Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(2): 113789, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38368608

RESUMO

Under stress conditions, translationally stalled mRNA and associated proteins undergo liquid-liquid phase separation and condense into cytoplasmic foci called stress granules (SGs). Many viruses hijack SGs for their pathogenesis; however, whether pathogenic bacteria also exploit this pathway remains unknown. Here, we report that members of the OspC family of Shigella flexneri induce SG formation in infected cells. Mechanistically, the OspC effectors target multiple subunits of the host translation initiation factor 3 complex by ADP-riboxanation. The modification of eIF3 leads to translational arrest and thus the formation of SGs. Furthermore, OspC-mediated SGs are beneficial for S. flexneri replication within infected host cells, and bacterial strains unable to induce SGs are attenuated for virulence in a murine model of infection. Our findings reveal a mechanism by which bacterial pathogens induce SG assembly by inactivating host translational machinery and promote bacterial proliferation in host cells.


Assuntos
Fator de Iniciação 3 em Eucariotos , Shigella , Animais , Camundongos , Grânulos de Estresse , Citoplasma , Shigella flexneri
2.
Infect Immun ; 91(11): e0022723, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37874144

RESUMO

Lyme disease, caused by Borrelia (or Borreliella) burgdorferi, is a complex multisystemic disorder that includes Lyme neuroborreliosis resulting from the invasion of both the central and peripheral nervous systems. However, factors that enable the pathogen to cross the blood-brain barrier (BBB) and invade the central nervous system (CNS) are still not well understood. The objective of this study was to identify the B. burgdorferi factors required for BBB transmigration. We utilized a transwell BBB model based on human brain-microvascular endothelial cells and focused on investigating the Rrp2-RpoN-RpoS pathway, a central regulatory pathway that is essential for mammalian infection by B. burgdorferi. Our results demonstrated that the Rrp2-RpoN-RpoS pathway is crucial for BBB transmigration. Furthermore, we identified OspC, a major surface lipoprotein controlled by the Rrp2-RpoN-RpoS pathway, as a significant contributor to BBB transmigration. Constitutive production of OspC in a mutant defective in the Rrp2-RpoN-RpoS pathway did not rescue the impairment in BBB transmigration, indicating that this pathway controls additional factors for this process. Two other major surface lipoproteins controlled by this pathway, DbpA/B and BBK32, appeared to be dispensable for BBB transmigration. In addition, both the surface lipoprotein OspA and the Rrp1 pathway, which are required B. burgdorferi colonization in the tick vector, were found not required for BBB transmigration. Collectively, our findings using in vitro transwell assays uncover another potential role of the Rrp2-RpoN-RpoS pathway in BBB transmigration of B. burgdorferi and invasion into the CNS.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Animais , Humanos , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Lipoproteínas/genética , Regulação Bacteriana da Expressão Gênica , Fator sigma/genética , Mamíferos
3.
Life (Basel) ; 13(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37240779

RESUMO

OBJECTIVE: The diagnosis of Lyme borreliosis is based on two-tier testing using an ELISA and Western blot. About 5-10% of patients report persistent symptoms of unknown etiology after treatment, resulting in substantial difficulties in further diagnostic workup. This paper presents a study aimed at determining whether serology can differentiate between patients with persistent symptoms attributed to Lyme and other patients with Lyme borreliosis. METHODS: A retrospective cohort study included 162 samples from four subgroups: patients with persistent symptoms of Lyme (PSL), early Lyme borreliosis with erythema migrans (EM), patients tested in a general practitioner setting (GP), and healthy controls (HC). ELISA, Western blots, and multiplex assays from different manufacturers were used to determine inter-test variations in PSL and to compare reactivity against Borrelia-specific antigens among the groups. RESULTS: In comparing the IgG and IgM reactivity by Western blot, IgG was more often positive in the PSL group than in the GP group. The individual antigen reactivity was similar between the PSL and EM or GP groups. Inter-test agreement among the manufacturers was variable, and agreement was higher for IgG testing compared to IgM. CONCLUSIONS: Serological testing is unable to define the subgroup of patients with persistent symptoms attributed to Lyme borreliosis. Additionally, the current two-tier testing protocol shows a large variance among different manufacturers in these patients.

4.
Infect Immun ; 91(4): e0045622, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36880751

RESUMO

Lyme disease in the United States is most often caused by Borrelia burgdorferi sensu stricto. After a tick bite, the patient may develop erythema migrans at that site. If hematogenous dissemination occurs, the patient may then develop neurologic manifestations, carditis, or arthritis. Host-pathogen interactions include factors that contribute to hematogenous dissemination to other body sites. Outer surface protein C (OspC), a surface-exposed lipoprotein of B. burgdorferi, is essential during the early stages of mammalian infection. There is a high degree of genetic variation at the ospC locus, and certain ospC types are more frequently associated with hematogenous dissemination in patients, suggesting that OspC may be a major contributing factor to the clinical outcome of B. burgdorferi infection. In order to evaluate the role of OspC in B. burgdorferi dissemination, ospC was exchanged between B. burgdorferi isolates with different capacities to disseminate in laboratory mice, and these strains were then tested for their ability to disseminate in mice. The results indicated that the ability of B. burgdorferi to disseminate in mammalian hosts does not depend on OspC alone. The complete genome sequences of two closely related strains of B. burgdorferi with differing dissemination phenotypes were determined, but a specific genetic locus that could explain the differences in the phenotypes could not be definitively identified. The animal studies performed clearly demonstrated that OspC is not the sole determinant of dissemination. Future studies of the type described here with additional borrelial strains will hopefully clarify the genetic elements associated with hematogenous dissemination.


Assuntos
Borrelia burgdorferi , Borrelia , Doença de Lyme , Animais , Camundongos , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Borrelia/genética , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Mamíferos
5.
J Bacteriol ; 205(4): e0044022, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36920207

RESUMO

The OspC outer-surface lipoprotein is essential for the Lyme disease spirochete's initial phase of vertebrate infection. Bacteria within the midguts of unfed ticks do not express OspC but produce high levels when ticks begin to ingest blood. Lyme disease spirochetes cease production of OspC within 1 to 2 weeks of vertebrate infection, and bacteria that fail to downregulate OspC are cleared by host antibodies. Thus, tight regulation of OspC levels is critical for survival of Lyme borreliae and, therefore, an attractive target for development of novel treatment strategies. Previous studies determined that a DNA region 5' of the ospC promoter, the ospC operator, is required for control of OspC production. Hypothesizing that the ospC operator may bind a regulatory factor, DNA affinity pulldown was performed and identified binding by the Gac protein. Gac is encoded by the C-terminal domain of the gyrA open reading frame from an internal promoter, ribosome-binding site, and initiation codon. Our analyses determined that Gac exhibits a greater affinity for ospC operator and promoter DNAs than for other tested borrelial sequences. In vitro and in vivo analyses demonstrated that Gac is a transcriptional repressor of ospC. These results constitute a substantial advance to our understanding of the mechanisms by which the Lyme disease spirochete controls production of OspC. IMPORTANCE Borrelia burgdorferi sensu lato requires its surface-exposed OspC protein in order to establish infection in humans and other vertebrate hosts. Bacteria that either do not produce OspC during transmission or fail to repress OspC after infection is established are rapidly cleared by the host. Herein, we identified a borrelial protein, Gac, that exhibits preferential affinity to the ospC promoter and 5' adjacent DNA. A combination of biochemical analyses and investigations of genetically manipulated bacteria demonstrated that Gac is a transcriptional repressor of ospC. This is a substantial advance toward understanding how the Lyme disease spirochete controls production of the essential OspC virulence factor and identifies a novel target for preventative and curative therapies.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Humanos , Borrelia burgdorferi/genética , Virulência , Doença de Lyme/microbiologia , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Fatores de Transcrição
6.
Front Microbiol ; 13: 998365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466686

RESUMO

Outer surface protein C (OspC) is a commonly used marker in population studies of Borreliella to differentiate types and establish evolution over time. Investigating the ospC genetic types of Borreliella burgdorferi across multiple organ tissues of white-footed mice has the potential to contribute to our understanding of Lyme disease and the wide spectrum of clinical presentation associated with infection. In this study, five unique tissue types were sampled from 90 mice and screened for B. burgdorferi infections. This initial screening revealed a 63% overall B. burgdorferi infection rate in the mice collected (57/90). A total of 163 tissues (30.4%) tested positive for B. burgdorferi infections and when mapped to Borreliella types, 143,894 of the initial 322,480 reads mapped to 10 of the reference sequences in the ospC strain library constructed for this study at a 97% MOI. Two tissue types, the ear and the tongue, each accounted for 90% of the observed Borreliella sequence diversity in the tissue samples surveyed. The largest amount of variation was observed in an individual ear tissue sample with six ospC sequence types, which is equivalent to 60% of the observed variation seen across all tested specimens, with statistically significant associations observed between tissue type and detected Borreliella. There is strong evidence for genetic variability in B. burgdorferi within local white-footed mouse populations and even within individual hosts by tissue type. These findings may shed light on drivers of infection sequalae in specific tissues in humans and highlights the need for expanded surveillance on the epigenetics of B. burgdorferi across reservoirs, ticks, and infected patients.

7.
Evolution ; 76(9): 2067-2075, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35909235

RESUMO

MHC genes are extraordinarily polymorphic in most taxa. Host-pathogen coevolution driven by negative frequency-dependent selection (NFDS) is one of the main hypotheses for the maintenance of such immunogenetic variation. Here, we test a critical but rarely tested assumption of this hypothesis-that MHC alleles affect resistance/susceptibility to a pathogen in a strain-specific way, that is, there is a host genotype-by-pathogen genotype interaction. In a field study of bank voles naturally infected with the tick-transmitted bacterium Borrelia afzelii, we tested for MHC class II (DQB) genotype-by-B. afzelii strain interactions for infection prevalence between 10 DQB alleles and seven strains. One allele (DQB*37) showed an interaction, such that voles carrying DQB*37 had higher prevalence of two strains and lower prevalence of one strain than individuals without the allele. These findings were corroborated by analyses of strain composition of infections, which revealed an effect of DQB*37 in the form of lower ß diversity among infections in voles carrying the allele. Taken together, these results provide rare support at the molecular genetic level for a key assumption of models of antagonistic coevolution through NFDS.


Assuntos
Borrelia , Animais , Arvicolinae/genética , Genótipo , Prevalência , Roedores
8.
Cell ; 185(13): 2354-2369.e17, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35568036

RESUMO

Interferons (IFNs) induce an antimicrobial state, protecting tissues from infection. Many viruses inhibit IFN signaling, but whether bacterial pathogens evade IFN responses remains unclear. Here, we demonstrate that the Shigella OspC family of type-III-secreted effectors blocks IFN signaling independently of its cell death inhibitory activity. Rather, IFN inhibition was mediated by the binding of OspC1 and OspC3 to the Ca2+ sensor calmodulin (CaM), blocking CaM kinase II and downstream JAK/STAT signaling. The growth of Shigella lacking OspC1 and OspC3 was attenuated in epithelial cells and in a murine model of infection. This phenotype was rescued in both models by the depletion of IFN receptors. OspC homologs conserved in additional pathogens not only bound CaM but also inhibited IFN, suggesting a widespread virulence strategy. These findings reveal a conserved but previously undescribed molecular mechanism of IFN inhibition and demonstrate the critical role of Ca2+ and IFN targeting in bacterial pathogenesis.


Assuntos
Interferons , Fatores de Virulência , Animais , Antivirais , Sinalização do Cálcio , Células Epiteliais/metabolismo , Interferons/metabolismo , Camundongos , Fatores de Virulência/metabolismo
9.
mBio ; 13(3): e0069022, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35446120

RESUMO

Blocking host cell death is an important virulence strategy employed by many bacterial pathogens. We recently reported that Shigella flexneri inhibits host pyroptosis by delivering a type III secretion system (T3SS) effector OspC3 that catalyzes a novel arginine ADP-riboxanation modification on caspase-4/11. Here, we investigated the OspC3 homologue CopC from Chromobacterium violaceum, an opportunistic but sometimes deadly bacterial pathogen. CopC bears the same arginine ADP-riboxanase activity as OspC3, but with a different substrate specificity. Through proteomic analysis, we first identified host calmodulin (CaM) as a binding partner of CopC. The analyses additionally revealed that CopC preferably modifies apoptotic caspases including caspase-7, -8 and -9. This results in suppression of both extrinsic and intrinsic apoptosis programs in C. violaceum-infected cells. Biochemical reconstitution showed that CopC requires binding to CaM, specifically in the calcium-free state, to achieve efficient ADP-riboxanation of the caspases. We determined crystal structure of the CaM-CopC-CASP7 ternary complex, which illustrates the caspase recognition mechanism and a unique CaM-binding mode in CopC. Structure-directed mutagenesis validated the functional significance of CaM binding for stimulating CopC modification of its caspase substrates. CopC adopts an ADP-ribosyltransferase-like fold with a unique His-Phe-Glu catalytic triad, featuring two acidic residues critical for site-specific arginine ADP-riboxanation. Our study expands and deepens our understanding of the OspC family of ADP-riboxanase effectors. IMPORTANCE Programmed cell death is a suicidal defense mechanism for eukaryotes to combat pathogen infection. In the evolutionary arms race with the host, bacteria are endowed with ingenious tactics to block host cell death to facilitate their replication. Here, we report that the C. violaceum effector CopC ADP-riboxanates caspase-7/8/9, enabled by interacting with the host factor calmodulin, to block host cell apoptosis, illustrating a unique and sophisticated strategy adopted by the pathogen to counteract host defense.


Assuntos
Calmodulina , Chromobacterium , Difosfato de Adenosina/metabolismo , Arginina/metabolismo , Calmodulina/metabolismo , Caspase 7/metabolismo , Caspases/metabolismo , Chromobacterium/metabolismo , Humanos , Proteômica
10.
Microbiol Spectr ; 9(3): e0102021, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937165

RESUMO

The aim of the study was to investigate the etiology of persistent IgM antibodies against Borrelia burgdorferi sensu lato (sl) and to analyze their association with nonspecific symptoms. The study group comprised individuals with persistent IgM antibodies in the absence of IgG. The relation between ELISA values and time elapsed since past erythema migrans (EM) was analyzed. Previous antibiotic treatments were assessed. The association between persistent IgM and nonspecific symptoms was evaluated statistically. Specificity of IgM antibodies for outer surface protein C (OspC) of B. burgdorferi sl was examined by immunoblotting. Further, we investigated the cross-reactivity with Borrelia-unrelated proteins. Fifty-nine patients (46 women; 78%) were included in the study group. The mean IgM-ELISA values did not change significantly during follow-up (median 6.2 months). The mean ELISA value in the study group was dependent on time elapsed since past EM. Nonspecific symptoms improved significantly more often in patients with lower IgM ELISA results. Persistent IgM antibodies were specific for the C-terminal PKKP motif of OspC. Cross-reacting C-terminal PKKP antigens from both human and prokaryotic origins were identified. We demonstrate that the C-terminal PKKP motif plays a main role for the reactivity of persistent Borrelia IgM toward OspC. However, cross-reactivity to other eukaryotic and/or prokaryotic antigens may hamper the specificity of OspC in the serological diagnosis of Lyme borreliosis. Lack of improvement of nonspecific symptoms was associated with higher IgM ELISA values. IMPORTANCE The reactivity of human IgM with the outer surface protein C (OspC) of Borrelia burgdorferi sensu lato is frequently used to detect Borrelia specific IgM in commercial immunoassays, and such antibodies usually occur in the early phase of the infection. We identified a group of individuals with persistent Borrelia IgM without symptoms of Lyme borreliosis. We used their sera to demonstrate that the C-terminal epitope of OspC binds the IgM. Strikingly, we found that the same epitope occurs also in certain proteins of human and environmental origin; the latter include other bacteria and food plants. Our experimental data show that these Borrelia-unrelated proteins cross-react with the OpsC-specific IgM. This knowledge is important for the development of serologic assays for Lyme borreliosis and provides a cross-reactive explanation for the persistence of Borrelia-IgM.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Borrelia burgdorferi/imunologia , Imunoglobulina M/sangue , Doença de Lyme/imunologia , Adulto , Idoso , Anticorpos Antibacterianos/imunologia , Reações Cruzadas/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Glossite Migratória Benigna/diagnóstico , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Testes Sorológicos/métodos , Adulto Jovem
11.
Front Med (Lausanne) ; 8: 668709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869259

RESUMO

[This corrects the article DOI: 10.3389/fmed.2020.573648.].

12.
Front Immunol ; 12: 615011, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717102

RESUMO

Introduction: Borrelia burgdorferi sensu lato (sl) is the causative agent of Lyme borreliosis. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines. DNA tattoo vaccination with B. afzelii strain PKo OspC in mice has proven to be fully protective against B. afzelii syringe challenge and induces a favorable humoral immunity compared to recombinant protein vaccination. Alternatively, several recombinant protein vaccines based on tick proteins have shown promising effect in tick-bite infection models. In this study, we evaluated the efficacy of DNA vaccines against Borrelia OspC or tick antigens in a tick-bite infection model. Method: We vaccinated C3H/HeN mice with OspC using a codon-optimized DNA vaccine or with recombinant protein. We challenged these mice with B. burgdorferi sensu stricto (ss)-infected Ixodes scapularis nymphs. Subsequently, we vaccinated C3H/HeN mice with DNA vaccines coding for tick proteins for which recombinant protein vaccines have previously resulted in interference with tick feeding and/or Borrelia transmission: Salp15, tHRF, TSLPI, and Tix-5. These mice were also challenged with B. burgdorferi ss infected Ixodes scapularis nymphs. Results: DNA tattoo and recombinant OspC vaccination both induced total IgG responses. Borrelia cultures and DNA loads of skin and bladder remained negative in the mice vaccinated with OspC DNA vaccination, except for one culture. DNA vaccines against tick antigens Salp15 and Tix-5 induced IgG responses, while those against tHRF and TSLPI barely induced any IgG response. In addition, Borrelia cultures, and DNA loads from mice tattooed with DNA vaccines against tick proteins TSLPI, Salp15, tHRF, and Tix-5 were all positive. Conclusion: A DNA tattoo vaccine against OspC induced high specific IgG titers and provided near total protection against B. burgdorferi ss infection by tick challenge. In contrast, DNA tattoo vaccines against tick proteins TSLPI, Salp15, tHRF, and Tix-5 induced low to moderate IgG titers and did not provide protection. Therefore, DNA tattoo vaccination does not seem a suitable vaccine strategy to identify, or screen for, tick antigens for anti-tick vaccines. However, DNA tattoo vaccination is a straightforward and effective vaccination platform to assess novel B. burgdorferi sl antigen candidates in a relevant tick challenge model.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Artrópodes/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Borrelia burgdorferi/imunologia , Ixodes/imunologia , Vacinas contra Doença de Lyme/imunologia , Doença de Lyme/prevenção & controle , Vacinas de DNA/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Borrelia burgdorferi/genética , Feminino , Imunização , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Doença de Lyme/transmissão , Camundongos
13.
Infect Genet Evol ; 91: 104793, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33652116

RESUMO

The tick-transmitted bacterium Borrelia afzelii consists of a number of antigenically different strains - often defined by outer surface protein C (OspC) genotype - that coexist at stable frequencies in host populations. To investigate how host antibody responses affect strain coexistence, we measured antibody cross-reactivity to three different OspC types (OspC 2, 3 and 9) in three different strains of laboratory mice (BALB/c, C3H and C57BL/6). The extent of cross-reactivity differed between mouse strains, being higher in C3H than BALB/c and C57BL/6. In one of three pairwise comparisons of OspC types (OspC2 vs OspC9), there was evidence for asymmetry of cross-reactivity, with antibodies to OspC2 cross-reacting more strongly with OspC9 than vice versa. These results indicate that the extent of antibody-mediated competition between OspC types may depend on the composition of the host population, and that such competition may be asymmetric. We discuss the implications of these results for understanding the coexistence of OspC types.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Grupo Borrelia Burgdorferi/imunologia , Animais , Reações Cruzadas , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL
14.
Ticks Tick Borne Dis ; 12(2): 101630, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401196

RESUMO

Ticks belonging to the genus Ixodes are parasites feeding on vertebrate blood and vectors for many pathogenic microbes, including Borrelia burgdorferi sensu lato spirochetes, the causative agent of Lyme borreliosis. The tick saliva contains a mixture of bioactive molecules showing a wide range of properties for efficient engorgement. One of the most extensively studied components of tick saliva is a 15-kDa salivary gland protein (Salp15) from Ixodes scapularis. This multifunctional protein suppresses the immune response of hosts through pleiotropic action on a few crucial defense pathways. Salp15 and its homologue from I. ricinus Iric1 have been also shown to bind to Borrelia burgdorferi sensu stricto outer surface protein C (OspC) permitting the spirochetes to evade antibody-mediated killing in the human host. Further studies revealed that Salp15 and Iric1 protected B. burgdorferi s. s. and B. garinii expressing OspC against the complement system. OspC is the most variable protein on the outer surface of Borrelia, which in addition to Salp15 can also bind other ligands, such as plasminogen, fibrinogen, fibronectin or complement factor 4. So far several OspC variants produced by B. burgdorferi s. l. spirochetes were shown to be capable of binding Salp15 or its homologue, but the protection against borreliacidal antibodies has only been proven in the case of B. burgdorferi s. s. The question of Salp15 contribution to Borrelia survival during the infection has been comprehensively studied during the last decades. In contrast, the organization of the OspC-Salp15 complex has been poorly explored. This report describes the binding between three Salp15 homologues from the tick Ixodes ricinus (Iric1, Iric2 and Iric3) and OspC from four B. burgdorferi sensu lato strains in terms of the binding parameters, analyzed with two independent biophysical methods - Microscale thermophoresis (MST) and Biolayer interferometry (BLI). The results of both experiments show a binding constant at the nanomolar level, which indicates very strong interactions. While the Iric1-OspC binding has been reported before, we show in this study that also Iric2 and Iric3 are capable of OspC binding with high affinity. This observation suggests that these two Salp15 homologues might be used by B. burgdorferi s. l. in a way analogous to Iric1. A comparison of the results from the two methods let us propose that N-terminal immobilization of OspC significantly increases the affinity between the two proteins. Finally, our results indicate that the Iric binding site is located in close proximity of the OspC epitopes recognized by human antibodies, which may have important biological and medical implications.


Assuntos
Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Ixodes/genética , Proteínas e Peptídeos Salivares/genética , Animais , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Ixodes/metabolismo , Proteínas e Peptídeos Salivares/metabolismo
15.
Vaccine X ; 6: 100079, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33336185

RESUMO

Lyme disease, a public health threat of significance to both veterinary and human medicine, is caused by the tick (Ixodes) transmitted spirochete, Borreliella burgdorferi. Here we report on the immunogenicity and efficacy of VANGUARD®crLyme (Zoetis), the most recent canine Lyme disease vaccine to be approved by the United States Department of Agriculture. VANGUARD®crLyme is a subunit vaccine consisting of outer surface protein A (OspA) and a recombinant outer surface protein C (OspC) based-chimeric epitope protein (chimeritope) that consists of at least 14 different linear epitopes derived from diverse OspC proteins. The combination of OspA and the OspC chimeritope (Ch14) in the vaccine formulation allows for the development of humoral immune responses that work synergistically to target spirochetes in both ticks and in mammals. Immunogenicity was assessed in purpose-bred dogs. A two-dose vaccination protocol resulted in high antibody titers to OspA and Ch14 and vaccinal antibody reacted with 25 different recombinant OspC variants. Efficacy was demonstrated using an Ixodes scapularis -purpose bred dog challenge model. Vaccination with VANGUARD®crLyme provided protection against infection and prevented the development of clinical manifestations and histopathological changes associated with Lyme disease.

16.
Front Med (Lausanne) ; 7: 573648, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195322

RESUMO

The two-component response regulator Rrp2 is a key activator controlling the production of numerous virulence factors of Borrelia burgdorferi, the Lyme disease pathogen. Previously it was shown that the cognate histidine kinase HK2 is not required for Rrp2 activation in vitro, nor for mammalian infection upon needle inoculation, raising the question whether HK2 has any role in the enzootic cycle of B. burgdorferi. In this study, we demonstrated that HK2 is not required for spirochetal survival in the tick vector. When fed on naive mice, the hk2 mutant had reduced infectivity through the route of tick bite, suggesting that the spirochetes lacking HK2 had a disadvantage in the enzootic cycle. Furthermore, overexpression of hk2 reduced the level of Rrp2 phosphorylation, suggesting that HK2 can function as a phosphatase to dephosphorylate Rrp2. Strains overexpressing hk2 impaired the expression of RpoN regulon whose activation is dependent on Rrp2 phosphorylation and activation, and had reduced infectivity in mice. Taken together, these results demonstrate that although HK2 does not play an essential role in Rrp2 activation, it is important for the optimal fitness of B. burgdorferi in the enzootic cycle.

17.
Vet J ; 262: 105504, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32792093

RESUMO

Lyme disease (LD) is a tick-transmitted disease caused by Borreliella burgdorferi (Bb). Temporal studies of maternal antibody (Ab) profiles in Bb infected pregnant dogs and their pups have not been conducted. In this study, Ab profiles of a client-owned Bb C6 Ab positive Rottweiler and her nine pups were assessed. The dam presented with lameness 12 days prior to parturition and was C6 Ab positive with a Quant C6 Ab concentration of 237U/mL. Treatment with amoxicillin was initiated and 11 days later nine pups were delivered. Screening of the sera from the dam and pups against Bb cell lysates and a panel of antigens revealed similar immunoreactivity profiles. While antigen-specific IgG and IgM reactivity persisted in the dam for at least 7 months, a rapid decline in IgG specific for BBA36, BBK53, BB0238, BBA73 and outer surface protein (Osp) E in the pups occurred between days 29 and 52 post-parturition. In contrast, Ab specific for DbpA and the diagnostic antigens VlsE (C6) and OspF, remained elevated in the pups. Sera from the dam displayed potent complement-dependent bactericidal activity against Bb. Sera from the pups was also bactericidal but primarily through a complement-independent mechanism. Lastly, single dose vaccination of the dam at day 51 post-parturition with a LD subunit vaccine consisting of OspA and an OspC chimeritope triggered a broad anti-OspC Ab response indicative of an anamnestic response. Although this study focused on a single case, these findings add to our knowledge of maternal Ab profiles and will aid the interpretation of serological assays in pups delivered by a Bb C6 Ab positive dog.


Assuntos
Borrelia burgdorferi/imunologia , Doenças do Cão/diagnóstico , Vacinas contra Doença de Lyme/imunologia , Doença de Lyme/veterinária , Animais , Anticorpos Antibacterianos/sangue , Doenças do Cão/tratamento farmacológico , Doenças do Cão/imunologia , Cães , Feminino , Doença de Lyme/diagnóstico , Doença de Lyme/imunologia , Ontário , Vacinação/veterinária
18.
J Assist Reprod Genet ; 37(10): 2545-2553, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32729067

RESUMO

PURPOSE: Housekeeping genes (HKGs), reference or endogenous control genes, are vital to normalize mRNA levels between different samples. Since using inappropriate HKGs can lead to unreliable results, selecting the proper ones is critical for gene expression studies. To this end, normal human ovaries, as well as those from patients diagnosed with ovarian endometrioid adenocarcinoma (OEA), ovarian mucinous adenocarcinoma (OMA), ovarian serous papillary carcinoma (OSPC), and polycystic ovary syndrome (PCOS), were used to identify the most suitable housekeeping genes. METHODS: RNA was isolated from 5 normal human ovaries (52-79 years of age), 9 cancerous ovaries (3 OEA, 3 OMA, 3 OSPC; 49-75 years of age), and 4 PCOS ovaries (18-35 years of age) in women undergoing hysterectomy. cDNA was synthesized using a whole transcriptome kit, and quantitative real-time PCR was performed using TaqMan array 96-well plates containing 32 human endogenous controls in triplicate. RESULTS: Among 32 HKGs studied, RPS17, RPL37A, PPIA, 18srRNA, B2M, RPLP0, RPLP30, HPRT1, POP4, CDKN1B, and ELF1 were selected as the best reference genes. CONCLUSIONS: This study confirms recent investigations demonstrating that conventional HKGs, such as GAPDH and beta-actin, are not suitable reference genes for specific pathological conditions, emphasizing the importance of determining the best HKGs on a case-by-case basis and according to tissue type. Our results have identified reliable HKGs for studies of normal human ovaries and those affected by OEA, OMA, OSPC, or PCOS, as well as combined studies of control subjects vs. each cancer or PCOS group.


Assuntos
Adenocarcinoma Mucinoso/genética , Genes Essenciais/genética , Neoplasias Ovarianas/genética , Síndrome do Ovário Policístico/genética , Adenocarcinoma Mucinoso/patologia , Adolescente , Adulto , Idoso , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Ovário/metabolismo , Ovário/patologia , Síndrome do Ovário Policístico/patologia , Adulto Jovem
19.
Vet Clin North Am Small Anim Pract ; 49(4): 671-686, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30967254

RESUMO

The Lyme disease spirochetes are a highly diverse group of bacteria with unique biological properties. Their ability to cycle between ticks and mammals requires that they adapt to variable and constantly changing environmental conditions. Outer surface protein C is an essential virulence determinant that has received considerable attention in vaccine and diagnostic assay development. Knowledge of OspC diversity, its antigenic determinants, and its production patterns throughout the enzootic cycle, as well as in the laboratory setting, is essential for understanding immune responses induced by infection or vaccination.


Assuntos
Vacinas Bacterianas/imunologia , Borrelia burgdorferi/genética , Doença de Lyme/veterinária , Animais de Estimação , Animais , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Doença de Lyme/prevenção & controle
20.
Vaccine ; 37(17): 2401-2407, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30922701

RESUMO

As Ixodes ticks spread to new regions, the incidence of Lyme disease (LD) in companion animals and humans will increase. Preventive strategies for LD in canines center on vaccination and tick control (acaricides). Both subunit and bacterin based LD veterinary vaccines are available. Outer surface protein C (OspC), a potent immunogen and dominant early antigen, has been demonstrated to elicit protective antibody (Ab) responses. However, a single OspC protein elicits a relatively narrow range of protection. There are conflicting reports as to whether the immunodominant epitopes of OspC reside within variable or conserved domains. A detailed understanding of the antigenic determinants of OspC is essential for understanding immune responses to this essential virulence factor and vaccinogen. Here, we investigate the contribution of the conserved C-terminal C10 motif in OspC triggered Ab responses. Using a panel of diverse recombinant full length OspC proteins and their corresponding C10 deletion variants (OspCΔC10), we demonstrate that the C10 motif does not significantly contribute to immunization or infection induced Ab responses in rabbits, rats, canines, horses and non-human primates. Furthermore, the C10 motif is not required to trigger potent bactericidal Ab responses. This study provides insight into the antigenic structure of OspC. The results enhance our understanding of immune responses that develop during infection or upon vaccination and have implications for interpretation of LD diagnostic assays that employ OspC.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Borrelia burgdorferi/imunologia , Epitopos/imunologia , Doença de Lyme/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Formação de Anticorpos , Cães , Ensaio de Imunoadsorção Enzimática , Cavalos , Humanos , Doença de Lyme/prevenção & controle , Primatas , Coelhos , Proteínas Recombinantes/imunologia , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...