Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 503
Filtrar
1.
FEBS J ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041617

RESUMO

Obesity and obesity-related insulin resistance have been a research hotspot. Pituitary adenylate cyclase activating polypeptide (PACAP) has emerged as playing a significant role in energy metabolism, holding promising potential for attenuating insulin resistance. However, the precise mechanism is not fully understood. Palmitic acid and a high-fat diet (HFD) were used to establish insulin resistance model in Alpha mouse liver 12 cell line and C57BL/6 mice, respectively. Subsequently, we assessed the effects of PACAP both in vivo and in vitro. Lentivirus vectors were used to explore the signaling pathway through which PACAP may ameliorate insulin resistance. PACAP was found to selectively bind to the PACAP type I receptor receptor and ameliorate insulin resistance, which was characterized by increased glycogen synthesis and the suppression of gluconeogenesis in the insulin-resistant cell model and HFD-fed mice. These effects were linked to the activation of the Fas apoptotic inhibitory molecule/rapamycin-insensitive companion of mammalian target of rapamycin/RAC-alpha serine/threonine-protein kinase (FAIM/Rictor/AKT) axis. Furthermore, PACAP ameliorated insulin resistance by increasing solute carrier family 2, facilitated glucose transporter members 2/4 and inhibiting gluconeogenesis-related proteins glucose 6-phosphatase catalytic subunit 1 and phosphoenolpyruvate carboxykinase 2 expression. Meanwhile, the phosphorylation of hepatic AKT/glycogen synthase kinase 3ß was promoted both in vivo and in vitro by PACAP. Additionally, PACAP treatment decreased body weight, food intake and blood glucose levels in obese mice. Our study shows that PACAP ameliorated insulin resistance through the FAIM/Rictor/AKT axis, presenting it as a promising drug candidate for the treatment of obesity-related insulin resistance.

2.
Fish Shellfish Immunol ; 151: 109738, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971350

RESUMO

Antimicrobial peptides (AMPs) are an alternative to antibiotics for treatment and prevention of infections with a lower risk of bacterial resistance. Pituitary adenylate cyclase activating polypeptide (PACAP) is an outstanding AMP with versatile effects including antimicrobial activity and modulation of immune responses. The objective of this research was to study PACAP immunomodulatory effect on rainbow trout cell lines infected with Aeromonas salmonicida. PACAP from Clarias gariepinus (PACAP1) and a modified PACAP (PACAP5) were tested. RT-qPCR results showed that il1b and il8 expression in RTgutGC was significantly downregulated while tgfb expression was upregulated after PACAP treatment. Importantly, the concentration of IL-1ß and IFN-γ increased in the conditioned media of RTS11 cells incubated with PACAP1 and exposed to A. salmonicida. There was a poor correlation between gene expression and protein concentration, suggesting a stimulation of the translation of IL-1ß protein from previously accumulated transcripts or the cleavage of accumulated IL-1ß precursor. In-silico studies of PACAP-receptor interactions showed a turn of the peptide characteristic of PACAP-PAC1 interaction, correlated with the higher number of interactions observed with this specific receptor, which is also in agreement with the higher PACAP specificity described for PAC1 compared to VPAC1 and VPACA2. Finally, the in silico analysis revealed nine amino acids related to the PACAP receptor-associated functionality.


Assuntos
Aeromonas salmonicida , Citocinas , Proteínas de Peixes , Oncorhynchus mykiss , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Aeromonas salmonicida/fisiologia , Oncorhynchus mykiss/imunologia , Oncorhynchus mykiss/genética , Citocinas/genética , Citocinas/metabolismo , Linhagem Celular , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Peixes-Gato/imunologia , Peixes-Gato/genética , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Inata/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética
3.
Mil Med Res ; 11(1): 49, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044298

RESUMO

BACKGROUND: The development of ketamine-like rapid antidepressants holds promise for enhancing the therapeutic efficacy of depression, but the underlying cellular and molecular mechanisms remain unclear. Implicated in depression regulation, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is investigated here to examine its role in mediating the rapid antidepressant response. METHODS: The onset of antidepressant response was assessed through depression-related behavioral paradigms. The signaling mechanism of PACAP in the hippocampal dentate gyrus (DG) was evaluated by utilizing site-directed gene knockdown, pharmacological interventions, or optogenetic manipulations. Overall, 446 mice were used for behavioral and molecular signaling testing. Mice were divided into control or experimental groups randomly in each experiment, and the experimental manipulations included: chronic paroxetine treatments (4, 9, 14 d) or a single treatment of ketamine; social defeat or lipopolysaccharides-injection induced depression models; different doses of PACAP (0.4, 2, 4 ng/site; microinjected into the hippocampal DG); pharmacological intra-DG interventions (CALM and PACAP6-38); intra-DG viral-mediated PACAP RNAi; and opotogenetics using channelrhodopsins 2 (ChR2) or endoplasmic natronomonas halorhodopsine 3.0 (eNpHR3.0). Behavioral paradigms included novelty suppressed feeding test, tail suspension test, forced swimming test, and sucrose preference test. Western blotting, ELISA, or quantitative real-time PCR (RT-PCR) analysis were used to detect the expressions of proteins/peptides or genes in the hippocampus. RESULTS: Chronic administration of the slow-onset antidepressant paroxetine resulted in an increase in hippocampal PACAP expression, and intra-DG blockade of PACAP attenuated the onset of the antidepressant response. The levels of hippocampal PACAP expression were reduced in both two distinct depression animal models and intra-DG knockdown of PACAP induced depression-like behaviors. Conversely, a single infusion of PACAP into the DG region produced a rapid and sustained antidepressant response in both normal and chronically stressed mice. Optogenetic intra-DG excitation of PACAP-expressing neurons instantly elicited antidepressant responses, while optogenetic inhibition induced depression-like behaviors. The longer optogenetic excitation/inhibition elicited the more sustained antidepressant/depression-like responses. Intra-DG PACAP infusion immediately facilitated the signaling for rapid antidepressant response by inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII)-eukaryotic elongation factor 2 (eEF2) and activating the mammalian target of rapamycin (mTOR). Pre-activation of CaMKII signaling within the DG blunted PACAP-induced rapid antidepressant response as well as eEF2-mTOR-brain-derived neurotrophic factor (BDNF) signaling. Finally, acute ketamine treatment upregulated hippocampal PACAP expression, whereas intra-DG blockade of PACAP signaling attenuated ketamine's rapid antidepressant response. CONCLUSIONS: Activation of hippocampal PACAP signaling induces a rapid antidepressant response through the regulation of CaMKII inhibition-governed eEF2-mTOR-BDNF signaling.


Assuntos
Depressão , Hipocampo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Transdução de Sinais , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Camundongos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Depressão/tratamento farmacológico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Modelos Animais de Doenças , Comportamento Animal/efeitos dos fármacos , Paroxetina/farmacologia , Paroxetina/uso terapêutico
4.
Microbes Infect ; : 105400, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069117

RESUMO

Infection by SARS-CoV-2 is associated with uncontrolled inflammatory response during COVID-19 severe disease, in which monocytes are as one of the main sources of pro-inflammatory mediators leading to acute respiratory distress syndrome. Extracellular vesicles (EVs) from different cells play important roles during SARS-CoV-2 infection, but investigations describing the involvement of EVs from primary human monocyte-derived macrophages (MDM) on the regulation of this infection are not available. Here, we describe the effects of EVs released by MDM stimulated with the neuropeptides VIP and PACAP on SARS-CoV-2-infected monocytes. MDM-derived EVs were isolated by differential centrifugation of medium collected from cells cultured for 24 h in serum-reduced conditions. Based on morphological properties, we distinguished two subpopulations of MDM-EVs, namely large (LEV) and small EVs (SEV). We found that MDM-derived EVs stimulated with the neuropeptides inhibited SARS-CoV-2 RNA synthesis/replication in monocytes, protected these cells from virus-induced cytopathic effects and reduced the production of pro-inflammatory mediators. In addition, VIP- and PACAP-treated MDM-derived EVs prevented the SARS-CoV-2-induced NF-κB activation. Overall, our findings suggest that MDM-EVs are endowed with immunoregulatory properties that might contribute to the antiviral and anti-inflammatory responses in SARS-CoV-2-infected monocytes and expand our knowledge of EV effects during COVID-19 pathogenesis.

5.
J Ethnopharmacol ; 335: 118638, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39084272

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zhizichi decoction (ZZCD) is a traditional Chinese medicine formula that consists of Gardenia jasminoides J.Ellis (GJ) and Semen Sojae Praeparatum. It is used to treat insomnia and emotion-related disorders, such as irritability. Previous studies have found that GJ has a rapid antidepressant effect. The study found that ZZCD is safer than GJ at the same dosage. Consequently, ZZCD is a superior drug with quicker antidepressant effects than GJ. The rapid antidepressant effects of ZZCD were examined in this study, along with the components that make up this effect. It was determined that the activation of prefrontal Pituitary Adenylate Cyclase Activating Polypeptide (PACAP)/Vasoactive Intestinal Polypeptide (VIP) is essential for ZZCD's rapid antidepressant effects. AIM: This study identified and discussed the rapid antidepressant effects and biological mechanisms of ZZCD. MATERIALS AND METHODS: The tail suspension test (TST) and the forced swimming test (FST) were used to screen the effective dosage of ZZCD (0.67 g/kg, 1 g/kg, 4 g/kg). The effective dosage of ZZCD (1 g/kg) was tested in the TST conducted on Institute of Cancer Research (ICR) mice that were treated with lipopolysaccharide (LPS) at a concentration of 0.1 mg/mL. To confirm the expression of c-Fos, PACAP, and VIP in the prefrontal cortex (PFC), immunohistochemistry tests were conducted on mice following intragastric injection of ZZCD. Chemical characterization analysis and HPLC quality control analysis were conducted using UHPLC-Q-Obitrap-HRMS and chromatographic analysis. RESULTS: The results showed that an acute administration of ZZCD (1 g/kg) decreased the immobility time of Kunming (KM) mice in TST and FST. Depressive behaviors in TST-induced ICR mice treated with LPS (0.1 mg/mL) were reversed by ZZCD (1 g/kg). The results of immunohistochemical experiments showed that ZZCD (1 g/kg) activated neurons in the PFC and PACAP/VIP in the PFC. In this study, 22 substances in ZZCD were identified. Five primary distinctive fingerprint peaks-geniposide, genistin, genipin-1-ß-D-gentiobioside, glycitin, and daidzin-were found among the ten common peaks. CONCLUSION: ZZCD (1 g/kg) had significant rapid antidepressant effects. PACAP/VIP in the PFC was found to mediate the rapid antidepressant effects of ZZCD.

6.
J Headache Pain ; 25(1): 126, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085771

RESUMO

BACKGROUND: Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide pivotal in migraine pathophysiology and is considered a promising new migraine drug target. Although intravenous PACAP triggers migraine attacks and a recent phase II trial with a PACAP-inhibiting antibody showed efficacy in migraine prevention, targeting the PACAP receptor PAC1 alone has been unsuccessful. The present study investigated the role of three PACAP receptors (PAC1, VPAC1 and VPAC2) in inducing migraine-relevant hypersensitivity in mice. METHODS: Hindpaw hypersensitivity was induced by repeated PACAP38 injections. Tactile sensitivity responses were quantified using von Frey filaments in three knockout (KO) mouse strains, each lacking one of the PACAP-receptors (Ntotal = 160). Additionally, ex vivo wire myography was used to assess vasoactivity of the carotid artery, and gene expression of PACAP receptors was examined by qPCR. RESULTS: PACAP38 induced hypersensitivity in WT controls (p < 0.01) that was diminished in VPAC1 and VPAC2 KO mice (p < 0.05). In contrast, PAC1 KO mice showed similar responses to WT controls (p > 0.05). Myograph experiments supported these findings showing diminished vasoactivity in VPAC1 and VPAC2 KO mice. We found no upregulation of the non-modified PACAP receptors in KO mice. CONCLUSIONS: This study assessed all three PACAP receptors in a migraine mouse model and suggests a significant role of VPAC receptors in migraine pathophysiology. The lack of hypersensitivity reduction in PAC1 KO mice suggests the involvement of other PACAP receptors or compensatory mechanisms. The results indicate that targeting only individual PACAP receptors may not be an effective migraine treatment.


Assuntos
Modelos Animais de Doenças , Camundongos Knockout , Transtornos de Enxaqueca , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores Tipo II de Peptídeo Intestinal Vasoativo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/fisiopatologia , Transtornos de Enxaqueca/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Camundongos , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/fisiopatologia , Hiperalgesia/fisiopatologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Camundongos Endogâmicos C57BL , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Membro Posterior/fisiopatologia
7.
J Headache Pain ; 25(1): 105, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902612

RESUMO

INTRODUCTION: The development of several experimental migraine provocation models has significantly contributed to an understanding of the signaling mechanisms of migraine. The early history of this development and a view to the future are presented as viewed by the inventor of the models. METHODS: Extensive knowledge of the literature was supplemented by scrutiny of reference lists. RESULTS: Early studies used methodologies that were not blinded. They suggested that histamine and nitroglycerin (Glyceryl trinitrate, GTN) could induce headache and perhaps migraine. The development of a double blind, placebo-controlled model, and the use of explicit diagnostic criteria for induced migraine was a major step forward. GTN, donor of nitric oxide (NO), induced headache in people with- and without migraine as well as delayed migraine attacks in those with migraine. Calcitonin gene-related peptide (CGRP) did the same, supporting the development of CGRP antagonists now widely used in patients. Likewise, pituitary adenylate cyclase activating peptide (PACAP) provoked headache and migraine. Recently a PACAP antibody has shown anti migraine activity in a phase 2 trial. Increase of second messengers activated by NO, CGRP and PACAP effectively induced migraine. The experimental models have also been used in other types of headaches and have been combined with imaging and biochemical studies. They have also been used for drug testing and in genetic studies. CONCLUSION: Conclusion. Human migraine provocation models have informed about signaling mechanisms of migraine leading to new drugs and drug targets. Future use of these models in imaging-, biochemistry- and genetic studies as well as in the further study of animal models is promising.


Assuntos
Transtornos de Enxaqueca , Transdução de Sinais , Transtornos de Enxaqueca/tratamento farmacológico , Humanos , Animais , Transdução de Sinais/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/antagonistas & inibidores , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Nitroglicerina/farmacologia , Modelos Animais de Doenças
8.
Eur J Neurol ; 31(8): e16333, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38894592

RESUMO

OBJECTIVE: This review will explore the categorization of migraine-provoking molecules, their cellular actions, site of action and potential drug targets based on the migraine cascade model. METHODS: Personal experience and literature. RESULTS: Migraine impacts over 1 billion people worldwide but is underfunded in research. Recent progress, particularly through the human and animal provocation model, has deepened our understanding of its mechanisms. This model have identified endogenous neuropeptides such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide (PACAP) that induces controlled migraine-like attacks leading to significant discoveries of their role in migraine. This knowledge led to the development of CGRP-inhibiting drugs; a groundbreaking migraine treatment now accessible globally. Also a PACAP-inhibiting drug was effective in a recent phase II trial. Notably, rodent studies have shed light on pain pathways and the mechanisms of various migraine-inducing substances identifying novel drug targets. This is primarily done by using selective inhibitors that target specific signaling pathways of the known migraine triggers leading to the hypothesized cellular cascade model of migraine. CONCLUSION: The model of migraine presents numerous opportunities for innovative drug development. The future of new migraine treatments is limited only by the investment from pharmaceutical companies.


Assuntos
Transtornos de Enxaqueca , Nociceptividade , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/fisiopatologia , Humanos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Nociceptividade/fisiologia , Nociceptividade/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo
9.
Gen Comp Endocrinol ; 356: 114577, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38914296

RESUMO

The physiological processes in animal production are regulated through biologically active molecules like peptides, proteins, and hormones identified through the development of the fundamental sciences and their application. One of the main polypeptides that plays an essential role in regulating physiological responses is the pituitary adenylate cyclase-activating polypeptide (PACAP). PACAP belongs to the glucagon/growth hormone-releasing hormone (GHRH)/vasoactive intestinal proteins (VIP) family and regulates feed intake, stress, and immune response in birds. Most of these regulations occur after PACAP stimulates the cAMP signaling pathway, which can regulate the expression of genes like MuRF1, FOXO1, Atrogin 1, and other ligases that are essential members of the ubiquitin system. On the other hand, PACAP stimulates the secretion of CRH in response to stress, activating the ubiquitin signaling pathway that plays a vital role in protein degradation and regulates oxidative stress and immune responses. Many studies conducted on rodents, mammals, and other models confirm the regulatory effects of PACAP, cAMP, and the ubiquitin pathway; however, there are no studies testing whether PACAP-induced cAMP signaling in poultry regulates the ubiquitin pathway. Besides, it would be interesting to investigate if PACAP can regulate ubiquitin signaling during stress response via CRH altered by HPA axis stimulation. Therefore, this review highlights a summary of research studies that indicate the potential interaction of the PACAP and ubiquitin signaling pathways on different molecular and physiological parameters in poultry species through the cAMP and stress signaling pathways.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Transdução de Sinais , Ubiquitina , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Transdução de Sinais/fisiologia , Ubiquitina/metabolismo , Aves Domésticas
10.
J Headache Pain ; 25(1): 98, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38858641

RESUMO

BACKGROUND: Endogeneous and exogeneous sex hormones can impact the frequency and severity of migraine attacks, but the underlying mechanisms are poorly understood. In this study, we investigate the relationship between female sex hormones and Pituitary Adenylate Cyclase-Activating Polypeptide-38 (PACAP-38) concentrations in plasma of women with migraine and healthy controls, aiming to elucidate potential hormonal influences on PACAP dynamics and their relevance to migraine pathophysiology. METHODS: This analysis is part of a cross-sectional, matched-cohort study. We recruited two groups of women with episodic migraine: one with a regular menstrual cycle (M-RMC) and another undergoing combined oral contraceptive treatment (M-COC). Additionally, we included corresponding age-matched control groups without migraine for both categories (C-RMC and C-COC). For participants with a RMC, the study visits were scheduled during the perimenstrual period (menstrual cycle day 2 ± 2) and periovulatory period (day 13 ± 2). Participants using COC were examined at day 4 ± 2 of the hormone-free interval and between day 7-14 of the hormone intake phase. During these visits, PACAP-38 concentrations in plasma were measured using a commercial Enzyme-linked-immunosorbent assay (ELISA) kit. RESULTS: The study included 120 women, with 30 participants in each group. Women with migraine and a RMC had significantly higher PACAP-38 plasma concentrations compared to healthy controls at both study visits [day 2 ± 2: M-RMC: 2547.41 pg/ml (IQR 814.27 - 4473.48) vs. C-RMC: 1129.49 pg/ml (IQR 257.34 - 2684.88), p = 0.025; day 13 ± 2: M-RMC: 3098.89 pg/ml (IQR 1186.29 - 4379.47) vs. C-RMC: 1626.89 (IQR 383.83 - 3038.36), p = 0.028]. In contrast, PACAP-38 levels were comparable between migraine and control groups receiving COC. Women with migraine and a RMC exhibited higher PACAP-38 concentrations during menstruation compared to those using COC during the hormone-free interval. CONCLUSION: Systemic PACAP-38 concentrations in women vary based on the presence of migraine diagnosis and their hormonal status.


Assuntos
Transtornos de Enxaqueca , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Humanos , Feminino , Transtornos de Enxaqueca/sangue , Estudos Transversais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/sangue , Adulto , Estudos de Coortes , Ciclo Menstrual/sangue , Ciclo Menstrual/fisiologia , Adulto Jovem , Hormônios Esteroides Gonadais/sangue , Anticoncepcionais Orais Combinados/sangue , Estradiol/sangue , Progesterona/sangue
11.
Artigo em Inglês | MEDLINE | ID: mdl-38940930

RESUMO

Evidence has been accumulating that elements of the vertebrate pituitary adenylate cyclase-activating polypeptide (PACAP) system are missing in non-chordate genomes, which is at odds with the partial sequence-, immunohistochemical-, and physiological data in the literature. Multilevel experiments were performed on the great pond snail (Lymnaea stagnalis) to explore the role of PACAP in invertebrates. Screening of neuronal transcriptome and genome data did not reveal homologs to the elements of vertebrate PACAP system. Despite this, immunohistochemical investigations with an anti-human PAC1 receptor antibody yielded a positive signal in the neuronal elements in the heart. Although Western blotting of proteins extracted from the nervous system found a relevant band for PACAP-38, immunoprecipitation and mass spectrometric analyses revealed no corresponding peptide fragments. Similarly to the effects reported in vertebrates, PACAP-38 significantly increased cAMP synthesis in the heart and had a positive ionotropic effect on heart preparations. Moreover, it significantly modulated the effects of serotonin and acetylcholine. Homologs to members of Cluster B receptors, which have shared common evolutionary origin with the vertebrate PACAP receptors, PTHRs, and GCGRs, were identified and shown not to be expressed in the heart, which does not support a potential role in the mediation of PACAP-induced effects. Our findings support the notion that the PACAP system emerged after the protostome-deuterostome divergence. Using antibodies against vertebrate proteins is again highlighted to have little/no value in invertebrate studies. The physiological effects of vertebrate PACAP peptides in protostomes, no matter how similar they are to those in vertebrates, should be considered non-specific.

12.
Front Mol Neurosci ; 17: 1422589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807923
13.
J Headache Pain ; 25(1): 87, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38802819

RESUMO

BACKGROUND: Pain, an evolutionarily conserved warning system, lets us recognize threats and motivates us to adapt to those threats. Headache pain from migraine affects approximately 15% of the global population. However, the identity of any putative threat that migraine or headache warns us to avoid is unknown because migraine pathogenesis is poorly understood. Here, we show that a stress-induced increase in pituitary adenylate cyclase-activating polypeptide-38 (PACAP38), known as an initiator of allosteric load inducing unbalanced homeostasis, causes headache-like behaviour in male mice via mas-related G protein-coupled receptor B2 (MrgprB2) in mast cells. METHODS: The repetitive stress model and dural injection of PACAP38 were performed to induce headache behaviours. We assessed headache behaviours using the facial von Frey test and the grimace scale in wild-type and MrgprB2-deficient mice. We further examined the activities of trigeminal ganglion neurons using in vivo Pirt-GCaMP Ca2+ imaging of intact trigeminal ganglion (TG). RESULTS: Repetitive stress and dural injection of PACAP38 induced MrgprB2-dependent headache behaviours. Blood levels of PACAP38 were increased after repetitive stress. PACAP38/MrgprB2-induced mast cell degranulation sensitizes the trigeminovascular system in dura mater. Moreover, using in vivo intact TG Pirt-GCaMP Ca2+ imaging, we show that stress or/and elevation of PACAP38 sensitized the TG neurons via MrgprB2. MrgprB2-deficient mice showed no sensitization of TG neurons or mast cell activation. We found that repetitive stress and dural injection of PACAP38 induced headache behaviour through TNF-a and TRPV1 pathways. CONCLUSIONS: Our findings highlight the PACAP38-MrgprB2 pathway as a new target for the treatment of stress-related migraine headache. Furthermore, our results pertaining to stress interoception via the MrgprB2/PACAP38 axis suggests that migraine headache warns us of stress-induced homeostatic imbalance.


Assuntos
Mastócitos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Estresse Psicológico , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Mastócitos/metabolismo , Masculino , Camundongos , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Gânglio Trigeminal/metabolismo , Cefaleia/etiologia , Cefaleia/metabolismo , Cefaleia/fisiopatologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
14.
Br J Pharmacol ; 181(15): 2655-2675, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38616050

RESUMO

BACKGROUND AND PURPOSE: The spinal cord is a key structure involved in the transmission and modulation of pain. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP), are expressed in the spinal cord. These peptides activate G protein-coupled receptors (PAC1, VPAC1 and VPAC2) that could provide targets for the development of novel pain treatments. However, it is not clear which of these receptors are expressed within the spinal cord and how these receptors signal. EXPERIMENTAL APPROACH: Dissociated rat spinal cord cultures were used to examine agonist and antagonist receptor pharmacology. Signalling profiles were determined for five signalling pathways. The expression of different PACAP and VIP receptors was then investigated in mouse, rat and human spinal cords using immunoblotting and immunofluorescence. KEY RESULTS: PACAP, but not VIP, potently stimulated cAMP, IP1 accumulation and ERK and cAMP response element-binding protein (CREB) but not Akt phosphorylation in spinal cord cultures. Signalling was antagonised by M65 and PACAP6-38. PACAP-27 was more effectively antagonised than either PACAP-38 or VIP. The patterns of PAC1 and VPAC2 receptor-like immunoreactivity appeared to be distinct in the spinal cord. CONCLUSIONS AND IMPLICATIONS: The pharmacological profile in the spinal cord suggested that a PAC1 receptor is the major functional receptor subtype present and thus likely mediates the nociceptive effects of the PACAP family of peptides in the spinal cord. However, the potential expression of both PAC1 and VPAC2 receptors in the spinal cord highlights that these receptors may play differential roles and are both possible therapeutic targets.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Medula Espinal , Peptídeo Intestinal Vasoativo , Animais , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/agonistas , Humanos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/farmacologia , Camundongos , Ratos , Transdução de Sinais/efeitos dos fármacos , Receptores de Peptídeo Intestinal Vasoativo/metabolismo , Receptores de Peptídeo Intestinal Vasoativo/antagonistas & inibidores , Células Cultivadas , Ratos Sprague-Dawley , Masculino , Camundongos Endogâmicos C57BL , AMP Cíclico/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Receptores Tipo II de Peptídeo Intestinal Vasoativo/agonistas
15.
Sci Rep ; 14(1): 8919, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637645

RESUMO

The natural alignment of animals into social dominance hierarchies produces adaptive, and potentially maladaptive, changes in the brain that influence health and behavior. Aggressive and submissive behaviors assumed by animals through dominance interactions engage stress-dependent neural and hormonal systems that have been shown to correspond with social rank. Here, we examined the association between social dominance hierarchy status established within cages of group-housed mice and the expression of the stress peptide PACAP in the bed nucleus of the stria terminalis (BNST) and central nucleus of the amygdala (CeA). We also examined the relationship between social dominance rank and blood corticosterone (CORT) levels, body weight, motor coordination (rotorod) and acoustic startle. Male C57BL/6 mice were ranked as either Dominant, Submissive, or Intermediate based on counts of aggressive/submissive encounters assessed at 12 weeks-old following a change in homecage conditions. PACAP expression was significantly higher in the BNST, but not the CeA, of Submissive mice compared to the other groups. CORT levels were lowest in Submissive mice and appeared to reflect a blunted response following events where dominance status is recapitulated. Together, these data reveal changes in specific neural/neuroendocrine systems that are predominant in animals of lowest social dominance rank, and implicate PACAP in brain adaptations that occur through the development of social dominance hierarchies.


Assuntos
Corticosterona , Núcleos Septais , Animais , Masculino , Camundongos , Tonsila do Cerebelo/metabolismo , Camundongos Endogâmicos C57BL , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Núcleos Septais/metabolismo , Predomínio Social , Estresse Psicológico/metabolismo
16.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612681

RESUMO

Small-molecule positive allosteric modulator 1 (SPAM1), which targets pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1-R), has been found to have a neuroprotective effect, and the underlying mechanism was explored in this study. First, using a D-galactose (D-gal)-induced aging mouse model, we confirmed that SPAM1 improves the structure of the hippocampal dentate gyrus and restores the number of neurons. Compared with D-gal model mice, SPAM1-treated mice showed up-regulated expression of Sirtuin 6 (SIRT6) and Lamin B1 and down-regulated expression of YinYang 1 (YY1) and p16. A similar tendency was observed in senescent RGC-5 cells induced by long-term culture, indicating that SPAM1 exhibits significant in vitro and in vivo anti-senescence activity in neurons. Then, using whole-transcriptome sequencing and proteomic analysis, we further explored the mechanism behind SPAM1's neuroprotective effects and found that SPAM is involved in the longevity-regulating pathway. Finally, the up-regulation of neurofilament light and medium polypeptides indicated by the proteomics results was further confirmed by Western blotting. These results help to lay a pharmacological network foundation for the use of SPAM1 as a potent anti-aging therapeutic drug to combat neurodegeneration with anti-senescence, neuroprotective, and nerve regeneration activity.


Assuntos
Proteômica , Transcriptoma , Animais , Camundongos , Perfilação da Expressão Gênica , Envelhecimento/genética , Longevidade , Galactose/farmacologia
17.
Fish Shellfish Immunol ; 148: 109512, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499216

RESUMO

The global aquaculture industry has significant losses each year due to disease outbreaks. Antibiotics are one of the common methods to treat fish infections, but prolonged use can lead to the emergence of resistant strains. Aeromonas spp. Infections are a common and problematic disease in fish, and members of this genera can produce antibiotic resistant strains. Antimicrobial peptides (AMPs) have emerged as an alternative method to treat and prevent infections and pituitary adenylate cyclase activating polypeptide (PACAP) is a prominent member of this family. The objective of this research was to study PACAP's direct antimicrobial activity and its toxicity in fish cells. Four synthetic variants of the natural PACAP from Clarias gariepinus were tested in addition to the natural variant. The experimental results show a different antimicrobial activity against A. salmonicida and A. hydrophila of each PACAP variant, and for the first time show dependence on the culture broth used. Furthermore, the results suggest that the underlying mechanism of PACAP antimicrobial activity includes a bacterial membrane permeabilizing effect, classifying PACAP as a membrane disruptive AMP. This study also demonstrated that the five PACAP variants evaluated showed low toxicity in vitro, at concentrations relevant for in vivo applications. Therefore, PACAP could be a promising alternative to antibiotics in the aquaculture sector.


Assuntos
Anti-Infecciosos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Bactérias , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Aquicultura
18.
Life (Basel) ; 14(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38398694

RESUMO

Retinoblastoma represents the most prevalent malignant neoplasm affecting the eyes in childhood. The clear-cut origin of retinoblastoma has not yet been determined; however, based on experiments, it has been suggested that RB1 loss in cone photoreceptors causes retinoblastoma. Pituitary adenylate-cyclase activating polypeptide (PACAP) is a pleiotropic neuropeptide which has been shown to be affected in certain tumorous transformations, such as breast, lung, kidney, pancreatic, colon, and endocrine cancers. This study aimed to investigate potential changes in both PACAP38 and PAC1 receptor (PAC1R) expression in human retinoblastoma and the effect of PACAP38 administration on the survival of a human retinoblastoma cell line (Y-79). We analyzed human enucleation specimens removed because of retinoblastoma for PACAP38 and PAC1R immunostaining and the effect of PACAP38 on the survival of the Y-79 cell line. We described for the first time that human retinoblastoma cells from patients showed only perinuclear, dot-like immunopositivity for both PACAP38 and PAC1R, irrespective of laterality, genetic background, or histopathological features. Nanomolar (100 nM and 500 nM) PACAP38 concentrations had no effect on the viability of Y-79 cells, while micromolar (2 µM and 6 µM) PACAP38 significantly decreased tumor cell viability. These findings, along with general observations from animal studies showing that PACAP38 has strong anti-apoptotic, anti-inflammatory, and antioxidant effects on ocular tissues, together suggest that PACAP38 and its analogs are promising candidates in retinoblastoma therapy.

19.
Handb Clin Neurol ; 199: 583-597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38307672

RESUMO

Despite many migraine-specific treatments that became available over the past 5 years, many patients still suffer from debilitating migraine. Emerging and future directions of migraine research and treatment should consider different aspects including revising the headache diagnostic criteria to reflect disease burden and prognosis, developing biomarkers, including genetic, serum, imaging, and deep phenotyping biomarkers to facilitate personalized medicine for headache treatment. Additionally, research should also emphasize identifying novel treatment targets for drug development. In this chapter, we provide an overview of current studies and controversies in the diagnosis of migraine and available research on potential migraine biomarkers. We also discuss potential treatment targets for migraine, including CGRP, PACAP, orexin, non-µ opioid receptors, nitric oxide, BKCa channel, KATP channel, amylin, TRP channels, prolactin, PAR-2, and other potential targets.


Assuntos
Transtornos de Enxaqueca , Humanos , Transtornos de Enxaqueca/diagnóstico , Transtornos de Enxaqueca/tratamento farmacológico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Cefaleia , Biomarcadores
20.
Br J Pharmacol ; 181(3): 480-494, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37706270

RESUMO

BACKGROUND AND PURPOSE: Little is known of how cranial autonomic symptoms (CAS) in cluster headache and migraine may contribute to their severe headache phenotype. This strong association suggests the involvement of the cranial parasympathetic efferent pathway. To investigate its contribution, we studied the role of pituitary adenylate cyclase activating polypeptide-38 (PACAP-38), a potent sensory and parasympathetic neuropeptide, in modulating pre- and post-ganglionic cranial parasympathetic projection neurons, and their influence on headache-related trigeminal-autonomic responses. EXPERIMENTAL APPROACH: Using PACAP-38 and PACAP-38 responsive receptor antagonists, electrophysiological, behavioural and facial neurovascular-blood flow was measured in rats to probe trigeminal- and parasympathetic-neuronal, periorbital thresholds and cranial-autonomic outcomes, as they relate to primary headaches. KEY RESULTS: Sumatriptan attenuated the development of PACAP-38 mediated activation and sensitization of trigeminocervical neurons and related periorbital allodynia. PACAP-38 also caused activation and enhanced responses of dural-responsive pre-ganglionic pontine-superior salivatory parasympathetic neurons. Further, the PACAP-38 responsive receptor antagonists dissected a role of VPAC1 and PAC1 receptors in attenuating cranial-autonomic and trigeminal-neuronal responses to activation of the cranial parasympathetic projection, which requires post-ganglionic parasympathetic neurotransmission. CONCLUSION AND IMPLICATIONS: Given the prevailing view that sumatriptan acts to some degree via a peripheral mechanism, our data support that PACAP-38 mediated receptor activation modulates headache-related cranial-autonomic and trigeminovascular responses via peripheral and central components of the cranial parasympathetic projection. This provides a mechanistic rationale for the association of CAS with more severe headache phenotypes in cluster headache and migraine, and supports the cranial parasympathetic projection as a potential novel locus for treatment by selectively targeting PACAP-38 or PACAP-38 responsive VPAC1 /PAC1 receptors.


Assuntos
Cefaleia Histamínica , Transtornos de Enxaqueca , Ratos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Sumatriptana/farmacologia , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Cefaleia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...