Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(20)2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39456688

RESUMO

The plant vascular system is not only a transportation system for delivering nutrients but also a highway transport network for spreading viruses. Tomato spotted wilt orthotospovirus (TSWV) is among the most destructive viruses that cause serious losses in economically important crops worldwide. However, there is minimal information about the long-distance movements of TSWV in the host plant vascular system. In this this study, we confirm that TSWV virions are present in the xylem as observed by transmission electron microscopy (TEM). Further, a quantitative proteomic analysis based on label-free methods was conducted to reveal the uniqueness of protein expression in xylem sap during TSWV infection. Thus, this study identified and quantified 3305 proteins in two groups. Furthermore, TSWV infection induced three viral structural proteins, N, Gn and Gc, and 315 host proteins differentially expressed in xylem (163 up-regulated and 152 down-regulated). GO enrichment analysis showed up-regulated proteins significantly enriched in homeostasis, wounding, defense response, and DNA integration terms, while down-regulated proteins significantly enriched in cell wall biogenesis/xyloglucan metabolic process-related terms. KEGG enrichment analysis showed that the differentially expressed proteins (DEPs) were most strongly associated with plant-pathogen interaction, MAPK signaling pathway, and plant hormone signal transduction. Cluster analysis of DEPs function showed the DEPs can be categorized into cell wall metabolism-related proteins, antioxidant proteins, PCD-related proteins, host defense proteins such as receptor-like kinases (RLKs), salicylic acid binding protein (SABP), pathogenesis related proteins (PR), DNA methylation, and proteinase inhibitor (PI). Finally, parallel reaction monitoring (PRM) validated 20 DEPs, demonstrating that the protein abundances were consistent between label-free and PRM data. Finally, 11 genes were selected for RT-qPCR validation of the DEPs and label-free-based proteomic analysis concordant results. Our results contribute to existing knowledge on the complexity of host plant xylem system response to virus infection and provide a basis for further study of the mechanism underlying TSWV long-distance movement in host plant vascular system.


Assuntos
Interações Hospedeiro-Patógeno , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Proteômica , Tospovirus , Xilema , Xilema/metabolismo , Xilema/virologia , Doenças das Plantas/virologia , Proteômica/métodos , Nicotiana/virologia , Nicotiana/metabolismo , Nicotiana/genética , Tospovirus/fisiologia , Tospovirus/patogenicidade , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteoma/metabolismo
2.
Plant Dis ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267304

RESUMO

Impatiens necrotic spot virus (INSV; Order Bunyavirales, Family Tospoviridae) is transmitted by several thrips species and has emerged as an important pathogen of lettuce (Lactuca sativa) in several countries (Beris et al., 2020 and Hasegawa & Del Pozo-Valdivia, 2023). In 2023, a total of 22,092 hectares of lettuce were planted in Mexico, with a total production of 523,739 tons (Agri-Food and Fisheries Information Service, 2024). In the last several years, increased outbreaks of a disease showing virus-like symptoms have emerged in lettuce in central Mexico. In all cases, plants exhibited symptoms of yellowing, brown necrotic spots and ringspots on the leaves and midribs, and reduced growth. In fall 2023, symptoms were observed in 12 iceberg lettuce fields, with incidences between 5-70% in the municipality of Tenango del Valle, in the state of Mexico. 18 plants collected from 6 fields were initially tested for the presence of two thrips-transmitted viruses, INSV and tomato spotted wilt virus (TSWV) using ImmunoStrips (Agdia Inc., Elkhart, Indiana), which indicated positive results for INSV in 16 plants and TSWV in 2 plants. None of the plants tested positive for both viruses. Follow up sampling was conducted, which included a total of 17 symptomatic lettuce plants from three fields in October 2023, while an additional 11 lettuce plants were collected from Tepeaca, in the neighboring state of Puebla in March 2024. DAS-ELISA confirmed the presence of INSV in 13/17 plants and TSWV in 2/17 plants from Tenango del Valle, while only INSV was detected in the 11 plants from Tepeaca. Based on ELISA, none of the lettuce samples were co-infected by INSV and TSWV, which was similarly observed in California and Greece (Koike et al., 2008 and Beris et al., 2020). Initially, RNA was purified from 3 plants (two from Tenango del Valle, one from Tepeaca) reverse-transcribed, and PCR amplified with primers to the N gene of the INSV S RNA, as previously described (Hasegawa et al., 2022). All three reactions produced a single expected amplicon of 524 bp and were confirmed by bi-directional Sanger sequencing (MCLab, South San Francisco, CA). To obtain the full-length sequences for the N and NSm genes, RNA from a fourth sample (Tenango del Valle) was amplified with primers (Kuo et al., 2014), and Sanger sequenced. The 789 bp N gene (PP726902) shared >99% nucleotide and amino acid identity to the corresponding region of the INSV isolate from orchid in California (KF926828), while the 912 bp NSm gene (PP726901) shared >98% nucleotide and amino acid identity to the INSV isolate from basil in Washington (KX790322). Additionally, all four samples showed >99.5% similarity to one another. INSV was previously reported to affect other crops in Mexico, including tomatillo (Physalis ixocarpa) and pepper (Capsicum spp.) (González-Pacheco and Silva-Rosales, 2013), while TSWV has been reported to infect lettuce (Moreno et al., 2016). To our knowledge, this is the first report of INSV infecting lettuce in Mexico and was the dominant orthotospovirus in lettuce samples that were tested. INSV should be closely monitored throughout central Mexico, where majority of lettuce production occurs. Additional studies are warranted to identify the thrips vector species that are present, and to understand the role of crop and non-crop hosts in the epidemiology of INSV throughout the region.

3.
Pathogens ; 13(9)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39338939

RESUMO

The orthotospovirus capsicum chlorosis virus (CaCV) is an important pathogen affecting capsicum plants. Elevated temperatures may affect disease progression and pose a potential challenge to capsicum production. To date, CaCV-resistant capsicum breeding lines have been established; however, the impact of an elevated temperature of 35 °C on this genetic resistance remains unexplored. Thus, this study aimed to investigate how high temperature (HT) influences the response of CaCV-resistant capsicum to the virus. Phenotypic analysis revealed a compromised resistance in capsicum plants grown at HT, with systemic necrotic spots appearing in 8 out of 14 CaCV-infected plants. Molecular analysis through next-generation sequencing identified 105 known and 83 novel microRNAs (miRNAs) in CaCV-resistant capsicum plants. Gene ontology revealed that phenylpropanoid and lignin metabolic processes, regulated by Can-miR408a and Can- miR397, are likely involved in elevated-temperature-mediated resistance-breaking responses. Additionally, real-time PCR validated an upregulation of Can-miR408a and Can-miR397 by CaCV infection at HT; however, only the Laccase 4 transcript, targeted by Can-miR397, showed a tendency of negative correlation with this miRNA. Overall, this study provides the first molecular insights into how elevated temperature affects CaCV resistance in capsicum plants and reveals the potential role of miRNA in temperature-sensitive tospovirus resistance.

4.
Cells ; 13(16)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39195265

RESUMO

Orthotospovirus tomatomaculae (tomato spotted wilt virus, TSWV) is transmitted by the western flower thrips, Frankliniella occidentalis. Epoxyoctadecamonoenoic acids (EpOMEs) function as immune-suppressive factors, particularly in insects infected by viral pathogens. These oxylipins are produced by cytochrome P450 monooxygenases (CYPs) and are degraded by soluble epoxide hydrolase (sEH). In this study, we tested the hypothesis that TSWV modulates the EpOME level in the thrips to suppress antiviral responses and enhance its replication. TSWV infection significantly elevated both 9,10-EpOME and 12,13-EpOME levels. Following TSWV infection, the larvae displayed apoptosis in the midgut along with the upregulated expression of four caspase genes. However, the addition of EpOME to the viral treatment notably reduced apoptosis and downregulated caspase gene expressions, which led to a marked increase in TSWV titers. The CYP and sEH genes of F. occidentalis were identified, and their expression manipulation using RNA interference (RNAi) treatments led to significant alternations in the insect's immune responses and TSWV viral titers. To ascertain which viral factor influences the host EpOME levels, specialized RNAi treatments targeting genes encoded by TSWV were administered to larvae infected with TSWV. These treatments demonstrated that NSS expression is pivotal in manipulating the genes involved in EpOME metabolism. These results indicate that NSs of TSWV are crucially linked with the elevation of host insect EpOME levels and play a key role in suppressing the antiviral responses of F. occidentalis.


Assuntos
Oxilipinas , Tisanópteros , Tospovirus , Animais , Tospovirus/fisiologia , Oxilipinas/metabolismo , Tisanópteros/virologia , Insetos Vetores/virologia , Insetos Vetores/imunologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Larva/virologia , Larva/imunologia , Apoptose/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Epóxido Hidrolases/metabolismo , Epóxido Hidrolases/genética
5.
Plant Dis ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115953

RESUMO

Impatiens necrotic spot virus (INSV) (Orthotospovirus impatiensnecromaculae) is a virus in the Order Bunyavirales and Family Tospoviridae. The virus is vectored by several species of thrips and is a serious pathogen of ornamentals and lettuce in the United States (Hasegawa & Del Pozo-Valdivia 2023; Daughtrey, M. L., et al. 1997; Webster, C. G., et al. 2015). In January 2023, tomato plants (Solanum lycopersicum,'Big Dena') with viral symptoms of reduced vigor, wilting, necrotic spots on leaves, and sunken lesions on the stem were observed in one greenhouse in Guilford County, North Carolina (NC) (Figure 1A-C). Disease incidence was low (2%), with only three symptomatic plants in the single greenhouse. Affected plants also had signs of thrips feeding (dead thrips, frass, and feeding scars) present across the whole plant (Figure 1D). Samples were submitted to the NC State Plant Disease and Insect Clinic and tested positive for INSV, but negative for TSWV, using Agdia ImmunoStrips®. RNA was extracted from symptomatic leaf tissue using the IBI Total RNA Mini kit (Plant), and complementary DNA (cDNA) was generated using the ThermoFisher Verso cDNA synthesis kit. A reverse transcriptase (RT)-PCR with INSV nucleocapsid (N) primers (F:5'-ATGAACAAAGCAAAGATTACC-3' and R:5'- TTAAATAGAATCATTTTTCCC-3') was used to confirm INSV presence (Hassani-Mehraban et al. 2016). Full length N cDNA amplicon sequencing [GenBank No. PP658213] revealed 99.62% nucleotide identity to NCBI GenBank accessions KF926828 (orchid in California), MH453554.1 (hosta from NY), and MH453552.1 (foxglove from NY), all of which are INSV N sequences. The infected leaf samples were used to mechanically inoculate Emilia sonchifolia and tomato (cv.'Moneymaker') using standard virological methods. We successfully infected E. sonchifolia with INSV (confirmed with visual mosaic symptoms and positive INSV ImmunoStrip). However, mechanical inoculation of the tomato plants proved unsuccessful. Using the INSV infected E. sonchifolia leaves as an inoculum source, we generated a viruliferous Frankliniella occidentalis (Western flower thrips) cohort and challenged three week old tomatoes using thrips mediated inoculation (adapted from Aramburu et al. 2009 and Rotenberg et al., 2009). Twenty days post-inoculation, tomatoes with thrips feeding scars were symptomatic for INSV infection with chlorotic and necrotic spots, stunting, and reduced vigor. INSV infection of these tomato plants was verified with a positive INSV ImmunoStrip® result, two-step RT-PCR amplification of N, and Sanger sequencing of N. Samples from thrips-inoculated tomato plants did not test positive for TSWV. Sequence alignment showed that the recovered virus sequence was 99.85% identical to the original INSV sequence from the diagnostic sample (a single nucleotide difference). To the best of our knowledge, this is the first instance of INSV infecting tomato in NC production systems. Although TSWV is more common in vegetable production in NC (253 cases of TSWV compared to 1 case of INSV in vegetable crops based on NC State Plant Disease and Insect Clinic records since 2008), INSV incursion into tomato producing areas is concerning and should be closely monitored, especially at the transplant stage. This report also underscores the importance of using thrips vectors to transmit virus in screening for susceptibility to orthotospoviruses.

6.
Virus Genes ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150471

RESUMO

The complete genome sequence of Orthotospovirus tomatozonae (tomato zonate spot virus, TZSV) isolated in Japan was determined and compared with that of Chinese isolates. The lengths of the S, M, and L segments of the RNA genomes of the Japanese isolate (TZSV-TZ1-3) were 3194, 4675, and 8916 nucleotides, respectively, which were similar to the Chinese isolates. Moreover, the eight motifs on the RNA-dependent RNA polymerase (RdRp) gene were conserved in both TZSV-TZ1-3 and Chinese TZSV isolates (TZSV-Bidens and TZSV-Tomato-YN). The nucleotide identity of the genes among the TZSV isolates was more than 94%, indicating low diversity among viruses. The phylogenetic analysis and the prediction of the cleavage sites in the glycoprotein showed that the TZSV-TZ1-3 isolate was closely related to TZSV-Tomato-YN isolated from China. However, there were unique frameshifts and deletions on the RdRp and glycoprotein genes of the TZSV-Tomato-YN isolate, suggesting that both isolates were genetically distinct. The findings of this study indicate that the TZSV-TZ1-3 isolate originated in China and show the sequence diversity among TZSV isolates.

7.
Curr Res Insect Sci ; 6: 100086, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39193173

RESUMO

Dehydration and tomato spotted wilt virus (TSWV) infection substantially impact the feeding of western flower thrips, Frankliniella occidentalis. Until now, the dynamics between these biotic and abiotic stresses have not been examined for thrips. Here, we report water balance characteristics and changes in other biological parameters during infection with TSWV for the western flower thrips. There were no apparent differences in water balance parameters during TSWV infection of male or female thrips. Our results show that, although water balance characteristics of western flower thrips are minimally impacted by TSWV infection, the increase in feeding and activity when dehydration and TSWV are combined suggests that virus transmission could be increased under periods of drought. Importantly, survival and progeny generation were impaired during TSWV infection and dehydration bouts. The negative impact on survival and reproduction suggests that the interactions between TSWV infection and dehydration will likely reduce thrips populations. The opposite effects of dehydration on feeding/activity and survival/reproduction for virus infected thrips suggest the impact of vectorial capacity will likely be minor for TSWV transmission. As water stress significantly impacts insect-plant-virus dynamics, these studies highlight that all interactions and effects need to be measured to understand thrips-TSWV interactions in their role as viral vector to plants.

8.
J Agric Food Chem ; 72(30): 16661-16673, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39021284

RESUMO

Rab GTPase is critical for autophagy processes and is implicated in insect immunity against viruses. In this study, we aimed to investigate the role of FoRabs in the autophagic regulation of antiviral defense against tomato spotted wilt orthotospovirus (TSWV) in Frankliniella occidentalis. Transcriptome analysis revealed the downregulation of FoRabs in viruliferous nymph and adults of F. occidentalis in response to TSWV infection. Manipulation of autophagy levels with 3-MA and Rapa treatments resulted in a 5- to 15-fold increase and a 38-64% decrease in viral titers, respectively. Additionally, interference with FoRab10 in nymphs and FoRab29 in adults led to a 20-90% downregulation of autophagy-related genes, a decrease in ATG8-II (an autophagy marker protein), and an increase in the TSWV titers by 1.5- to 2.5-fold and 1.3- to 2.0-fold, respectively. In addition, the leaf disk and the living plant methods revealed increased transmission rates of 20.8-41.6 and 68.3-88.3%, respectively. In conclusion, FoRab10 and FoRab29 play a role in the autophagic regulation of the antiviral defense in F. occidentalis nymphs and adults against TSWV, respectively. These findings offer insights into the intricate immune mechanisms functional in F. occidentalis against TSWV, suggesting potential targeted strategies for F. occidentalis and TSWV management.


Assuntos
Autofagia , Resistência à Doença , Proteínas de Insetos , Doenças das Plantas , Tisanópteros , Tospovirus , Animais , Tospovirus/fisiologia , Tospovirus/imunologia , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Tisanópteros/virologia , Tisanópteros/imunologia , Tisanópteros/genética , Resistência à Doença/genética , Resistência à Doença/imunologia , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Proteínas de Insetos/metabolismo , Solanum lycopersicum/virologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Ninfa/imunologia , Ninfa/crescimento & desenvolvimento , Ninfa/virologia , Ninfa/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/imunologia , Proteínas rab de Ligação ao GTP/metabolismo
9.
Plant Pathol J ; 40(3): 310-321, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835302

RESUMO

Tomato yellow leaf curl virus (TYLCV) and tomato spotted wilt virus (TSWV) are well-known examples of the begomovirus and orthotospovirus genera, respectively. These viruses cause significant economic damage to tomato crops worldwide. Weeds play an important role in the ongoing presence and spread of several plant viruses, such as TYLCV and TSWV, and are recognized as reservoirs for these infections. This work applies a comprehensive approach, encompassing field surveys and molecular techniques, to acquire an in-depth understanding of the interactions between viruses and their weed hosts. A total of 60 tomato samples exhibiting typical symptoms of TYLCV and TSWV were collected from a tomato greenhouse farm in Nonsan, South Korea. In addition, 130 samples of 16 different weed species in the immediate surroundings of the greenhouse were collected for viral detection. PCR and reverse transcription-PCR methodologies and specific primers for TYLCV and TSWV were used, which showed that 15 tomato samples were coinfected by both viruses. Interestingly, both viruses were also detected in perennial weeds, such as Rumex crispus, which highlights their function as viral reservoirs. Our study provides significant insights into the co-occurrence of TYLCV and TSWV in weed reservoirs, and their subsequent transmission under tomato greenhouse conditions. This project builds long-term strategies for integrated pest management to prevent and manage simultaneous virus outbreaks, known as twindemics, in agricultural systems.

10.
Plant Dis ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698525

RESUMO

Cucurbits (family Cucurbitaceae) includes globally important fruit and vegetable crops. Virus diseases pose a serious threat to cucurbits, limiting crop quality and yield (Regina et al. 2021). In fall 2023, leaf and fruit samples from two squash plants with chlorotic mosaic symptoms and fruit distortion from Monroe and Pope counties in Arkansas were received for diagnosis at the University of Arkansas Division of Agriculture Plant Clinic. Based on symptoms, samples were assessed for melon severe mosaic orthotospovirus (MeSMV) using the ImmunoStrip® developed for detection of the virus (Agdia® Inc., Elkhart, Indiana). The presence of MeSMV was also confirmed by RT-PCR using the Agdia Tospovirus group PCR primers. An amplicon was sequenced and showed 91% sequence identity to the MESMV type isolate (NC_033834, VE440-A). To further verify the results, nucleic acids from a squash sample from Pope County were extracted as described by Poudel et al. (2013), DNase treated, and sequenced on an Oxford Nanopore MinION as described by Liefting et al. (2021). A total of 25,914 raw reads were analyzed using VirFind (Ho and Tzanetakis 2014), which identified 112 reads mapping to the three segments of MeSMV. Primers for all three RNAs were developed and amplified 638, 650, and 1153 nt of the S, M, and L segments of the virus respectively. The amplicons were sequenced bidirectionally and show 89-93% identity to the type isolate from Mexico (GenBank accessions PP301332-4). MeSMV has only been identified in Mexico and can cause significant losses to honeydew melon, zucchini, and cucumber (Ciuffo et al. 2009). Thus, this is the first report of MeSMV outside Mexico. Given the severity of the symptoms observed in cucurbit crops, the virus poses a potential threat to the cucurbit industry in the United States. Growers should be aware of this virus and take the necessary precautions to prevent its spread in the field.

11.
Virus Res ; 344: 199362, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38508402

RESUMO

We report the characterization of a novel tri-segmented RNA virus infecting Mercurialis annua, a common crop weed and model species in plant science. The virus, named "Mercurialis latent virus" (MeLaV) was first identified in a mixed infection with the recently described Mercurialis orthotospovirus 1 (MerV1) on symptomatic plants grown in glasshouses in Lausanne (Switzerland). Both viruses were found to be transmitted by Thrips tabaci, which presumably help the inoculation of infected pollen in the case of MeLaV. Complete genome sequencing of the latter revealed a typical ilarviral architecture and close phylogenetic relationship with members of the Ilarvirus subgroup 1. Surprisingly, a short portion of MeLaV replicase was found to be identical to the partial sequence of grapevine angular mosaic virus (GAMV) reported in Greece in the early 1990s. However, we have compiled data that challenge the involvement of GAMV in angular mosaic of grapevine, and we propose alternative causal agents for this disorder. In parallel, three highly-conserved MeLaV isolates were identified in symptomatic leaf samples in The Netherlands, including a herbarium sample collected in 1991. The virus was also traced in diverse RNA sequencing datasets from 2013 to 2020, corresponding to transcriptomic analyses of M. annua and other plant species from five European countries, as well as metaviromics analyses of bees in Belgium. Additional hosts are thus expected for MeLaV, yet we argue that infected pollen grains have likely contaminated several sequencing datasets and may have caused the initial characterization of MeLaV as GAMV.


Assuntos
Genoma Viral , Ilarvirus , Filogenia , Doenças das Plantas , Pólen , Vitis , Vitis/virologia , Doenças das Plantas/virologia , Pólen/virologia , Ilarvirus/genética , Ilarvirus/isolamento & purificação , Ilarvirus/classificação , Animais , RNA Viral/genética , Sequenciamento Completo do Genoma , Tisanópteros/virologia
12.
Virology ; 593: 110029, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38382160

RESUMO

Orthotospoviruses, a genera of negative-sense ssRNA viruses transmitted by thrips, have gained significant attention in recent years due to their detrimental impact on diverse crops, causing substantial economic losses and posing threats to food security. Orthotospoviruses are characterised by a wide range of symptoms in plants, including chlorotic/necrotic spots, vein banding, and fruit deformation. Seven species, including four definite and three tentative species in the genus Orthotospovirus, have so far been documented on the crops of the Indian subcontinent. Management of Orthotospoviruses under field conditions is challenging since they have a wide host range, adaptation to versatile environmental conditions, a lack of promising resistance sources, and the ubiquitous nature of thrips and their transmission through a propagative manner. Our present review elucidates the significance, molecular biology and evolutionary relationship of Orthotospoviruses; vector population; and possible management strategies for Orthotospoviruses and their vectors in the scenario of the Indian subcontinent.


Assuntos
Tisanópteros , Tospovirus , Animais , Doenças das Plantas , Tospovirus/genética , Tisanópteros/genética , Produtos Agrícolas , Agricultura
13.
BMC Genomics ; 25(1): 40, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191299

RESUMO

BACKGROUND: Viral diseases are posing threat to annual production and quality of tobacco in China. Recently, tomato spotted wilt orthotospovirus (TSWV) has been reported to infect three major crops including tobacco. Current study was aimed to investigate the population dynamics and molecular diversity of the TSWV. In the current study, to assess and identify the prevalence and evolutionary history of TSWV in tobacco crops in China, full-length genome sequences of TSWV isolates from tobacco, were identified and analyzed. METHODS: After trimming and validation, sequences of new isolates were submitted to GenBank. We identified the full-length genomes of ten TSWV isolates, infecting tobacco plants from various regions of China. Besides these, six isolates were partially sequenced. Phylogenetic analysis was performed to assess the relativeness of newly identified sequences and corresponding sequences from GenBank. Recombination and population dynamics analysis was performed using RDP4, RAT, and statistical estimation. Reassortment analysis was performed using MegaX software. RESULTS: Phylogenetic analysis of 41 newly identified sequences, depicted that the majority of the Chinese isolates have separate placement in the tree. RDP4 software predicted that RNA M of newly reported isolate YNKM-2 had a recombinant region spanning from 3111 to 3811 bp. The indication of parental sequences (YNKMXD and YNHHKY) from newly identified isolates, revealed the conservation of local TSWV population. Genetic diversity and population dynamics analysis also support the same trend. RNA M was highlighted to be more capable of mutating or evolving as revealed by data obtained from RDP4, RAT, population dynamics, and phylogenetic analyses. Reassortment analysis revealed that it might have happened in L segment of TSWV isolate YNKMXD (reported herein). CONCLUSION: Taken together, this is the first detailed study revealing the pattern of TWSV genetic diversity, and population dynamics helping to better understand the ability of this pathogen to drastically reduce the tobacco production in China. Also, this is a valuable addition to the existing worldwide profile of TSWV, especially in China, where a few studies related to TSWV have been reported including only one complete genome of this virus isolated from tobacco plants.


Assuntos
Vírus de RNA , Solanum lycopersicum , Filogenia , Evolução Biológica , China , Produtos Agrícolas , Nicotiana , RNA
14.
Front Plant Sci ; 14: 1270531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034554

RESUMO

Tomato spotted wilt orthotospovirus (TSWV) transmitted by thrips causes significant yield loss in peanut (Arachis hypogaea L.) production. Use of peanut cultivars with moderate field resistance has been critical for TSWV management. However, current TSWV resistance is often not adequate, and the availability of sources of tetraploid resistance to TSWV is very limited. Allotetraploids derived by crossing wild diploid species could help introgress alleles that confer TSWV resistance into cultivated peanut. Thrips-mediated TSWV screening identified two diploids and their allotetraploid possessing the AA, BB, and AABB genomes Arachis stenosperma V10309, Arachis valida GK30011, and [A. stenosperma × A. valida]4x (ValSten1), respectively. These genotypes had reduced TSWV infection and accumulation in comparison with peanut of pure cultivated pedigree. Transcriptomes from TSWV-infected and non-infected samples from A. stenosperma, A. valida, and ValSten1 were assembled, and differentially expressed genes (DEGs) following TSWV infection were assessed. There were 3,196, 8,380, and 1,312 significant DEGs in A. stenosperma, A. valida, and ValSten1, respectively. A higher proportion of genes decreased in expression following TSWV infection for A. stenosperma and ValSten1, whereas a higher proportion of genes increased in expression following infection in A. valida. The number of DEGs previously annotated as defense-related in relation to abiotic and biotic stress was highest in A. valida followed by ValSten1 and A. stenosperma. Plant phytohormone and photosynthesis genes also were differentially expressed in greater numbers in A. valida followed by ValSten1 and A. stenosperma, with over half of those exhibiting decreases in expression.

15.
Front Microbiol ; 14: 1254246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928674

RESUMO

Thrips palmi (Thysanoptera: Thripidae) is a major agricultural pest infesting over 200 plant species. Along with direct injury caused by feeding, T. palmi spreads several orthotospoviruses. Groundnut bud necrosis orthotospovirus (GBNV, family Tospoviridae, genus Orthotospovirus) is the predominant orthotospovirus in Asia, vectored by T. palmi. It is responsible for almost 89 million USD losses in Asia annually. Several transcripts of T. palmi related to innate immune response, receptor binding, cell signaling, cellular trafficking, viral replication, and apoptosis are responsive to the infection of orthotospoviruses in thrips. Expression of T. palmi tyrosine kinase Btk29A isoform X1 (Btk29A) and collagen alpha-1(III) chain-like (COL3A1) are significantly regulated post-GBNV and capsicum chlorosis orthotospovirus infection. In the present study, T. palmi Btk29A and COL3A1 were silenced and the effect on virus titer and fitness was assessed. The expression of Btk29A and COL3A1 was significantly reduced by 3.62 and 3.15-fold, respectively, 24 h post-dsRNA exposure. Oral administration of Btk29A and COL3A1 dsRNAs induced 60 and 50.9% mortality in T. palmi. The GBNV concentration in T. palmi significantly dropped post-silencing Btk29A. In contrast, the silencing of COL3A1 led to an increase in GBNV concentration in T. palmi compared to the untreated control. To the best of our knowledge, this is the first report on the effect of silencing Btk29A and COL3A1 on the fitness and GBNV titer in T. palmi.

16.
Proc Natl Acad Sci U S A ; 120(48): e2309412120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983500

RESUMO

Bunyaviruses are enveloped negative or ambisense single-stranded RNA viruses with a genome divided into several segments. The canonical view depicts each viral particle packaging one copy of each genomic segment in one polarity named the viral strand. Several opposing observations revealed nonequal ratios of the segments, uneven number of segments per virion, and even packaging of viral complementary strands. Unfortunately, these observations result from studies often addressing other questions, on distinct viral species, and not using accurate quantitative methods. Hence, what RNA segments and strands are packaged as the genome of any bunyavirus remains largely ambiguous. We addressed this issue by first investigating the virion size distribution and RNA content in populations of the tomato spotted wilt virus (TSWV) using microscopy and tomography. These revealed heterogeneity in viral particle volume and amount of RNA content, with a surprising lack of correlation between the two. Then, the ratios of all genomic segments and strands were established using RNA sequencing and qRT-PCR. Within virions, both plus and minus strands (but no mRNA) are packaged for each of the three L, M, and S segments, in reproducible nonequimolar proportions determined by those in total cell extracts. These results show that virions differ in their genomic content but together build up a highly reproducible genetic composition of the viral population. This resembles the genome formula described for multipartite viruses, with which some species of the order Bunyavirales may share some aspects of the way of life, particularly emerging properties at a supravirion scale.


Assuntos
Orthobunyavirus , Tospovirus , Orthobunyavirus/genética , RNA Viral/genética , Tospovirus/genética , Genoma Viral/genética , Vírion/genética
17.
Front Microbiol ; 14: 1257724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840712

RESUMO

Tomato spotted wilt orthotospovirus (TSWV) is one of the most successful pandemic agricultural pathogens transmitted by several species of thrips in a persistent propagative manner. Current management strategies for TSWV heavily rely on growing single-gene resistant cultivars of tomato ("Sw-5b" gene) and pepper ("Tsw" gene) deployed worldwide. However, the emergence of resistance-breaking strains (RB) in recent years has compounded the threat of TSWV to agricultural production worldwide. Despite this, an extensive study on the thrips transmission biology of RB strains is currently lacking. It is also unclear whether mutualistic TSWV-thrips interactions vary across different novel strains with disparate geographical origins. To address both critical questions, we studied whether and how four novel RB strains of TSWV (two sympatric and two allopatric), along with a non-RB strain, impact western flower thrips (WFT) fitness and whether this leads to differences in TSWV incidence, symptom severity (virulence), and virus accumulation in two differentially resistant tomato cultivars. Our findings show that all RB strains increased WFT fitness by prolonging the adult period and increasing fecundity compared to non-RB and non-viruliferous controls, regardless of the geographical origin of strains or the TSWV titers in individual thrips, which were substantially low in allopatric strains. TSWV accumulation in thrips varied at different developmental stages and was unrelated to the infected tissues from which thrips acquired the virus. However, it was significantly positively correlated to that in WFT-inoculated susceptible plants, but not the resistant ones. The TSW incidences were high in tomato plants infected with all RB strains, ranging from 80% to 90% and 100% in resistant and susceptible plants, respectively. However, TSW incidence in the non-RB-infected susceptible tomato plants was 80%. Our findings provide new insights into how novel strains of TSWV, by selectively offering substantial fitness benefits to vectors, modulate transmission and gain a potential epidemiological advantage over non-RB strains. This study presents the first direct evidence of how vector-imposed selection pressure, besides the one imposed by resistant cultivars, may contribute to the worldwide emergence of RB strains.

18.
Int J Mol Sci ; 24(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37833941

RESUMO

The transmission of insect-borne viruses involves sophisticated interactions between viruses, host plants, and vectors. Chemical compounds play an important role in these interactions. Several studies reported that the plant virus tomato spotted wilt orthotospovirus (TSWV) increases host plant quality for its vector and benefits the vector thrips Frankliniella occidentalis. However, few studies have investigated the chemical ecology of thrips vectors, TSWV, and host plants. Here, we demonstrated that in TSWV-infected host plant Datura stramonium, (1) F. occidentalis were more attracted to feeding on TSWV-infected D. stramonium; (2) atropine and scopolamine, the main tropane alkaloids in D. stramonium, which are toxic to animals, were down-regulated by TSWV infection of the plant; and (3) F. occidentalis had better biological performance (prolonged adult longevity and increased fecundity, resulting in accelerated population growth) on TSWV-infected D. stramonium than on TSWV non-infected plants. These findings provide in-depth information about the physiological mechanisms responsible for the virus's benefits to its vector by virus infection of plant regulating alkaloid accumulation in the plant.


Assuntos
Alcaloides , Datura stramonium , Vírus de Plantas , Vírus de RNA , Solanum lycopersicum , Tisanópteros , Tospovirus , Animais , Tisanópteros/fisiologia , Tospovirus/fisiologia , Plantas , Doenças das Plantas/prevenção & controle
19.
Virology ; 587: 109872, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37657354

RESUMO

Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for detection of groundnut bud necrosis virus (GBNV) causing potato stem necrosis disease. The isothermal temperatures, reaction periods and concentrations of reaction mixture were optimized where, the assay worked well at 65 °C for 50 min, 6 U of WarmStart Bst 2.0 DNA polymerase, 1.4 mM dNTPs and 2.0 mM MgSO4. The optimized assay proved to be specific to GBNV with no cross reactivity to other viruses infecting potato in India. The specificity of RT-LAMP assay was found to be 100 fold more sensitive than that of RT-PCR. The developed assay was applied for the detection of GBNV from 80 potato leaf samples where 24 samples were found infected which was confirmed by RT-PCR. It was concluded that the RT-LAMP assay developed for detection of GBNV was specific, sensitive and suitable for its use in virus indexing under potato seed production programme.


Assuntos
Solanum tuberosum , Vírus , Transcrição Reversa , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade
20.
Pathogens ; 12(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37764910

RESUMO

Thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) causes spotted wilt disease in peanut (Arachis hypogaea L.) and limits yield. Breeding programs have been developing TSWV-resistant cultivars, but availability of sources of resistance against TSWV in cultivated germplasm is extremely limited. Diploid wild Arachis species can serve as important sources of resistance, and despite ploidy barriers (cultivated peanut is tetraploid), their usage in breeding programs is now possible because of the knowledge and development of induced interspecific allotetraploid hybrids. This study screened 10 wild diploid Arachis and six induced allotetraploid genotypes via thrips-mediated TSWV transmission assays and thrips' feeding assays in the greenhouse. Three parameters were evaluated: percent TSWV infection, virus accumulation, and temporal severity of thrips feeding injury. Results indicated that the diploid A. stenosperma accession V10309 and its derivative-induced allotetraploid ValSten1 had the lowest TSWV infection incidences among the evaluated genotypes. Allotetraploid BatDur1 had the lowest thrips-inflicted damage at each week post thrips release, while diploid A. batizocoi accession K9484 and A. duranensis accession V14167 had reduced feeding damage one week post thrips release, and diploids A. valida accession GK30011 and A. batizocoi had reduced feeding damage three weeks post thrips releasethan the others. Overall, plausible TSWV resistance in diploid species and their allotetraploid hybrids was characterized by reduced percent TSWV infection, virus accumulation, and feeding severity. Furthermore, a few diploids and tetraploid hybrids displayed antibiosis against thrips. These results document evidence for resistance against TSWV and thrips in wild diploid Arachis species and peanut-compatible-induced allotetraploids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...