Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Talanta ; 277: 126375, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38865955

RESUMO

The novel TiO2 and Ni-MOF materials were synthesized and utilized for the detection of permethrin (PET). A highly sensitive solid-state electrochemiluminescence (ECL) sensor was developed based on Ni-MOF@Ru(bpy)32+ and Au NPs@TiO2. In this sensing platform, Ru(bpy)32+-Tripropyl Amine (TPrA) was used as a luminescent signal, Ni-MOF acted as a carrier to carry more luminescent reagents Ru(bpy)32+. Au NPs acted as promoters facilitated electron transport and TiO2 could further enhance the luminescence intensity of the system by synergistical interaction with Au NPs. The possible mechanisms of signal amplification were investigated. The ECL intensity decreased significantly with increasing PET concentration, enabling the determination of PET amount through the observation of the change in ECL signal intensity (ΔI). Under optimal experimental conditions, the linear range of PET concentration from 1.0 × 10-11 mol L-1 to 1.0 × 10-6 mol L-1, with a detection limit of 3.3 × 10-12 mol L-1 (3S/N). This method was successfully applied to determine PET in various vegetable samples.

2.
J Colloid Interface Sci ; 670: 86-95, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759271

RESUMO

In this study, a directional loading of cadmium sulfide (CdS) nanoparticles (NPs) was achieved on the opposite edges of nickel metal-organic framework (Ni-MOF) nanosheets (NSs) by adjusting the weight ratio of CdS NPs in the reaction process to produce effective visible light photocatalysts. The close contact between the zero-dimensional (0D) and two-dimensional (2D) regions and the matching positions of the bands promoted charge separation and heterojunction formation. The optimal CdS NPs loading of composite material was 40 wt%. At this ratio, CdS NPs grew primarily at the opposite edges of the Ni-MOF NSs rather than on their surfaces. When lactic acid was used as the sacrificial agent, the hydrogen production rate of the 40 %-CdS/Ni-MOF heterojunction under visible light irradiation was 19.6 mmol h-1 g-1, making a 20-fold enhancement compared to the original CdS NPs sample (1.0 mmol h-1 g-1). The charge carriers generated in CdS NPs were transferred to Ni-MOF NSs through heterojunctions, where Ni-MOF NSs also served as cocatalysts to improve hydrogen production. The combination of the two materials improved the light absorption ability. In particular, the 40 %-CdS/Ni-MOF heterojunction exhibited good photostability, effectively preventing the photocorrosion of CdS NPs. This study introduces an approach for constructing efficient and stable photocatalysts for visible light-driven photocatalytic hydrogen production.

3.
Talanta ; 276: 126207, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718650

RESUMO

Metal-Organic Framework (MOF) based nanozymes with clear structure are beneficial for exploration of structural-performance and exhibit broad prospects in improving activity. In this study, the prepared bimetallic Fe3Ni-MOF nanozyme was superior to single metal MOF in the peroxidase-like activity. Subsequently, a derivative nanozyme (Fe3Ni-MOF-Ar) was prepared by pyrolysis using Fe3Ni-MOF as the precursor in argon atomoshere with controlled temperature. The investigated of Fe3Ni-MOF-Ar revealed that the irregular macroporous state and the presence of heterovalent FeIII/FeII sites of Fe3Ni-MOF-Ar enable the retention, exposure, and electronic structure regulation of active sites, promoting the dual mechanism (the generation of •OH and electron transfer mechanism) and significantly increasing the peroxidase-like activity. Fe3Ni-MOF-Ar exhibited a strong affinity for substrate H2O2, which is higher than horseradish peroxidase. Ascorbic acid and cysteine are typical substances of antioxidants. Fe3Ni-MOF-Ar was used for sensitive colorimetric detection of ascorbic acid and cysteine, and the detection limit was as low as 150 and 60 nM. In addition, the smartphone devices was used to detection of antioxidant equivalent ascorbic acid, with a detection range of 0.5-120 µM. Fe3Ni-MOF-Ar nanozyme is feasible for sensitive detection of saliva total antioxidant capacity.


Assuntos
Antioxidantes , Ácido Ascórbico , Estruturas Metalorgânicas , Saliva , Smartphone , Saliva/química , Estruturas Metalorgânicas/química , Humanos , Antioxidantes/análise , Antioxidantes/química , Ácido Ascórbico/análise , Ácido Ascórbico/química , Domínio Catalítico , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Peroxidase/química , Peroxidase/metabolismo , Cisteína/análise , Cisteína/química , Colorimetria/métodos , Níquel/química , Limite de Detecção
4.
Artigo em Inglês | MEDLINE | ID: mdl-38624131

RESUMO

The exceptional benefits of carbon aerogels, including their low density and tunable electrical characteristics, infuse new life into the realm of creating ultralight electromagnetic wave absorbers. The clever conceptualization and straightforward production of carbon-based aerogels, which marry aligned microporous architecture with nanoscale heterointerfaces and atomic-scale defects, are vital for effective multiscale microwave response. We present an uncomplicated synthesis method for crafting aligned porous Ni@C nanobelts anchored on N, S-doped carbon aerogels (Ni@C/NSCAs), featuring multiscale structural intricacies─achieved through the pyrolysis of freeze-cast Ni-MOF nanobelts and chitosan aerogel composites. The well-ordered porous configuration, combined with multiple heterointerfaces adopting a "nanoparticles-nanobelts-nanosheets" contact schema, along with a wealth of defects, adeptly modulates conductive, polarization, and magnetic losses to realize an equilibrium in impedance matching. This magnetically doped carbon aerogel showcases an impressive effective absorption bandwidth of 8.96 GHz and a minimum reflection loss of -68.82 dB, while maintaining an exceptionally low filler content of 1.75 wt %. Additionally, the applied coating exhibits an astonishing radar cross-section reduction of 51.7 dB m2, signifying its superior radar wave scattering capabilities. These results offer key insights into the attainment of broad-spectrum microwave absorption features by enhancing the multiscale structure of current aerogels.

5.
Mikrochim Acta ; 191(3): 139, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38360951

RESUMO

Bisphenol A (BPA), an important endocrine disrupting compound, has infiltrated human daily lives through electronic devices, food containers, and children's toys. Developing of novel BPA assay methods with high sensitivity holds tremendous importance in valuing the pollution state. Here, we constructed an ultrasensitive photoelectrochemical (PEC) aptasensor for BPA determination by regulating photoactivities of CdS/Ni-based metal-organic framework (CdS/Ni-MOF) with [Ru(bpy)2dppz]2+ sensitizer. CdS/Ni-MOF spheres exhibited excellent photocatalytic performance, serving as a potential sensing platform for the construction of target recognition process. [Ru(bpy)2dppz]2+ were embedded into DNA double-stranded structure, functioning as sensitizer for modulating the signal response of the developed PEC aptasensor. The proposed PEC sensor exhibited outstanding analytical performances, including a wide linear range (0.1 to 1000.0 nM), low detection limit (0.026 nM, at 3σ/m), excellent selectivity, and high stability. This work provides a perspective for the design of ideal photosensitive materials and signal amplification strategies and extends their application in environment analysis.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Fenóis , Criança , Humanos , Substâncias Intercalantes , Técnicas Biossensoriais/métodos , Compostos Benzidrílicos , DNA
6.
J Colloid Interface Sci ; 662: 1016-1025, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387363

RESUMO

Visible-driven photocatalytic hydrogen production using narrow-bandgap semiconductors has great potential for clean energy development. However, the widespread use of these semiconductors is limited due to problems such as severe charge recombination and slow surface reactions. Herein, a quasi-type-II heterostructure was constructed by combining bifunctional Ni-based metal-organic framework (Ni-MOF) nanosheets with BDC (1,4-benzenedicarboxylic acid) linker coupled with Cu-In-Zn-S quantum dots (CIZS QDs). This heterostructure exhibited a prolonged charge carrier lifetime and abundant active sites, leading to significantly improved hydrogen production rate. The optimized rate achieved by the CIZS/Ni-MOF heterostructure was 2642 µmol g-1 h-1, which is 5.28 times higher than that of the CIZS QDs. This improved performance can be attributed to the quasi-type-II band alignment between the CIZS QDs and Ni-MOF, which facilitates effective delocalization of the photogenerated electrons within the system. Additional photoelectrochemical tests confirmed the well-maintained photoluminescence and prolonged charge carrier lifetime of the CIZS/Ni-MOF heterostructure. This study provides valuable insights into the use of multifunctional MOFs in the development of highly efficient composite photocatalysts, extending beyond their role in light harvesting and charge separation.

7.
Small ; 20(29): e2309577, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38348936

RESUMO

Inspired by energy conversion and waste reuse, hybridized Ni-MOF derivative-CdS-DETA/g-C3N5, a type-II heterojunction photocatalyst, is synthesized by a hydrothermal method for simultaneous and highly efficient photocatalytic degradation and hydrogen evolution in dye wastewater. Without the addition of cocatalysts and sacrificial agents, the optimal MOF-CD(2)/CN5 (i.e. Ni-MOF derivative-CdS-DETA (20 wt.%)/g-C3N5) exhibit good bifunctional catalytic activity, with a H2 evolution rate of 2974.4 µmol g-1 h-1 during the degradation of rhodamine B (RhB), and a removal rate of 99.97% for RhB. In the process of H2-evolution-only, triethanolamine is used as a sacrificial agent, exhibiting a high H2 evolution rate (19663.1 µmol g-1 h-1) in the absence of a cocatalyst, and outperforming most similar related materials (such as MOF/g-C3N5, MOF-CdS, CdS/g-C3N5). With the help of type-II heterojunction, holes are scavenged for the oxidative degradation of RhB, and electrons are used in the decomposition of water for H2 evolution during illumination. This work opens a new path for photocatalysts with dual functions of simultaneous efficient degradation and hydrogen evolution.

8.
Nanotechnology ; 35(18)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295400

RESUMO

Albumin is a vital blood protein responsible for transporting metabolites and drugs throughout the body and serves as a potential biomarker for various medical conditions, including inflammatory, cardiovascular, and renal issues. This report details the fabrication of Ni-metal organic framework/SnS2nanocomposite modified nickel foam electrochemical sensor for highly sensitive and selective non enzymatic detection of albumin in simulated human blood serum samples. Ni-metal organic framework/SnS2nanocomposite was synthesized using solvothermal technique by combining Ni-metal-organic framework (MOF) with conductive SnS2leading to the formation of a highly porous material with reduced toxicity and excellent electrical conductivity. Detailed surface morphology and chemical bonding of the Ni-MOF/SnS2nanocomposite was studied using scanning electron microscopy, transmission electron microscopy, Fourier transform infra-red, and Raman analysis. The Ni-MOF/SnS2nanocomposite coated on Ni foam electrode demonstrated outstanding electrochemical performance, with a low limit of detection (0.44µM) and high sensitivity (1.3µA/pM/cm2) throughout a broad linear range (100 pM-10 mM). The remarkable sensor performance is achieved through the synthesis of a Ni-MOF/SnS2nanocomposite, enhancing electrocatalytic activity for efficient albumin redox reactions. The enhanced performance can be attributed due to the structural porosity of nickel foam and Ni-metal organic framework, which favours increased surface area for albumin interaction. The presence of SnS2shows stability in acidic and neutral solutions due to high surface to volume ratio which in turn improves sensitivity of the sensing material. The sensor exhibited commendable selectivity, maintaining its performance even when exposed to potential interfering substances like glucose, ascorbic acid, K+, Na+, uric acid, and urea. The sensor effectively demonstrates its accuracy in detecting albumin in real samples, showcasing substantial recovery percentages of 105.1%, 110.28%, and 91.16%.


Assuntos
Estruturas Metalorgânicas , Nanocompostos , Humanos , Estruturas Metalorgânicas/química , Níquel/química , Soro , Eletrodos , Técnicas Eletroquímicas
9.
Small ; 20(23): e2308005, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38148319

RESUMO

The conversion of CO2 into valuable carbon-based products using clean and renewable solar energy has been a significant challenge in photocatalysis. It is of paramount importance to develop efficient photocatalysts for the catalytic conversion of CO2 using visible light. In this study, the Ni-MOF-74 material is successfully modified to achieve a highly porous structure (Ni-74-Am) through temperature and solvent modulation. Compared to the original Ni-MOF-74, Ni-74-Am contains more unsaturated Ni active sites resulting from defects, thereby enhancing the performance of CO2 photocatalytic conversion. Remarkably, Ni-74-Am exhibits outstanding photocatalytic performance, with a CO generation rate of 1380 µmol g-1 h-1 and 94% CO selectivity under visible light, significantly surpassing the majority of MOF-based photocatalysts reported to date. Furthermore, experimental characterizations reveal that Ni-74-Am has significantly higher efficiency of photogenerated electron-hole separation and faster carrier migration rate for photocatalytic CO2 reduction. This work enriches the design and application of defective MOFs and provides new insights into the design of MOF-based photocatalysts for renewable energy and environmental sustainability. The findings of this study hold significant promise for developing efficient photocatalysts for CO2 reduction under visible-light conditions.

10.
J Colloid Interface Sci ; 658: 627-638, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134671

RESUMO

2D/2D Ni-MOF/g-C3N4 nanocomposite was utilized for desulfurization. The multilayer pore structure and high specific surface area of Ni-MOF/g-C3N4 promote the adsorption and conversion of thiophene. In addition, the two-dimensional structure exposes more active centers and shortens photogenerated carrier migration to the material surface distance, it enhances photogenerated charge transfer. The Ni-MOF and g-C3N4 construct a Z-scheme heterojunction structure with tight contact, it effectively enhances the material's photocatalytic redox ability. In the light, the material generates more photocarriers for the production of free radicals including hydroxyl radicals, holes, and superoxide radicals. The higher carrier concentration of Ni-MOF/g-C3N4 promotes the activation and oxidation of thiophene, consequently enhancing the photocatalytic desulfurization capability. The results showed that the conversion of thiophene was 98.82 % in 3 h under visible light irradiation. Radical capture experiments and analysis using electron paramagnetic resonance spectroscopy demonstrated that superoxide radicals, holes, and hydroxyl radicals played crucial roles in PODS (photocatalytic oxidative desulfurization). In addition, DFT (density functional theory) calculations were conducted to determine the paths of electron migration and TH (thiophene) adsorption energy. Finally, a mechanism for photocatalytic desulfurization was proposed based on the comprehensive analysis of theoretical calculations and experimental studies.

11.
Anal Chim Acta ; 1283: 341959, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977784

RESUMO

BACKGROUND: Nanozymes are one of the ideal substitutes for natural enzymes because of their excellent chemical stability and simple preparation methods. However, due to the limited catalytic ability of most reported nanozymes, constructing nanomaterials with low cost and high activity is gradually becoming an exploration focus in the field of nanozymes. Heteroatom doping of metal-organic frameworks is one of potential approaches to design nanozymes with high catalytic performance. Due to their multiple valence states properties, V-doped metal-organic framework (MOF)-derived LDH is expected to be a good enzyme-like catalyst. To our knowledge, the V-doped MOF-derived LDH as nanozyme is not explored before. RESULTS: We report the in-situ synthesis of NiV-layered double hydroxides (LDHs) on nickel-based MOF, i.e. Ni-MOF@NiV-LDHs. The MOF surface is covered by 2D nanosheets. This unique structural design increases the specific surface area of the material, enables more exposure of catalytic active sites to participate in reactions and accelerates the electron transfer rate. The Ni-MOF@NiV-LDHs have high peroxidase-like activity able to catalyze TMB oxidation by H2O2 via the generation of •OH and O2•-. Relative to Ni-MOF, the Ni-MOF@NiV-LDHs shows 47-fold peroxidase-like activity rise. It had good affinity to TMB and H2O2, with the Michaelis-Menten constants of 0.12 mM and 0.007 mM, respectively. The hydroquinone (HQ) consumed the reactive oxygen species generated in the TMB + H2O2+Ni-MOF@NiV-LDHs system to inhibit the TMB oxidation. On this basis, a sensitive and rapid assay for determining HQ was developed, with a linear range of 0.50-70 µM and a LOD of 0.37 µM. SIGNIFICANCE: This work provided some clues for the further development of novel nanozymes with high catalytic performance via a strategy of heteroatom doping. And the constructed colorimetric analysis method was successfully utilized for the determination of HQ in actual waters, which has the potential for practical application in the analysis of environmental pollutants.


Assuntos
Estruturas Metalorgânicas , Peroxidase , Estruturas Metalorgânicas/química , Peróxido de Hidrogênio/análise , Colorimetria/métodos , Hidroquinonas , Peroxidases/química , Oxirredutases , Hidróxidos/química , Antioxidantes , Corantes
12.
Angew Chem Int Ed Engl ; 62(48): e202313784, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37819255

RESUMO

Infrared light driven photocatalytic reduction of atmospheric CO2 is challenging due to the ultralow concentration of CO2 (0.04 %) and the low energy of infrared light. Herein, we develop a metallic nickel-based metal-organic framework loaded with Pt (Pt/Ni-MOF), which shows excellent activity for thermal-photocatalytic conversion of atmospheric CO2 with H2 even under infrared light irradiation. The open Ni sites are beneficial to capture and activate atmospheric CO2 , while the photogenerated electrons dominate H2 dissociation on the Pt sites. Simultaneously, thermal energy results in spilling of the dissociated H2 to Ni sites, where the adsorbed CO2 is thermally reduced to CO and CH4 . The synergistic interplay of dual-active-sites renders Pt/Ni-MOF a record efficiency of 9.57 % at 940 nm for converting atmospheric CO2 , enables the procurement of CO2 to be independent of the emission sources, and improves the energy efficiency for trace CO2 conversion by eliminating the capture media regeneration and molecular CO2 release.

13.
J Colloid Interface Sci ; 652(Pt A): 41-49, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591082

RESUMO

In this work, we report a robust bifunctional electrocatalyst composed of 2D Ni- organic frameworks (Ni-MOF) and nitrogen doped carbon nanotubes encapsulated Ni nanoparticles (Ni-MOF@Ni-NCNT) for CN and HO bonds dissociation. Due to the presence of Ni-NCNT, adsorption of OH- species is enhanced and CO2 binding strength is simultaneously weakened leading to a boosted urea oxidation reaction performance reflected by decrement in potential at 100 mA cm-2 by 69 mV. The loosened binding strength with CO2 specie is highlighted by in-situ electrochemical impedance spectroscopy (EIS) test and DFT calculation. Moreover, the alkaline hydrogen evolution reaction (HER) performance of Ni-MOF@Ni-NCNT is better than Ni-MOF and Ni-NCNT evidenced by the overpotential at 50 mA cm-2 decreased by 224 mV and 900 mV ascribed to the synergistic effect, in which Ni-MOF, Ni nanoparticles and Ni-Nx-C facilitates water adsorption, dissociation and adsorption/combination of hydrogen ions, respectively. The assembled HER- urea oxidation reaction (UOR) system requires only 1.33 V to reach 10 mA cm-2, 70 mV lower than water splitting driven by Pt/C-IrO2.

14.
J Colloid Interface Sci ; 651: 221-234, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37542897

RESUMO

The construction of heterojunction systems is an effective way to efficiently generate hydrogen by water photolysis. In this work, Ni-MOF (trimesic acid, (BTC)) and g-C3N4 (denoted as CN) were combined, and then Ni-MOF/CN was modified by 4-Methyl-5-vinyl thiazole (denoted as MVTh). Finally, CdS was loaded on the surface of Ni-MOF/CN/MVTh to prepare the photocatalyst Ni-MOF/g-C3N4/MVTh/CdS (denoted as Ni/CN/M/Cd) with a triangular closed-loop path heterojunction for the first time. As a photocatalyst without precious metal cocatalysts, Ni/CN/M/Cd displayed high H2 evolution (17.844 mmol·g-1·h-1) under an optimum CdS loading of 40 wt%. The H2 evolution rate was approximately 79 times that of Ni-MOF/CN and exceeded those of almost all catalysts based on MOF/CN in the literature. The triangular closed-loop heterojunction formed between Ni-MOF, g-C3N4, and CdS could realize the directional migration of photocarriers and significantly diminished the transfer resistance of carriers. The Ni2+ in Ni-MOF provided many cocatalytic sites for H2 evolution via g-C3N4 and CdS. Furthermore, charge carrier separation in Ni-MOF/CN/CdS improved after the innovative addition of MVTh. This study provides a reference for the construction of a closed-loop heterojunction system without precious metal cocatalysts.

15.
Water Res ; 243: 120314, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37441898

RESUMO

Microplastics (MPs) and pesticides are becoming an intractable environmental issue due to their wide spreading and non-degradable nature, posing serious threat to ecosystem and human health. To settle such dilemma, this work reasonably designed a superhydrophobic MOF-based coated sponge (ODSOSS/TiO2/Ni-MOF/PDA@Sponge) through the combination of an environmentally friendly in-situ supersaturated coprecipitation and polysesiloxane modification method. Among them, (I) the introduction of polydopamine (PDA) not only improves the adhesion between coatings and sponge, but also enhances the growth of MOF structure through complexation. (II) The obtained Ni-MOF shows large-area microscale anthemy structure with multilayered flaky texture, forming heterogeneously hierarchical structure with the deposited TiO2 nanoparticles, which promotes photodegradation ability of TiO2 owing to great specific surface area of Ni-MOF. (III) The high specific large area Ni-MOF supplies sufficient action sites for linkage of PDA and polysesiloxane molecules with unique nanocage-like structure, thus further greatly increasing adsorption force for various pollutants. (IV) The superhydrophobicity protect the porous channels of MOF from contamination of various absorbed pollutants, while TiO2 nanoparticles effectively photodegrade the absorbed organic pollutants, endowing the sponge superior recyclability. The superhydrophobic sponge selectively rapidly and synchronously adsorbs various MPs (maintained almost 100% after 60 cycles) and pesticides (adsorption rates 71.6%-95.1%) from high-salinity water. The large-area sponge (9 cm × 6 cm × 1 cm) simultaneously removes almost 100% MPs (40 mg/L), Sudan Ⅲ (10 mg/L), kerosene (30 mL/L), and four pesticides (10 mg/L) within 1 min. Particularly, four pesticides are quickly photocatalytic degraded by the coated sponge. The free radical capture trials show that hydroxyl radicals (·OH) are the main active species of pesticide degradation. Furthermore, we reveal the negative centers where pesticide molecules are most vulnerable to ·OH attack, on basis of the charge distribution and molecular electrostatic potential (MEP) analysis. The adsorption mechanisms are carefully clarified through theoretical calculation and experimental data. This work not only provide an effective superhydrophobic candidate for MPs and pesticides removal in a broad applicable scope (especially in high-salinity wastewater), but also opens a new strategy for environmental remediation.


Assuntos
Poluentes Ambientais , Praguicidas , Humanos , Microplásticos , Praguicidas/química , Plásticos , Ecossistema , Salinidade , Água/química , Interações Hidrofóbicas e Hidrofílicas
16.
ACS Appl Mater Interfaces ; 15(28): 33621-33632, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37417685

RESUMO

Metal-organic frameworks (MOFs) often exhibit an exceptional adsorption-based separation performance for a variety of gases, ions, and liquids. While most radioactive iodine removal studies focus on the capture of radioactive iodine from off-gas streams, few studies have systematically investigated the effect of structure-property relationships of MOFs on iodine removal performance in the presence of interfering ions in liquid solutions. Herein, we investigated the iodide ion (I-) adsorption performance of two model MOFs (e.g., Ni-MOF-74 and Zr-UiO-66) in liquid phase as a function of iodine concentration (e.g., 0.125 to 0.25 and 0.50 mmol/L) and adsorption temperature (e.g., 25 to 40 and 60 °C), and in the presence of interfering ions such as Cl- and CO32- through batch-mode experiments. Under identical experimental conditions, Ni-MOF-74 outperformed Zr-UiO-66 in immobilizing iodine from the solution by achieving a maximum iodine removal efficiency of 97% at 60 °C. The results showed that the presence of other interfering ions marginally affects the iodine removal efficiency (e.g., capacity and rate of iodine capture) over both MOF adsorbents. The adsorption kinetics was found to be controlled by multiple transport processes encompassing external surface adsorption, intraparticle diffusion, and final equilibrium. Moreover, the leach test results revealed 8 and 12% iodine release from Ni-MOF-74 and Zr-UiO-66, respectively, at 25 °C after 48 h aging. This study establishes guiding principles for sustainable removal of iodine in the presence of Cl- and CO32- species in cyclohexane.

17.
Chemosphere ; 336: 139097, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37302504

RESUMO

To overcome the limitations imposed by Sn-Sb electrodes, the titanium foam (PMT)-TiO2-NTs@NiO-C/Sn-Sb composite electrodes with cubic crystal structure are synthesized by introducing NiO@C nanosheet arrays interlayer on the TiO2-NTs/PMT matrix through hydrothermal and carbonization process. Then a two-step pulsed electrodeposition method is used to prepare the Sn-Sb coating. Benefiting from the advantages of stacked 2D layer-sheet structure, the obtained electrodes exhibit enhanced stability and conductivity. Synergy of inner and outer layers fabricated by different pulse times strongly influence the electrochemical catalytic properties of the PMT-TiO2-NTs@NiO-C/Sn-Sb (Sn-Sb) electrode. Hence, the Sn-Sb (b0.5 h + w1 h) electrode is the optimal electrode to degrade the Crystalline Violet (CV). Next, the effect of the four experimental parameters (initial CV concentration, current density, pH value and supporting electrolyte concentration) on the degradation of CV by the electrode are investigated. The degradation of the CV is more sensitive to alkaline pH, and the rapid decolorization of CV when the pH is 10. Moreover, the possible electrocatalytic degradation pathway of CV is performed using HPLC-MS. Results from the tests show that the PMT-TiO2-NTs/NiO@C/Sn-Sb (b0.5 h + w1 h) electrode is an interesting alternative material in industrial wastewater applications.


Assuntos
Galvanoplastia , Águas Residuárias , Oxirredução , Titânio/química , Eletrodos
18.
Biosensors (Basel) ; 13(5)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37232885

RESUMO

The toxicity of commonly used drugs, such as acetaminophen (ACAP) and its degradation-derived metabolite of 4-aminophenol (4-AP), underscores the need to achieve an effective approach in their simultaneous electrochemical determination. Hence, the present study attempts to introduce an ultra-sensitive disposable electrochemical 4-AP and ACAP sensor based on surface modification of a screen-printed graphite electrode (SPGE) with a combination of MoS2 nanosheets and a nickel-based metal organic framework (MoS2/Ni-MOF/SPGE sensor). A simple hydrothermal protocol was implemented to fabricate MoS2/Ni-MOF hybrid nanosheets, which was subsequently tested for properties using valid techniques including X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transformed infrared spectroscopy (FTIR), and N2 adsorption-desorption isotherm. The 4-AP detection behavior on MoS2/Ni-MOF/SPGE sensor was followed by cyclic voltammetry (CV), chronoamperometry and differential pulse voltammetry (DPV). Our experimental findings on the generated sensor confirmed a broad linear dynamic range (LDR) for 4-AP from 0.1 to 600 µM with a high sensitivity of 0.0666 µA/µM and a low limit of detection (LOD) of 0.04 µM. In addition, an analysis of real specimens such as tap water sample as well as a commercial sample (acetaminophen tablets) illuminated the successful applicability of as-developed sensor in determining ACAP and 4-AP, with an impressive recovery rate.


Assuntos
Técnicas Biossensoriais , Grafite , Estruturas Metalorgânicas , Acetaminofen , Molibdênio/química , Níquel , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Grafite/química , Eletrodos
19.
Artigo em Inglês | MEDLINE | ID: mdl-36857514

RESUMO

Structural and morphological modulations play a crucial role in increasing the surface active sites of semiconductor photocatalysts for visible-light-driven water splitting. To fabricate a novel CdS/Ni3S4/Ni2P@C heterostructure, we first prepared carbon-encapsulated Ni3S4/Ni2P (Ni3S4/Ni2P@C) with a high surface area by sequential carbonization and phosphorization of a Ni-metal-organic framework (MOF) precursor. Combined characterization and photoelectrochemical measurement results reveal that the assembly of CdS nanowires and highly porous Ni3S4/Ni2P@C can enhance the visible-light response capability of the CdS/Ni3S4/Ni2P@C heterostructure catalyst by reducing the forbidden band gap of CdS. The hydrogen production rate of 21.56 mmol h-1 g-1 for CdS/Ni3S4/Ni2P@C with a Ni3S4/Ni2P@C mass fraction of 10 wt % was 26 times higher than that of CdS in a photolytic aquatic hydrogen system. A possible mechanism for the photocatalytic enhancement of the Ni3S4/Ni2P@C co-catalyst was systematically investigated and discussed. This research opens a new strategy for constructing ternary heterojunction photocatalysts via MOF precursors.

20.
J Colloid Interface Sci ; 630(Pt B): 363-371, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36332429

RESUMO

Hydrogen production from water electrolysis is severely restricted by the poor reaction kinetics of oxygen evolution reaction (OER). In this work, a series of two-dimensional (2D) composites MOF/Ti3C2Tx (the MXene phase) were fabricated by electrostatically directed assembly and used as catalysts for OER. The obtained composite materials exhibit enhanced electrocatalytic properties, thanks to the ultrathin 2D/2D heterostructure with abundant active sites in Co2Ni-MOF and the high electronic conductivity of Ti3C2Tx. Among all the catalysts, Co2Ni-MOF@MX-1 achieved the best oxygen evolution performance with the lowest Tafel slope (51.7 mV dec-1) and the lowest overpotential (265 mV on carbon paper) at the current density of 10 mA cm-2. These results demonstrated that the synthesis of 2D composite materials by electrostatically directed assembly could be a feasible and promising method for the preparation of 2D heterostructure catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...