plasmids. Limited accuracy has hindered its use for investigating pathogen transmission, but recent technology updates have brought significant improvements. To evaluate its readiness for outbreak detection, we selected 78 Listeria monocytogenes isolates from diverse lineages or known epidemiological clusters for sequencing with ONT's V14 Rapid Barcoding Kit and R10.4.1 flow cells. The most accurate of several tested workflows generated assemblies with a median of one error (SNP or indel) per assembly. For 66 isolates, the cgMLST profiles from ONT-only assemblies were identical to those generated from Illumina data. Eight assemblies were of lower quality, with more than 20 erroneous sites each, primarily caused by methylations at the GAAGAC motif (5'-GAAG6mAC-3'/5'-GT4mCTTC-3'). This led to inaccurate clustering, failing to group isolates from a persistence-associated clone that carried the responsible restriction-modification system. Out of 50 methylation motifs detected among the 78 isolates, only the GAAGAC motif was linked to substantially increased error rates. Our study shows that most L. monocytogenes genomes assembled from ONT-only data are suitable for high-resolution genotyping, but further improvements of chemistries or basecallers are required for reliable routine use in outbreak and food safety investigations.

9.
J Transl Med ; 22(1): 912, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39380003

RESUMO

BACKGROUND: Muscle-invasive bladder carcinoma (MIBC) is a serious and more advanced stage of bladder carcinoma. N6-Methyladenosine (m6A) is a dynamic and reversible modifications that primarily affects RNA stability and alternative splicing. The dysregulation of m6A in MIBC can be potential target for clinical interventions, but there have been limited studies on m6A modifications in MIBC and their associations with post-transcriptional regulatory processes. METHODS: Paired tumor and adjacent-normal tissues were obtained from three patients with MIBC following radical cystectomy. The additional paired tissues for validation were obtained from patients underwent transurethral resection. Utilizing Nanopore direct-RNA sequencing, we characterized the m6A RNA methylation landscape in MIBC, with a focus on identifying post-transcriptional events potentially affected by changes in m6A sites. This included an examination of differential transcript usage, polyadenylation signal sites, and variations in poly(A) tail length, providing insights into the broader impact of m6A alterations on RNA processing in MIBC. RESULTS: The prognostic-related m6A genes and m6A-risk model constructed by machine learning enables the stratification of high and low-risk patients with precision. A novel m6A modification site in the 3' untranslated region (3'UTR) of IGLL5 gene were identified, characterized by a lower m6A methylation ratio, elongated poly(A) tails, and a notable bias in transcript usage. Furthermore, we discovered two particular transcripts, VWA1-203 and CEBPB-201. VWA1-203 displayed diminished m6A methylation levels, a truncated 3'UTR, and an elongated poly(A) tail, whereas CEBPB-201 showed opposite trends, highlighting the complex interplay between m6A modifications and RNA processing. Source code was provided on GitHub ( https://github.com/lelelililele/Nanopore-m6A-analysis ). CONCLUSIONS: The state-of-the-art Nanopore direct-RNA sequencing and machine learning techniques enables comprehensive identification of m6A modification and provided insights into the potential post-transcriptional regulation mechanisms on the development and progression in MIBC.


Assuntos
Adenosina , Invasividade Neoplásica , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Processamento Pós-Transcricional do RNA/genética , Metilação , Masculino , Regulação Neoplásica da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aprendizado de Máquina , Músculos/patologia , Músculos/metabolismo , Feminino , Pessoa de Meia-Idade , Prognóstico , Idoso , Regiões 3' não Traduzidas/genética
10.
Genome Med ; 16(1): 117, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39380090

RESUMO

BACKGROUND: Repetitive genome regions, such as variable number of tandem repeats (VNTR) or short tandem repeats (STR), are major constituents of the uncharted dark genome and evade conventional sequencing approaches. The protein-coding LPA kringle IV type-2 (KIV-2) VNTR (5.6 kb per unit, 1-40 units per allele) is a medically highly relevant example with a particularly intricate structure, multiple haplotypes, intragenic homologies, and an intra-VNTR STR. It is the primary regulator of plasma lipoprotein(a) [Lp(a)] concentrations, an important cardiovascular risk factor. Lp(a) concentrations vary widely between individuals and ancestries. Multiple variants and functional haplotypes in the LPA gene and especially in the KIV-2 VNTR strongly contribute to this variance. METHODS: We evaluated the performance of amplicon-based nanopore sequencing with unique molecular identifiers (UMI-ONT-Seq) for SNP detection, haplotype mapping, VNTR unit consensus sequence generation, and copy number estimation via coverage-corrected haplotypes quantification in the KIV-2 VNTR. We used 15 human samples and low-level mixtures (0.5 to 5%) of KIV-2 plasmids as a validation set. We then applied UMI-ONT-Seq to extract KIV-2 VNTR haplotypes in 48 multi-ancestry 1000 Genome samples and analyzed at scale a poorly characterized STR within the KIV-2 VNTR. RESULTS: UMI-ONT-Seq detected KIV-2 SNPs down to 1% variant level with high sensitivity, specificity, and precision (0.977 ± 0.018; 1.000 ± 0.0005; 0.993 ± 0.02) and accurately retrieved the full-length haplotype of each VNTR unit. Human variant levels were highly correlated with next-generation sequencing (R2 = 0.983) without bias across the whole variant level range. Six reads per UMI produced sequences of each KIV-2 unit with Q40 quality. The KIV-2 repeat number determined by coverage-corrected unique haplotype counting was in close agreement with droplet digital PCR (ddPCR), with 70% of the samples falling even within the narrow confidence interval of ddPCR. We then analyzed 62,679 intra-KIV-2 STR sequences and explored KIV-2 SNP haplotype patterns across five ancestries. CONCLUSIONS: UMI-ONT-Seq accurately retrieves the SNP haplotype and precisely quantifies the VNTR copy number of each repeat unit of the complex KIV-2 VNTR region across multiple ancestries. This study utilizes the KIV-2 VNTR, presenting a novel and potent tool for comprehensive characterization of medically relevant complex genome regions at scale.


Assuntos
Haplótipos , Lipoproteína(a) , Repetições Minissatélites , Sequenciamento por Nanoporos , Humanos , Lipoproteína(a)/genética , Sequenciamento por Nanoporos/métodos , Análise Mutacional de DNA/métodos , Polimorfismo de Nucleotídeo Único
11.
Epigenomics ; 16(17): 1159-1174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39225157

RESUMO

Background: N6-methyladenosine (m6A), a prevalent mRNA modification, is dynamically regulated by methyltransferases, including METTL3 and METTL14.Materials & methods: In the current study, we employed a custom hybrid-seq method to identify novel METTL3/14 transcripts, explore their protein-coding capacities and predict the putative role of the METTL isoforms.Results: Demultiplexing of the hybrid-seq barcoded datasets unraveled the expression patterns of the newly identified mRNAs in major malignancies as well as in non-malignant cells, providing a deeper understanding of the methylation pathways. Open reading frame query revealed novel METTL3/14 isoforms, broadening our perspective for the structural diversity within METTL family.Conclusion: Our findings offer significant insights into the intricate transcriptional landscape of METTL3/14, shedding light on the regulatory mechanisms underlying methylation in mRNAs.


[Box: see text].


Assuntos
Adenosina , Metiltransferases , RNA Mensageiro , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Transcriptoma , Epigênese Genética , Metilação
12.
Transgenic Res ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320390

RESUMO

The SARS-CoV-2 pandemic has underscored the necessity for functional transgenic animal models for testing. Mouse lines with overexpression of the human receptor ACE2 serve as the common animal model to study COVID-19 infection. Overexpression of ACE2 under a strong ubiquitous promoter facilitates convenient and sensitive testing of COVID-19 pathology. We performed pronuclear microinjections using a 5 kb CAG-ACE2 linear transgene construct and identified three founder lines with 140, 72, and 73 copies, respectively. Two of these lines were further analyzed for ACE2 expression profiles and sensitivity to SARS-CoV-2 infection. Both lines expressed ACE2 in all organs analyzed. Embryonic fibroblast cell lines derived from transgenic embryos demonstrated severe cytopathic effects following infection, even at low doses of SARS-CoV-2 (0,1-1.0 TCID50). Infected mice from the two lines began to show COVID-19 clinical signs three days post-infection and succumbed between days 4 and 7. Histological examination of lung tissues from terminally ill mice revealed severe pathological alterations. To further characterize the integration site in one of the lines, we applied nanopore sequencing combined with Cas9 enrichment to examine the internal transgene concatemer structure. Oxford Nanopore sequencing (ONT) is becoming the gold standard for transgene insert characterization, but it is relatively inefficient without targeted region enrichment. We digested genomic DNA with Cas9 and gRNA against the ACE2 transgene to create ends suitable for ONT adapter ligation. ONT data analysis revealed that most of the transgene copies were arranged in a head-to-tail configuration, with palindromic junctions being rare. We also detected occasional plasmid backbone fragments within the concatemer, likely co-purified during transgene gel extraction, which is a common occurrence in pronuclear microinjections.

14.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39226890

RESUMO

Nanopore selective sequencing allows the targeted sequencing of DNA of interest using computational approaches rather than experimental methods such as targeted multiplex polymerase chain reaction or hybridization capture. Compared to sequence-alignment strategies, deep learning (DL) models for classifying target and nontarget DNA provide large speed advantages. However, the relatively low accuracy of these DL-based tools hinders their application in nanopore selective sequencing. Here, we present a DL-based tool named ReadCurrent for nanopore selective sequencing, which takes electric currents as inputs. ReadCurrent employs a modified very deep convolutional neural network (VDCNN) architecture, enabling significantly lower computational costs for training and quicker inference compared to conventional VDCNN. We evaluated the performance of ReadCurrent across 10 nanopore sequencing datasets spanning human, yeasts, bacteria, and viruses. We observed that ReadCurrent achieved a mean accuracy of 98.57% for classification, outperforming four other DL-based selective sequencing methods. In experimental validation that selectively sequenced microbial DNA from human DNA, ReadCurrent achieved an enrichment ratio of 2.85, which was higher than the 2.7 ratio achieved by MinKNOW using the sequence-alignment strategy. In summary, ReadCurrent can rapidly classify target and nontarget DNA with high accuracy, providing an alternative in the toolbox for nanopore selective sequencing. ReadCurrent is available at https://github.com/Ming-Ni-Group/ReadCurrent.


Assuntos
Sequenciamento por Nanoporos , Sequenciamento por Nanoporos/métodos , Humanos , Análise de Sequência de DNA/métodos , Redes Neurais de Computação , Nanoporos , Software , Aprendizado Profundo , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
16.
Microbiol Resour Announc ; 13(10): e0034024, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39248544

RESUMO

The draft genome sequence of Taiwanofungus gaoligongensis YAF008 was reported. The genome size of T. gaoligongensis YAF008 was 34.7M bp with 50.72% GC content. The genome resource will support future research into potential secondary metabolite diversity of this fungus.

17.
Arch Microbiol ; 206(10): 417, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325189

RESUMO

The coconut rhinoceros beetle (Oryctes rhinoceros, CRB) is a serious pest of coconut and oil palms. It is native to South and Southeast Asia and was inadvertently introduced to Samoa in 1909. It has invaded many other Pacific countries throughout the last century. Oryctes rhinoceros nudivirus (OrNV), a natural pathogen of CRB in its native range, was successfully introduced as a classical biocontrol agent and has effectively suppressed invasive CRB populations for decades. However, resurgence of CRB has been recorded, with new invasions detected in several Pacific Island Countries and Territories. Additionally, new populations of CRB are emerging in some invaded areas that have a degree of resistance to the virus isolates commonly released for CRB biocontrol. Here, we designed a fast and reliable tool for distinguishing between different OrNV isolates that can help with the selection process to identify effective isolates for management of new CRB invasions. A comparison of 13 gene/gene region sequences within the OrNV genome of 16 OrNV isolates from native and invaded ranges allowed us to identify unique Single Nucleotide Polymorphisms (SNPs). With these SNPs, we developed an assay using multiplex PCR-amplicon-based nanopore sequencing to distinguish between OrNV isolates. We found that as few as four gene fragments were sufficient to identify 15 out of 20 OrNV isolates. This method can be used as a tool to monitor the establishment and distribution of OrNV isolates selected for release as biocontrol agents in CRB-infected areas.


Assuntos
Cocos , Besouros , Genoma Viral , Nudiviridae , Animais , Besouros/virologia , Cocos/virologia , Nudiviridae/genética , Nudiviridae/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Controle Biológico de Vetores/métodos , Agentes de Controle Biológico , Filogenia
18.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273363

RESUMO

MDM4 is upregulated in the majority of melanoma cases and has been described as a "key therapeutic target in cutaneous melanoma". Numerous isoforms of MDM4 exist, with few studies examining their specific expression in human tissues. The changes in splicing of MDM4 during human melanomagenesis are critical to p53 activity and represent potential therapeutic targets. Compounding this, studies relying on short reads lose "connectivity" data, so full transcripts are frequently only inferred from the presence of splice junction reads. To address this problem, long-read nanopore sequencing was utilized to read the entire length of transcripts. Here, MDM4 transcripts, both alternative and canonical, are characterized in a pilot cohort of human melanoma specimens. RT-PCR was first used to identify the presence of novel splice junctions in these specimens. RT-qPCR then quantified the expression of major MDM4 isoforms observed during sequencing. The current study both identifies and quantifies MDM4 isoforms present in melanoma tumor samples. In the current study, we observed high expression levels of MDM4-S, MDM4-FL, MDM4-A, and the previously undescribed Ensembl transcript MDM4-209. A novel transcript lacking both exons 6 and 9 is observed and named MDM4-A/S for its resemblance to both MDM4-A and MDM4-S isoforms.


Assuntos
Melanoma , Isoformas de Proteínas , Humanos , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Processamento Alternativo , Regulação Neoplásica da Expressão Gênica , Sequenciamento por Nanoporos/métodos
19.
Front Plant Sci ; 15: 1429494, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39328796

RESUMO

Chloroplast genomes (plastomes) represent a very important source of valuable information for phylogenetic and biogeographic reconstructions. The use of short reads (as those produced from Illumina sequencing), along with de novo read assembly, has been considered the "gold standard" for plastome reconstruction. However, short reads often cannot reconstruct long repetitive regions in chloroplast genomes. Long Nanopore (ONT) reads can help bridging long repetitive regions but are by far more error-prone than those produced by Illumina sequencing. Verbesina is the largest genus of tribe Heliantheae (Asteraceae) and includes species of economic importance as ornamental or as invasive weeds. However, no complete chloroplast genomes have been published yet for the genus. We utilized Illumina and Nanopore sequencing data and different assembly strategies to reconstruct the plastome of Verbesina alternifolia and evaluated the usefulness of the Nanopore assemblies. The two plastome sequence assemblages, one obtained with the Nanopore sequencing and the other inferred with Illumina reads, were identical, except for missing bases in homonucleotide regions. The best-assembled plastome of V. alternifolia was 152,050 bp in length and contained 80, 29, and four unique protein-coding genes, tRNAs, and rRNAs, respectively. When used as reference for mapping Illumina reads, all plastomes performed similarly. In a phylogenetic analysis including 28 other plastomes from closely related taxa (from the Heliantheae alliance), the two Verbesina chloroplast genomes grouped together and were nested among the other members of the tribe Heliantheae s.str. Our study highlights the usefulness of the Nanopore technology for assembling rapidly and cost-effectively chloroplast genomes, especially in taxonomic groups with paucity of publicly available plastomes.

20.
Diagn Microbiol Infect Dis ; 110(4): 116545, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39332086

RESUMO

Analysis of 11 clinical samples of joint fluid in this pilot study demonstrated proof-of-concept for nanopore-based metagenomic sequencing to serve as a complementary real-time diagnostic technique for septic arthritis, with a sensitivity of 75.0 % and specificity of 57.1 %, compared to the gold standard method of bacterial culture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...