Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 347
Filtrar
1.
Ambio ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080160

RESUMO

Nature-based solutions (NbSs) are recognised as relevant to spatial planning in addressing societal challenges, although their uptake is limited and fragmented to some case studies, and difficulties emerge from their implementation and operationalisation. The research developed a literature review to investigate how NbS has been considered for its implementation and operationalisation in spatial planning and how NbS has been included across different policy instruments and used to address climate change adaptation (CCA). The results highlighted: Firstly, the review contributed to bridge the gap in NbS implementation and operationalisation by proposing a novel three-dimensional categorisation system to guide the selection of suitable NbS principles to address societal challenges; secondly, this study still revealed gaps in some policy areas, despite the effort to extensively apply NbS across diverse policy instruments to CCA. Overall, the review further emphasises the need for future research focused on monitoring and evaluating NbS's effectiveness to CCA.

2.
Sci Total Environ ; 948: 174616, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992386

RESUMO

In response to climate-driven water shortages, Duke University in 2014 constructed a water reuse reservoir and wetland complex (Pond) to capture urban stormwater and recycle water to provide campus cooling and reduce downstream loading of nutrients and sediment into Jordan Lake, a regional water supply. We postulated that even with significant water level changes due to withdrawals, the Pond would function to reduce downstream nutrients and sediment once wetland plants became established in the littoral zone. Throughout the project (2015-2021), baseflow nutrient concentrations downstream decreased, with Unfiltered Total Nitrogen (UTN) falling by 44 % and Unfiltered Total Phosphorus (UTP) by 50 %. Storm mean concentrations decreased by 31 % for UTN, 54 % for UTP, and 72 % for Total Suspended Solids (TSS). The annual reductions in mass fluxes (UTN, UTP, and TSS) were between 58 and 85 % across a range of storm intensities. Regardless of water level, temperature, pH, and oxygen concentrations downstream were not significantly changed. Between 2015 and 2020, a littoral survey of planted and naturally introduced species showed that wetter years resulted in a greater number of species across a gradient of three inundation zones (i.e., moist, wet, and aquatic). Conversely, dryer years resulted in fewer species across overlapping zones. The dominant plants that successfully colonized the Pond are all obligate wetland species despite the Pond's highly variable water depths and periods of inundation. The final plant populations were dominated by invasive native species supporting the self-design theory of plant succession as nearly half of the original planted species died. The reuse Pond design (pond-wetland complex) showed the capability of using stormwater runoff for campus cooling while improving water quality services and providing habitat for wetland plants. Thus, campuses with watershed runoff capture capability should consider a nature-based recycling approach as part of their water sustainability program.

3.
Sci Total Environ ; 948: 174745, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032754

RESUMO

Harmful cyanobacterial blooms will be more intense and frequent in the future, contaminating surface waters with cyanotoxins and posing a threat to communities heavily reliant on surface water usage for crop irrigation. Constructed wetlands (CWs) are proposed to ensure safe crop irrigation, but more research is needed before implementation. The present study operated 28 mesocosms in continuous mode mimicking horizontal sub-surface flow CWs. Mesocosms were fed with synthetic lake water and spiked periodically with two cyanotoxins, microcystin-LR (MC-LR) and cylindrospermopsin (CYN), at environmentally relevant cyanotoxins concentrations (10 µg L-1). The influence of various design factors, including plant species, porous media, and seasonality, was explored. The mesocosms achieved maximum MC-LR and CYN mass removal rates of 95 % and 98 %, respectively. CYN removal is reported for the first time in CWs mimicking horizontal sub-surface flow CWs. Planted mesocosms consistently outperformed unplanted mesocosms, with Phragmites australis exhibiting superior cyanotoxin mass removal compared to Juncus effusus. Considering evapotranspiration, J. effusus yielded the least cyanotoxin-concentrated effluent due to the lower water losses in comparison with P. australis. Using the P-kC* model, different scaling-up scenarios for future piloting were calculated and discussed. Additionally, bacterial community structure was analyzed through correlation matrices and differential taxa analyses, offering valuable insights into their removal of cyanotoxins. Nevertheless, attempts to validate microcystin-LR biotransformation via the known mlrA gene degradation pathway were unfruitful, indicating alternative enzymatic degradation pathways occurring in such complex CW systems. Further investigation into the precise molecular mechanisms of removal and the identification of transformation products is needed for the comprehensive understanding of cyanotoxin mitigation in CW. This study points towards the feasibility of horizontal sub-surface flow CWs to be employed to control cyanotoxins in irrigation or recreational waters.

4.
Water Res ; 261: 122003, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38986283

RESUMO

Droughts are classified as the most expensive climate disasters as they leave long-term and chronic impacts on the ecosystem, agriculture, and human society. The intensity, frequency, and duration of drought events have increased in the past and are expected to continue rising at global, continental, and regional scales. Nature-based solutions (NBS) are highlighted as effective solutions to cope with the future impacts of these events. Despite this, there has been limited comprehensive research on the effectiveness of NBS for drought mitigation, and existing suitability mapping frameworks often overlook drought-specific criteria. To address this gap, a new framework is proposed to identify areas suitable for two drought-coping NBS types at a regional scale: detention basins and managed aquifer recharge. Two multi-criteria decision-making techniques (MCDM), i.e. Boolean logic and Analytic- Hierarchy Process (AHP), were used to map suitable large-scale NBS. The new framework accounts for unique criteria to specifically address drought conditions. By incorporating climate change scenarios for both surface and groundwater, recharge, and different groundwater characteristics, it identifies suitable and sustainable locations capable of managing extreme drought events. Executed through Boolean logic at a regional scale in Flanders (Belgium), the framework's strict approach yields significant potential areas for detention basins (298.7 km²) and managed aquifer recharge (867.5 km²). Incorporating AHP with the same criteria introduces a higher degree of flexibility for decision-makers. This approach shows a notable expansion across Flanders, varying with the level of suitability. The results underscore the highly suitable potential for detention basins (2552.2 km²) and managed aquifer recharge (2538.7 km²), emphasizing the adaptability and scalability of the framework for addressing drought in the region. The comparison between potential recharge volume due to detention basin and groundwater use in the region indicated that the detention basins could partially compensate for the high water demand. Therefore, creating a framework targeting drought is vital for the sustainable management of water scarcity scenarios.

5.
Water Res ; 261: 122038, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38996727

RESUMO

This field-scale study evaluates the seasonal effectiveness of employing nature-based solutions (NBSs), particularly surface flow and horizontal subsurface flow constructed wetland configurations, as tertiary treatment technologies for the removal of antibiotics (ABs) and antibiotic resistance genes (ARGs) compared to a conventional treatment involving UV and chlorination. Out of the 21 monitored ABs, 13 were detected in the influent of three tertiary wastewater treatments, with concentrations ranging from 2 to 1218 ng·L-1. The ARGs sul1 and dfrA1 exhibited concentrations ranging from 1 × 105 to 9 × 106 copies/100 mL. NBSs were better at reducing ABs (average 69 to 88 %) and ARGs (2-3 log units) compared to the conventional tertiary system (average 36 to 39 % and no removal to 2 log units) in both seasons. Taxonomic compositions in influent water samples shifted from wastewater-impacted communities (Actinomycetota and Firmicutes) to a combination of plant rhizosphere-associated and river communities in NBS effluents (Alphaproteobacteria). In contrast, the conventional technology showed no substantial differences in community composition. Moreover, NBSs substantially reduced the ecotoxicological risk assessment (cumulative RQs). Furthermore, NBSs reduced the ecotoxicological risk (cumulative RQs) by an average of over 70 % across seasons, whereas the benchmark technology only achieved a 6 % reduction. In conclusion, NBSs present a robust alternative for minimizing the discharge of ABs and ARGs into surface water bodies.

6.
Conserv Biol ; : e14328, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39045810

RESUMO

The motivations for incorporating nature into the design of cities have never been more compelling. Creating experiences with nature that occur every day (everyday nature) in cities could help reverse the fate of many threatened species and connect people with nature and living cultural traditions. However, this requires more than just urban greening; it involves ensuring daily doses of nature in a way that also supports nonhuman organisms. A major shift in the way nature is conceived of and is made part of the design of cities is required. Principles include reconsidering nature as a development opportunity rather than a constraint and eliminating offsetting of biodiversity site values. Processes include using biodiversity-sensitive design frameworks and establishing meaningful professional engagement among ecologists, planners, and designers. Challenges include design obstacles, conflicts between nature and people (e.g., safety, disease, and noise) that require careful management, and socioeconomic and political considerations (e.g., Global North vs. Global South). Research to interrogate the multiple benefits of nature in cities can complement experimental interventions, ultimately supporting better urban design and creating much more resiliently built environments for people and nature.


Diseño de ciudades para la naturaleza cotidiana Resumen Los motivos para incorporar a la naturaleza dentro del diseño urbano jamás habían sido tan convincentes. La creación en las ciudades de experiencias con la naturaleza que ocurren a diario (naturaleza cotidiana) podría ayudar a cambiar el destino de muchas especies amenazadas y conectar a las personas con la naturaleza y las tradiciones culturales vivientes. Lo anterior requiere más que reverdecimiento urbano ya que involucra dosis diarias de naturaleza de manera que también mantengan a los organismos no humanos. Se necesita de un cambio mayor en la manera en la que se concibe a la naturaleza y cómo se le hace parte del diseño urbano. Los principios incluyen reconsiderar a la naturaleza como una oportunidad de desarrollo en lugar de una limitación y eliminar la compensación del valor de los sitios de biodiversidad. Los procesos incluyen el uso de marcos de diseños sensibles con la biodiversidad y el establecimiento de una participación profesional significativa entre los ecologistas, los planeadores y los diseñadores. Los retos incluyen los obstáculos del diseño, conflictos entre la naturaleza y las personas (seguridad, enfermedades y ruido) que requieren de un manejo cuidadoso y consideraciones políticas (Norte Global versus Sur Global). La investigación para interrogar los múltiples beneficios de la naturaleza en las ciudades puede complementar a las intervenciones, a la larga respaldando un mejor diseño urbano y creando ambientes para las personas y la naturaleza construidos con mayor resiliencia.

7.
Sci Total Environ ; 947: 174545, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972399

RESUMO

Rain gardens are widely used for low impact development (LID) or as a nature-based solution (NbS). They help to reduce runoff, mitigate hot temperatures, create habitats for plants and insects, and beautify landscapes. Rain gardens are increasingly being established in urban areas. In Taiwan, the Ministry of Environment (MoE) initiated a rain garden project in Taipei city in 2018, and 15 rain gardens have since been constructed in different cities. These Taiwanese-style rain gardens contain an underground storage tank to collect the filtrated rainwater, which can be used for irrigation. Moreover, the 15 rain gardens are equipped with sensors to monitor temperature, rainfall, and underground water levels. The monitoring data were transmitted with Internet of Things (IoT) technology, enabling the capture and export of real-time values. The water retention, temperature mitigation, water quality, and ecological indices of the rain gardens were quantified using field data. The results from the young rain gardens (1-3 years) showed that nearly 100 % of the rainfall was retained onsite and did not flow out from the rain gardens; however, if the stored water was not used and the tanks were full, the rainwater from subsequent storms could not be stored, and the tanks overflowed. The surface temperatures of the rain garden and nearby impermeable pavement differed by an average of 2-4 °C. This difference exceeded 20 °C in summer at noon. The water in the underground storage tanks had very low levels of SS and BOD, with averages of 1.6 mg/L and 5.6 mg/L, respectively. However, the E. coli concentrations were high, and the average was 6283 CFU/100 mL; therefore, washing or drinking water is not recommended. The ecological indices, i.e., the Shannon and Simpson indices, demonstrated the good flora status of the rain gardens after one year. Although the weather differed by city, the performance of the rain gardens in terms of water retention, temperature mitigation, rainwater harvesting, and providing biological habitats was consistent. However, maintenance influences rain garden performance. If the stored water is not frequently used, the stored volume is reduced, and the stored water quality degrades.


Assuntos
Cidades , Jardins , Chuva , Taiwan , Monitoramento Ambiental/métodos , Qualidade da Água
8.
Sci Total Environ ; 947: 174524, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972413

RESUMO

The potential of ecosystem-based interventions, also known as Nature-based Solutions (NbS), for Disaster Risk Reduction (DRR) and Climate Change Adaptation (CCA) is now recognized by major national policies and international framework agreements. However, there is limited scientific evidence about their economic viability and equity impacts. We examined English-language peer-reviewed studies, published between 2000 and 2021, which undertook economic evaluations of NbS for DRR and CCA. Based on our results, 71 % of studies indicated that NbS have consistently proven to be a cost-effective approach to mitigating hazards and 24 % of studies found NbS cost-effective under certain conditions. The ecosystem-based interventions most frequently found effective in mitigating hazards are associated with mangroves (80 %), forests (77 %), and coastal ecosystems (73 %). Studies comparing the cost-effectiveness of NbS and engineering-based solutions for mitigating certain hazards showed that NbS are no less effective than engineering-based solutions. Among these studies, 65 % found that NbS are always more effective in attenuating hazards compared to engineering-based solutions and 26 % found that NbS are partially more effective. Our findings illustrate a range of factors, including the geographic locations of the NbS analyzed, their contribution to the restoration and increase of biodiversity, their property rights structure, their source of financing, and the economic methodologies employed to assess cost-effectiveness and distributional effects. The geographic location of the NbS observations included in this analysis was examined considering global projected temperature and precipitation changes.

9.
Heliyon ; 10(11): e31235, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845869

RESUMO

Municipal solid waste management is a major concern in developing economies, requiring collective international efforts to achieve carbon neutrality by diverting waste from disposal facilities. This study aims to highlight the importance of the waste sector as it has the potential to significantly contribute to climate change and its toxicity impact on the local ecosystem. Out of the total municipal solid waste generated, only 78 % is collected, either open dumped or thrown in sanitary landfills. The waste sector's ecological impact value is calculated for the Earth's regions, and it is very high at >50 % in Africa, Asia, Latin America and the Caribbean. This sectoral impact value is mainly responsible for greenhouse gas emissions and degradation of the local ecosystem health. Current business‒as‒usual practices attribute 3.42 % of global emissions to the waste sector. Various scenarios are developed based on waste diversion and related emissions modelling, and it is found that scenarios 3 and 4 will support the policymakers of the regions in attaining zero carbon footprints in the waste sector. Our findings conclude that cost-effective nature-based solutions will help low‒income countries reduce emissions from disposal sites and significantly improve the local ecosystem's health. Developed economies have established robust waste‒handling policies and implementation frameworks, and there is a need for collaboration and knowledge sharing with developing economies at the regional level to sustain the sector globally.

10.
Front Epidemiol ; 4: 1212114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872717

RESUMO

Introduction: There is growing interest in creating public green spaces to promote health. Yet, discussions about these efforts often overlook how experiences of chronic discrimination-which may manifest as racism, sexism, or homophobia, and more-could undermine satisfaction with nature experiences. Methods: Using data from the 2018 wave of the National Opinion Research Center (NORC) General Social Survey (GSS), we quantified associations of frequency of everyday discrimination, operationalized using the Everyday Discrimination Scale (EDS, the primary independent variable), with respondents' perceptions of nature experiences and with their reported time spent in nature. Specifically, we quantified associations with the following three variables: (1) dissatisfaction with day-to-day experiences of nature, (2) not spending as much time as they would like in natural environments, and (3) usually spending at least one day per week in nature. We used survey-weighted robust Poisson models to estimate overall associations, and also stratified analyses by racial/ethnic and gender identity categories. Results: Of 768 GSS respondents, 14% reported dissatisfaction with nature experiences, 36% reported not spending as much time as they would like in nature, and 33% reported that they did not spend at least one day per week in nature. The median non-standardized EDS, coded such that a higher value indicates greater frequency of discrimination, was 11 (interquartile range: 8, 15). Prevalence of reporting dissatisfaction with day-to-day experiences in nature was 7% higher in association with every one unit increase in EDS score above the median (PR: 1.07, 95% CI: 1.02-1.11). The prevalence of reporting not spending as much time as one would like in nature was 2% higher for every unit increase in higher than median everyday discrimination frequency (PR: 1.02, 95% CI: 1.00-1.05). Higher than median frequency in everyday discrimination was not associated with spending less than one day per week in nature. Race/ethnicity and gender identity did not modify associations. Conclusion: Greater frequency of everyday discrimination is associated with less satisfaction with experiences in nature. This relationship could undermine efforts to promote health equity through green interventions.

11.
J Environ Manage ; 363: 121410, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850919

RESUMO

Enzyme-induced calcium carbonate precipitation (EICP) and microbially-induced calcium carbonate precipitation (MICP) techniques represent emerging trends in soil stabilization. However, the impact of soil density on biomineralization, particularly in historical earthen sites, remains unclear. This study compares the consolidation effects of EICP and MICP on cylindrical samples (10 cm × 5 cm) with three densities (1.5 g/cm3, 1.6 g/cm3, and 1.7 g/cm3) derived from the soil near the UNESCO World Cultural Heritage Site of Suoyang Ancient City, Gansu Province, China. Results showed that calcium carbonate production increased across all densities through bio-cementation, with higher densities producing more calcium carbonate. MICP-treated specimens exhibited larger increases in calcium carbonate production compared to those treated with EICP. Specimens with a density of 1.7 g/cm³ showed a wave velocity increase of 3.26% (EICP) and 7.13% (MICP), and an unconfined compressive strength increase of 8% (EICP) and 26% (MICP). These strength increases correlated with the generation of calcium carbonate. The findings suggest that biomineralization can be effectively utilized for in situ consolidation of earthen sites, emphasizing the importance of considering soil density in biologically-based conservation technologies. Furthermore, MICP shows potential advantages over EICP in providing stronger, compatible and more sustainable soil reinforcement.


Assuntos
Biomineralização , Carbonato de Cálcio , Solo , Carbonato de Cálcio/química , Solo/química , China
12.
J Environ Manage ; 364: 121449, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38889647

RESUMO

Water and carbon, essential for Earth's well-being, face imminent threats from human activities that fuel climate change. This study investigates nature-based solutions, focusing on the carbon-water nexus of ex-mining lake-converted constructed wetlands, specifically in Malaysia's Paya Indah Wetlands (PIW). Addressing research gaps, it assesses the ecosystem services of these wetlands, emphasising integrated evaluations for informed land management and employing a top-down conservation approach. Methodologically, spatial assessments, soil and water sampling, carbon quantification, water quality index calculations, land cover classification and stakeholder surveys were conducted. Results underscore the significant carbon sequestration and water quality improvement potential of constructed wetlands, with soil and sediment carbon accumulation reaching 1553.11 Mg C ha-1 (equivalent to 5700 Mg CO2 ha-1), translating to an annual sequestration capacity of 67.5 Mg C ha-1 year-1. Water quality index values ranged from 58 to 81 (Classes II to III). PIW's establishment led to a reduction of over 90% in barren land, with increases in water bodies (36%) and vegetation-covered land (38%), boosting wildlife populations by 30%. Spatial variations in organic carbon density and water quality underscore the complexity of the carbon-water nexus and its impacts on ecosystem health and water security. Despite land use changes, PIW demonstrates resilience, contributing to climate change mitigation. Stakeholder perceptions vary, emphasising the need for adaptive strategies. The study proposes transdisciplinary conservation initiatives and adaptive plans, stressing the pivotal role of ex-mining lake-converted constructed wetlands in enhancing climate resilience.


Assuntos
Carbono , Lagos , Mineração , Áreas Alagadas , Malásia , Carbono/análise , Mudança Climática , Ecossistema , Sequestro de Carbono , Conservação dos Recursos Naturais , Solo/química , Qualidade da Água
13.
Sci Total Environ ; 946: 174273, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38925380

RESUMO

This comprehensive scientific review evaluates the effectiveness of nature-based solutions (NBS) in reducing antibiotics (ABs), combating antimicrobial resistance (AMR), and controlling pathogens in various aquatic environments at different river catchment levels. It covers conventional and innovative treatment wetland configurations for wastewater treatment to reduce pollutant discharge into the aquatic ecosystems as well as exploring how river restoration and saltmarshes can enhance pollutant removal. Through the analysis of experimental studies and case examples, the review shows NBS's potential for providing sustainable and cost-effective solutions to improve the health of aquatic ecosystems. It also evaluates the use of diagnostic indicators to predict NBS effectiveness in removing specific pollutants such as ABs and AMR. The review concludes that NBS are feasible for addressing the new challenges stemming from human activities such as the presence of ABs, AMR and pathogens, contributing to a better understanding of NBS, highlighting success stories, addressing knowledge gaps, and providing recommendations for future research and implementation.


Assuntos
Antibacterianos , Ecossistema , Áreas Alagadas , Resistência Microbiana a Medicamentos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Águas Residuárias/microbiologia , Rios/microbiologia , Rios/química
14.
Sci Total Environ ; 946: 173829, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857806

RESUMO

Uncertainty in the global carbon (C) budget has been reduced for most stocks, though it remains incomplete by not considering aquatic and transitional zone carbon stocks. A key issue preventing such complete accounting is a lack of available C data within these aquatic and aquatic-terrestrial transitional ecosystems. Concurrently, quantifiable results produced by restoration practices that explicitly target C stock accumulation and sequestration remain inconsistent or undocumented. To support a more complete carbon budget and identify impacts on C stock accumulation from restoration treatment actions, we investigated C stock values in a Mediterranean-montane riparian floodplain system in California, USA. We quantified the C stock in aboveground biomass, large wood, and litter in addition to the C and total nitrogen in the upper soil profile (5 cm) across 23 unique restoration treatments and remnant old-growth forests. Treatments span 40 years of restoration actions along seven river kilometers of the Cosumnes River, and include process-based (limited intervention), assisted (horticultural planting and other intensive restoration activities), hybrid (a combination of process and assisted actions), and remnant (old-growth forests that were not created with restoration actions) sites. Total C values measured up to 1100 Mg ha-1 and averaged 129 Mg ha-1 with biomass contributing the most to individual plot measurements. From 2012 to 2020, biomass C stock measurements showed an average 32 Mg ha-1 increase across all treatments, though treatment specific values varied. While remnant forest plots held the highest average C values across all stocks (336 Mg ha-1), C values of different stocks varied across treatment type. Process-based restoration treatments held more average biomass C (120 Mg ha-1) than hybrid (23 Mg ha-1) or assisted restoration treatments (50 Mg ha-1), while assisted restoration treatments held more average total C in soil and litter (58 Mg ha-1) than hybrid (35 Mg ha-1) and process-based restoration treatments (37 Mg ha-1). Regardless of treatment type, time was a significant factor for all C stock values. These findings support a more inclusive global carbon budget and provide valuable insight into restoration treatment actions that support C stock accumulation.


Assuntos
Carbono , Carbono/análise , California , Monitoramento Ambiental , Biomassa , Rios/química , Sequestro de Carbono , Recuperação e Remediação Ambiental/métodos , Ecossistema , Florestas , Solo/química
15.
J Environ Manage ; 365: 121574, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38941852

RESUMO

Oyster populations within the Chesapeake Bay have been drastically reduced over the last century mainly due to unregulated human activities and diseases. Regulations and restoration efforts have focused on restoring oyster populations while also considering their ability to provide ecosystem services, such as coastal protection and water quality improvement, among others. To promote oyster growth and the settlement of new populations, a recent technique adopted along the east coast of the US is the use of oyster castles (OCs). OCs have proven effective in recruiting and retaining oysters and in promoting both vertical growth and horizontal expansion of oyster habitats. OCs are widely used in coastal protection as greener alternative to common engineering solutions. We quantified hydrodynamic differences that occur around these OCs during their early stage (i.e. castles without oysters), and with fully developed oysters covering the surface of the castles through a series of laboratory experiments. The experiments were conducted in a recirculating Odell-Kovasznay type channel at the Ecohydraulics and Ecomorphodynamics Laboratory (EEL) at the University of Illinois. OCs (both with and without oysters) were 3D printed at 1:7 scale to fit the canal, and Particle Image Velocimetry (PIV) was used for 2D flow characterization. Data showed noticeable differences in flow acceleration atop the castles when covered with oysters, as well as an increase in the generation and distribution of turbulent kinetic energy atop and around the oyster-covered castles. Magnitudes and spatial distribution of Reynolds stresses were also affected by the presence of oysters in both submerged and near-emergent conditions. Challenges associated with the estimation of the drag coefficient for both gray and oyster-covered OCs highlighted the need for more data besides the centerline 2D PIV output. Further research involving the whole three-dimensional structure of the flow, in both unidirectional and oscillatory conditions, will allow us to provide relevant guidelines on the design and use of oyster-populated breakwaters as a viable nature-based solution for coastal protection within low-energy environments.


Assuntos
Hidrodinâmica , Ostreidae , Animais , Ostreidae/fisiologia , Ecossistema
16.
J Environ Manage ; 360: 121047, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761616

RESUMO

Green roofs are well studied for the environmental, social, and economic services these provide. As a result, green roofs are widespread and within the common vernacular of city residents. Green roof bylaws and construction standards are present in many cities in North America, rooting the presence of this green infrastructure within urban landscapes. Although examples of green roofs constructed decades ago exist, rarely are green roofs monitored over such long periods, and in ways that allow for experimentation, analysis, and conclusions about performance or function. In this study we present findings on plant cover and biomass from a green roof testing facility in Toronto, Canada that was monitored for over a decade. We examine the contributions of growing media, planting, and irrigation in the first seven years (2011-2021) of the eleven-year monitoring period. We found that during this maintenance phase period (2011-2017), plant cover and biomass was highest in modules planted with Sedum, included organic media, and were irrigated, whereas non-irrigated modules planted with forbs and grasses had the poorest performance regardless of media type. Following the stoppage of irrigation, and the post maintenance phase (2017-2021), modules initially planted with Sedum continued to sustain cover and biomass whereas planted forbs and grasses mostly disappeared, and these treatments were overtaken by Sedum. Our findings demonstrate that with irrigation, plantings of forbs and grasses can sustain plant cover and biomass. However, Sedum buffers against major changes to environmental conditions or abrupt changes to maintenance, adding insurance against failure of extensive green roofs.


Assuntos
Biomassa , Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos , Canadá , Cidades , Plantas
17.
Sci Total Environ ; 938: 173519, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38821270

RESUMO

In response to ongoing coastal urbanization, it is critical to develop effective methods to improve the biodiversity and ecological sustainability of artificial shorelines. Enhancing the topographic complexity of coastal infrastructure through the mimicry of natural substrata may facilitate the establishment of ecosystem engineering species and associated biogenic habitat formation. However, interactions between ecosystem engineers and their substratum are likely determined by organismal size and resource needs, thus making responses to topography highly scale-dependent. Here, we assessed the topographic properties (rugosity, surface area, micro-surface orientations) that underpin the abundance and distribution of two ecosystem engineers (fucoids, limpets) across six spatial scales (1-500 mm). Furthermore, we assessed the 'biogenic' rugosity created by barnacle matrices across fine scales (1-20 mm). Field surveys and 3D scanning, conducted across natural and artificial substrata, showed major effects of rugosity and associated topographic variables on ecosystem engineer assemblages and spatial occupancy, while additional abiotic environmental factors (compass direction, wave exposure) and biotic associations only had weak influences. Natural substrata exhibited ≤67 % higher rugosity than artificial ones. Fucoid-covered patches were predominantly associated with high-rugosity substrata and horizontal micro-surfaces, while homescars of limpets (≥15 mm shell length) predominated on smoother substratum patches. Barnacle-driven rugosity homogenized substrata at scales ≤10 mm. Our findings suggest that scale-dependent rugosity is a key driver of fucoid habitat formation and limpet habitat use, with wider eco-engineering applications for mimicking ecologically impactful topography on coastal infrastructure.


Assuntos
Biodiversidade , Ecossistema , Animais , Urbanização , Thoracica , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos
18.
Water Res ; 257: 121676, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38692259

RESUMO

Green Infrastructure has transformed traditional urban stormwater management systems by fostering a wide range of service functions. Despite their popularity, green infrastructure's performance can deteriorate over their lifecycle, leading to operational failures. The operation of green infrastructure has predominantly relied on reactive maintenance strategies. To anticipate malfunctions and enhance the performance of green infrastructure in the long run, failure data needs to be recorded so that deterioration processes and component vulnerabilities can be recognized, modelled and included in predictive maintenance schemes. This study investigates possible failures in representative GIs and provides insights into the most important events that should be prioritized in the data collection process. A method for qualitative Fault Tree Analysis using minimal cut sets are introduced, aiming to identify potential failures with the minimum number of events. To identify events of interest fault trees were constructed for bioswales, rain gardens and green roofs, for three groups of service function failures, namely runoff quantity control, runoff quality control and additional service functions. The resulting fault trees consisted of 45 intermediate and 54 basic events. The minimal cut set analysis identified recurring basic events that could affect operation among all three green infrastructure instances. These events are 'trash accumulation', 'clogging due to sediment accumulation', and 'overly dense vegetation'. Among all the possible cut sets, events such as 'plants not thriving', 'invasive plants taking over', and 'deterioration caused by external influences' could potentially disrupt most of the service functions green infrastructure provides. Furthermore, the analysis of interactions between component failures shows vegetation and filter media layer failures have the highest influence over other components. The constructed fault trees and identified basic events could be potentially employed for additional research on data collection processes and calculating the failure rates of green infrastructure and as a result, contribute to a shift toward their proactive operation and maintenance.


Assuntos
Chuva , Modelos Teóricos , Sistemas de Informação Geográfica , Conservação dos Recursos Naturais , Cidades , Movimentos da Água
19.
Ambio ; 53(7): 970-983, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38696060

RESUMO

The EU Nature Restoration Law (NRL) is critical for the restoration of degraded ecosystems and active afforestation of degraded peatlands has been suggested as a restoration measure under the NRL. Here, we discuss the current state of scientific evidence on the climate mitigation effects of peatlands under forestry. Afforestation of drained peatlands without restoring their hydrology does not fully restore ecosystem functions. Evidence on long-term climate benefits is lacking and it is unclear whether CO2 sequestration of forest on drained peatland can offset the carbon loss from the peat over the long-term. While afforestation may offer short-term gains in certain cases, it compromises the sustainability of peatland carbon storage. Thus, active afforestation of drained peatlands is not a viable option for climate mitigation under the EU Nature Restoration Law and might even impede future rewetting/restoration efforts. Instead, restoring hydrological conditions through rewetting is crucial for effective peatland restoration.


Assuntos
Conservação dos Recursos Naturais , União Europeia , Agricultura Florestal , Solo , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Agricultura Florestal/legislação & jurisprudência , Agricultura Florestal/métodos , Solo/química , Florestas , Sequestro de Carbono , Recuperação e Remediação Ambiental/métodos , Mudança Climática , Ecossistema , Áreas Alagadas
20.
Environ Pollut ; 356: 124284, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38821342

RESUMO

Prior reviews have highlighted that nature exposure was a valuable coping strategy enhancing mental health during the COVID-19 pandemic. However, no existing reviews have determined the quality of evidence and risk of bias of the empirical studies supporting this claim. To address this gap, we employed a Navigation Guide systematic review and meta-analysis approach to investigate associations between nature exposure and mental health during the pandemic. Searches in PubMed, Web of Science, Scopus, CINAHL, and PsycInfo retrieved relevant articles published between January 1, 2020, and March 4, 2024. We used the Navigation Guide methodology to assess the risk of bias and Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) assessments to evaluate the overall quality of evidence. Our search retrieved 113 studies that met the inclusion criteria and reported diverse types of exposure, including nature availability, nature visit frequency, green space accessibility, and green space type, alongside associations with 12 mental health outcomes. Meta-analyses found access to gardens was associated with lower odds of depression [(Pooled odds ratio [OR] = 0.71, 95%CI = 0.61, 0.82), I2 = 0%, n = 3] and anxiety [(Pooled OR = 0.73, 95%CI = 0.63, 0.84), I2 = 0%, n = 3]. Increased time in green spaces was associated with lower level of stress [(Pooled Corr = -0.11, 95%CI = -0.17, -0.05), I2 = 0%, n = 2]. Higher frequency of visits to nature was associated with improved mental well-being [(Pooled standardized beta = 0.10, 95%CI = 0.07, 0.14), I2 = 0%, n = 2] and general mental health [(Pooled standardized beta = 0.11, 95%CI = 0.03-0.38), I2 = 82%, n = 2]. However, the number of pooled studies was small and the overall quality of evidence was "very low" for all outcomes, and high levels of bias were observed (26% of studies had high, 71% probably high). Nonetheless, given the trends in the results, nature-based solutions emphasizing exposure to gardens and green spaces near the home may have promoted psychological resilience during this public health crisis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...