Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.433
Filtrar
1.
EMBO Rep ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390257

RESUMO

Stress granules (SG) are membraneless ribonucleoprotein-based cytoplasmic organelles that assemble in response to stress. Their formation is often associated with an almost global suppression of translation, and the aberrant assembly or disassembly of these granules has pathological implications in neurodegeneration and cancer. In cancer, and particularly in the presence of oncogenic KRAS mutations, in vivo studies concluded that SG increase the resistance of cancer cells to stress. Hence, SG have recently been considered a promising target for therapy. Here, starting from our observations that genes coding for SG proteins are stimulated during development of pancreatic ductal adenocarcinoma, we analyze the formation of SG during tumorigenesis. We resort to in vitro, in vivo and in silico approaches, using mouse models, human samples and human data. Our analyses do not support that SG are formed during tumorigenesis of KRAS-driven cancers, at least that their presence is not universal, leading us to propose that caution is required before considering SG as therapeutic targets.

2.
Int Cancer Conf J ; 13(4): 493-498, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39398920

RESUMO

A 54-year-old man with resectable pancreatic cancer and abnormally high levels of carbohydrate antigen 19-9 (CA19-9) underwent 6 months of platinum-based chemotherapy. This treatment substantially reduced the primary tumor size and normalized CA19-9 levels. Subsequently, radical surgery was conducted. However, eight months post-surgery, CA19-9 levels re-elevated, and lymph-node recurrence was observed. The patient underwent treatment with poly(adenosine diphosphate ribose) polymerase inhibitors (PARPi) following the detection of frameshift L1904fs*5 via BRACAnalysis CDx. This mutation revealed a stop codon, leading to the inactivation of the BRCA function. Additionally, the patient tested positive for a mutation in the breast cancer susceptibility gene 2 (BRCA2). Two months after starting PARPi, there was evidence of tumor shrinkage. Nevertheless, 5 months later, CA19-9 levels increased again, and new metastatic tumors in the liver were identified. Genomic profiling test (FoundationOne CDx) of surgically resected specimens revealed a BRCA2 pL1908fs*2 mutation, indicating its location in the cis position on the same allele as the germline BRCA2 mutation. The pL1908fs*2 deletion, alongside the original L1904fs*5, resulted in three deletions, equating to one amino acid deletion. This deletion ultimately reversed the stop codon, leading to the restoration of BRCA2 functionality. Despite treatment with PARPi for postoperative recurrence, a sustained response was not achieved owing to BRCA reversion mutations. It is essential to acknowledge the rarity of BRCA reversion mutations, which limit the effectiveness of PARPi.

3.
Cell Oncol (Dordr) ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412616

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and several studies demonstrate that STAT3 has critical roles throughout the course of PDAC pathogenesis. METHODS: TCGA, microarray, and immunohistochemistry data from a PDAC cohort were used for clinical analyses. Panc89 cells with ADAM8 knockout, re-expression of ADAM8 mutants, and Panc1 cells overexpressing ADAM8 were generated. Gene expression analyses of ADAM8, STAT3, long non-coding (lnc) RNA NEAT1, miR-181a-5p and ICAM1 were performed by quantitative PCR. Subcellular fractionation quantified NEAT1 expression in cytoplasm and nucleus of PDAC cell lines. Cell proliferation, scratch, and invasion assays were performed to detect growth rate, migration and invasion capabilities of cells. Gain and loss of function experiments were carried out to investigate the biological effects of lncRNA NEAT1 and miR-181a-5p on PDAC cells and downstream genes. Dual-luciferase reporter gene assay determined interaction and binding sites of miR-181a-5p in lncRNA NEAT1. Pull down assays, RNA binding protein immunoprecipitation (RIP), and ubiquitination assays explored the molecular interaction between lncRNA NEAT1 and STAT3. RESULTS: High ADAM8 expression causes aberrant STAT3 signaling in PDAC cells and is positively correlated with NEAT1 expression. NEAT1 binding to STAT3 was confirmed and prevents STAT3 degradation in the proteasome as increased degradation of STAT3 was observed in ADAM8 knockout cells and cells treated with bortezomib. Furthermore, miRNA-181a-5p regulates NEAT1 expression by direct binding to the NEAT1 promoter. CONCLUSION: ADAM8 regulates intracellular STAT3 levels via miR-181a-5p and NEAT1 in pancreatic cancer.

4.
Pharmaceuticals (Basel) ; 17(10)2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39458993

RESUMO

Background: Pancreatic ductal adenocarcinoma (PDAC) is among the most aggressive forms of pancreatic cancer with a poor prognosis. YAP1 expression is markedly elevated in PDAC, but how it works is not clear. GL-V9, a derivative of the natural compound wogonin, effectively fights a variety of tumors; however, its effect on PDAC has not yet been studied. Methods: TCGA database analysis, Western blots, immunofluorescence, and real-time PCR were used to evaluate GL-V9's effect on YAP1 expression and mRNA levels. Immunofluorescence was used to examine the co-location of YAP1 with LAMP2 and p62. Co-immunoprecipitation was used to assess the binding of YAP1 to ubiquitin, p62, and TEAD1. A PDAC graft tumor model was used to test GL-V9's pharmacological effects. Western blots and immunohistochemistry were used to measure apoptosis- and autophagy-related protein expression. Results: GL-V9 effectively promoted the degradation of YAP1, reduced YAP1 nuclear localization, and induced mitochondrial apoptosis in PDAC cells. YAP1 overexpression led to the upregulation of Bcl-2 and attenuated the caspase cascade induced by GL-V9. Furthermore, we demonstrated that GL-V9 induced autophagosome-lysosome fusion via the AKT/mTOR/TFEB pathway, leading to mitochondrial apoptosis in PDAC cells. In vivo studies also confirmed that GL-V9 exerts anti-tumor effects by suppressing YAP1 expression, while also activating autophagy and inducing mitochondrial apoptosis in BXPC-3-bearing BALB/c nude mice. Conclusions: Our findings underscore the importance of autophagy-mediated YAP1 degradation in PDAC, providing a novel molecular rationale (GL-V9) as a promising treatment for this disease.

5.
Int J Mol Sci ; 25(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39456871

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with limited survival. Curative opportunities are only available for patients with resectable cancer. Palliative chemotherapy is the current standard of care for unresectable tumors. Numerous efforts have been made to investigate new therapeutic strategies for PDAC. Immunotherapy has been found to be effective in treating tumors with high microsatellite instability (MSI-H), including PDAC. The ability of the Endoscopic Ultrasound Fine Needle Biopsy (EUS-FNB) to reliably collect tissue could enhance new personalized treatment by permitting genomic alterations analysis. The aim of this study was to investigate the feasibility of obtaining adequate DNA for molecular analysis from EUS-FNB formalin-fixed-paraffin-embedded (FFPE) specimens. For this purpose, FFPE-DNA obtained from 43 PDAC archival samples was evaluated to verify adequacy in terms of quantity and quality and was tested to evaluate MSI-H status by droplet digital PCR (ddPCR). All samples were suitable for ddPCR analysis. Unlike the 1-2% MSI-H frequency found with traditional techniques, ddPCR detected this phenotype in 16.28% of cases. This study suggests the ddPCR ability to identify MSI-H phenotype, with the possibility of improving the selection of patients who may benefit from immunotherapy and who would be excluded by performing traditional diagnostic methods.


Assuntos
Carcinoma Ductal Pancreático , Instabilidade de Microssatélites , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/diagnóstico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/diagnóstico , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico/métodos , Reação em Cadeia da Polimerase/métodos , Feminino , Masculino , Idoso , Pessoa de Meia-Idade
6.
Cancer Metab ; 12(1): 28, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363341

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease characterized by complex metabolic rewiring that enables growth in changing nutrient availability and oxygen conditions. Transcriptome-based prognostic PDAC tumor subtypes, known as 'basal-like' and 'classical' subtypes are associated with differences in metabolic gene expression including genes involved in glycolysis. Tumor subtype-specific metabolism phenotypes may provide new targets for treatment development in PDAC, but their functional relevance has not been fully elucidated. We aimed to investigate differences in metabolic profiles and transcriptomes in tumor models derived from patients with basal-like and classical tumors. METHODS: Patient-derived organoids (PDOs) were established from tumor biopsies collected from patients with metastatic PDAC, including three PDOs from basal-like and five PDOs from classical tumors. Metabolic analyses included assessment of differences in metabolic activity using Seahorse Glycolysis and Mito Stress tests and 13C-glucose metabolites tracing analysis. In order to investigate the influence of mitochondrial pyruvate transport on metabolic differences, PDOs were treated with the mitochondrial pyruvate carrier 1 (MPC1) inhibitor UK-5099. Prognostic relevance of MPC1 was determined using a tumor tissue microarray (TMA) in resectable, and proteomics profiling in metastatic PDAC datasets. Whole genome and transcriptome sequencing, differential gene expression and gene set enrichment analyses were performed in PDOs. RESULTS: Metastatic PDAC PDOs showed subtype-specific differences in glycolysis and oxidative phosphorylation (OXPHOS). Basal-like tumor-derived PDOs had a lower baseline extracellular acidification rate, but higher glycolytic reserves and oxygen consumption rate (OCR) than classical tumor-derived PDOs. OCR difference was eliminated following treatment with UK-5099. In the 13C-glucose metabolites tracing experiment, a basal-like tumor PDO showed lower fractions of some M + 2 metabolites but higher sensitivity to UK-5099 mediated reduction in M + 2 metabolites than a classical tumor PDO. Protein level analyses revealed lower MPC1 protein levels in basal-like PDAC cases and association of low MPC1 levels with clinicopathologic parameters of tumor aggressiveness in PDAC. PDO differential gene expression analyses identified additional subtype-specific cellular pathways and potential disease outcome biomarkers. CONCLUSIONS: Our findings point to distinct metabolic profiles in PDAC subtypes with basal-like tumor PDOs showing higher OXPHOS and sensitivity to MPC1 inhibition. Subtypes-specific metabolic vulnerabilities may be exploited for selective therapeutic targeting.

7.
Microbiol Spectr ; : e0096224, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39387592

RESUMO

Pancreatic cancer, predominantly pancreatic ductal adenocarcinoma (PDAC), is one of the most malignant tumors of the digestive system. Emerging evidence suggests the involvement of the microbiome and metabolic substances in the development of PDAC, yet the results remain contradictory. This study aims to identify the alterations and relationships in intratumoral microbiome and metabolites in PDAC. We collected matched tumor and normal adjacent tissue (NAT) samples from 105 PDAC patients and performed a 6-year follow-up. 2bRAD-M sequencing, untargeted liquid chromatography-tandem mass spectrometry, and untargeted gas chromatography-mass spectrometry were performed. Compared with NATs, microbial α-diversity decreased in PDAC tumors. The relative abundance of Staphylococcus aureus, Cutibacterium acnes, and Cutibacterium granulosum was higher in PDAC tumor after adjusting for confounding factors body mass index and M stage, and the presence of Ralstonia pickettii_B was found associated with a worse overall survival. Metabolomic analysis revealed distinctive differences in composition between PDAC and NAT, with 553 discriminative metabolites identified. Differential metabolites were revealed to originate from the microbiota and showed significant interactions with shifted bacterial species through KO (KEGG Orthology) genes. These findings suggest that the PDAC microenvironment harbors unique microbial-derived enzymatic reactions, potentially influencing the occurrence and development of PDAC by modulating the levels of glycerol-3-phosphate, succinate, carbonate, and beta-alanine. IMPORTANCE: We conducted a large sample-size pancreatic adenocarcinoma microbiome study using a novel microbiome sequencing method and two metabolomic assays. Two significant outcomes of our analysis are: (i) commensal opportunistic pathogens Staphylococcus aureus, Cutibacterium acnes, and Cutibacterium granulosum were enriched in pancreatic ductal adenocarcinoma (PDAC) tumors compared with normal adjacent tissues, and (ii) worse overall survival was found related to the presence of Ralstonia pickettii_B. Microbial species affect the tumorigenesis, metastasis, and prognosis of PDAC via unique microbe-enzyme-metabolite interaction. Thus, our study highlights the need for further investigation of the potential associations between pancreatic microbiota-derived omics signatures, which may drive the clinical transformation of microbiome-derived strategies toward therapy-targeted bacteria.

8.
Biochim Biophys Acta Mol Cell Res ; 1872(1): 119854, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39353469

RESUMO

Anterior gradient 2 (AGR2) is often overexpressed in many human cancers, including pancreatic ductal adenocarcinoma (PDAC). Elevated AGR2 expression is known to play a critical role in tumor development, progression, and metastasis and positively correlates with poor patient survival. However, the relationship between AGR2 expression and tumor growth is not fully understood. Our study aims to investigate the impact of AGR2 knockdown on the survival of two pancreatic cancer cell lines, HPAF-II and PANC-1, that exhibit high AGR2 expression. This study revealed that the knockdown of AGR2 expression through an inducible shRNA-mediated approach reduced the proliferative ability and colony-forming potential of PDAC cells compared to scramble controls. Significantly, knocking down AGR2 led to the inhibition of multiple protein biosynthesis pathways and induced ER stress through unfolded protein response (UPR) activation. AGR2 knockdown induced ER stress and increased mitochondrial fission, while mitochondrial fusion remained unaffected. Ultimately, apoptotic cell death was heightened in AGR2 knockdown PDAC cells compared to the controls. Overall, these data reveal a new axis involving AGR2-ER stress-associated mitochondrial fission that could be targeted to improve PDAC patient outcomes.

10.
Mol Oncol ; 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39478658

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) comprises two clinically relevant molecular subtypes that are currently determined using tissue biopsies, which are spatially biased and highly invasive. We used whole transcriptome sequencing of 10 plasma samples with tumor-informed subtypes, complemented by proteomic analysis for minimally invasive identification of PDAC subtype markers. Data were validated in independent large cohorts and correlated with treatment response and patient outcome. Differential transcript abundance analyses revealed 32 subtype-specific, protein-coding cell-free RNA (cfRNA) transcripts. The subtype specificity of these transcripts was validated in two independent tissue cohorts comprising 195 and 250 cases, respectively. Three disease-relevant cfRNA-defined subtype markers (DEGS1, KDELC1, and RPL23AP7) that consistently associated with basal-like tumors across all cohorts were identified. In both tumor and liquid biopsies, the overexpression of these markers correlated with poor survival. Moreover, elevated levels of the identified markers were linked to a poor response to systemic therapy and early relapse in resected patients. Our data indicate clinical applicability of cfRNA markers in determining tumor subtypes and monitoring disease recurrence.

11.
BMC Cancer ; 24(1): 1308, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39448959

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge due to late-stage diagnoses resulting from nonspecific early symptoms and the absence of early diagnostic biomarkers. MicroRNAs (miRNAs) play a crucial role in regulating diverse biological processes, and their abnormal expression is observed in various diseases, including cancer. Cancer stem cells (CSCs) are thought to act as a driving force in PDAC spread and recurrence. In pursuing the goal of unravelling the complexities of PDAC and its underlying molecular mechanisms, our study aimed to identify PDAC-associated miRNAs and relate them to disease progression, focusing on their involvement in various PDAC stages in patients and in reliable in vitro models, including pancreatic CSC (PaCSC) models. METHODS: The miRNA profiling datasets of serum and solid biopsies of PDAC patients deposited in GEO DataSets were analyzed by REML-based meta-analysis. The panel was then investigated by Real Time PCR in serum and solid biopsies of 37 PDAC patients enrolled in the study, as well as on BxPC-3 and AsPC-1 PDAC cell lines. We extended our focus towards a possible role of PDAC-associated miRNAs in the CSC phenotype, by inducing CSC-enriched pancreatospheres from BxPC-3 and AsPC-1 PDAC cell lines and performed differential miRNA expression analysis between PaCSCs and monolayer-grown PDAC cell lines. RESULTS: Meta-analysis showed differentially expressed miRNAs in blood samples and cancerous tissues of PDAC patients, allowing the identification of a panel of 9 PDAC-associated miRNAs. The results emerging from our patients fully confirmed the meta-analysis for the majority of miRNAs under investigation. In vitro tasks confirmed the aberrant expression of the panel of PDAC-associated miRNAs, with a dramatic dysregulation in PaCSC models. Notably, PaCSCs have shown significant overexpression of miR-4486, miR-216a-5p, and miR-216b-5p compared to PDAC cell lines, suggesting the recruitment of such miRNAs in stemness-related molecular mechanisms. Globally, our results showed a dual behaviour of miR-216a-5p and miR-216b-5p in PDAC while miR-4486, miR-361-3p, miR-125a-5p, miR-320d expression changes during the disease suggest they could promote PDAC initiation and progression. CONCLUSIONS: This study contributed to an enhanced comprehension of the role of miRNAs in the development and progression of PDAC, shedding new light on the miRNA landscape in PDAC and its intricate interplay with CSCs, and providing specific insights useful in the development of miRNA-based diagnostic biomarkers and therapeutic targets.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , MicroRNAs , Células-Tronco Neoplásicas , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Feminino , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Biomarcadores Tumorais/genética , Masculino , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Idoso , Perfilação da Expressão Gênica , Progressão da Doença
12.
Anticancer Res ; 44(11): 4737-4749, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39477301

RESUMO

BACKGROUND/AIM: The membrane-bound protein lymphocyte antigen 6 family member D (LY6D), a marker of early B cell lineage is reportedly expressed in several human malignancies and has been implicated in cancer stemness. However, its expression and role in cancer stemness remain largely unexplored in pancreatic ductal adenocarcinoma (PDAC). The aim of this study was to clarify the role of LY6D in PDAC. MATERIALS AND METHODS: We conducted functional analysis of LY6D to evaluate its impact on the malignant features of PDAC cells in vitro. Using our in-house developed stem cell separation technique, which isolates cells with low proteasome activity and CD44 v9 cell surface marker for cancer stem cells, we performed sphere formation and chemosensitivity tests and tumor formation assay in mice, through knockdown of LY6D expression. Immuno-histopathological analysis was also conducted to reveal the clinical significance of LY6D in PDAC. RESULTS: In vitro functional assays demonstrated that LY6D was critically involved in promoting the cancer malignant phenotype, including increased invasive ability, drug resistance, migration capacity, and cancer stemness. Immunohistopathological analysis revealed that high LY6D expression levels were associated with high recurrence rates and poorer prognosis in PDAC. CONCLUSION: Our study showed that LY6D is a novel prognostic indicator and plays a key role in regulation of cancer stemness in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Células-Tronco Neoplásicas , Neoplasias Pancreáticas , Humanos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Animais , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Camundongos , Linhagem Celular Tumoral , Progressão da Doença , Fenótipo , Antígenos Ly/metabolismo , Prognóstico , Masculino , Feminino , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Movimento Celular , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/imunologia
13.
Biomedicines ; 12(10)2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39457488

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), a leading cause of cancer mortality in the United States, presents significant treatment challenges due to its late diagnosis and poor prognosis. Despite advances, the five-year survival rates remain dismally low, with only a fraction of patients eligible for potentially curative surgical interventions. This review aims to comprehensively examine the current landscape of targeted therapies in PDAC, focusing on recent developments in precision medicine approaches. We explore various molecular targets, including KRAS mutations, DNA damage repair deficiencies, mismatch repair pathway alterations, and rare genetic fusions. The review discusses emerging therapies, such as PARP inhibitors, immune checkpoint inhibitors, and novel targeted agents, like RET and NTRK inhibitors. We analyze the results of key clinical trials and highlight the potential of these targeted approaches in specific patient subgroups. Recent developments in PDAC research have emphasized precision oncology, facilitated by next-generation sequencing and the identification of genetic and epigenetic alterations. This approach tailors treatments to individual genetic profiles, improving outcomes and reducing side effects. Significant strides have been made in classifying PDAC into various subtypes, enhancing therapeutic precision. The identification of specific mutations in genes like KRAS, along with advancements in targeted therapies, including small molecule inhibitors, offers new hope. Furthermore, emerging therapies targeting DNA repair pathways and immunotherapeutic strategies also show promising results. As research evolves, integrating these targeted therapies with conventional treatments might improve survival rates and quality of life for PDAC patients, underscoring the shift towards a more personalized treatment paradigm.

15.
Cancer Lett ; 605: 217284, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366545

RESUMO

Chemoresistance remains a formidable challenge in pancreatic ductal adenocarcinoma (PDAC) treatment, necessitating a comprehensive exploration of underlying molecular mechanisms. This work aims to investigate the dynamic epigenetic landscape during the development of gemcitabine resistance in PDAC, with a specific focus on super-enhancers and their regulatory effects. We employed well-established gemcitabine-resistant (Gem-R) PDAC cell lines to perform high-throughput analyses of the epigenome, enhancer connectome, and transcriptome. Our findings revealed notable alterations in the epigenetic landscape and genome architecture during the transition from gemcitabine-sensitive to -resistant PDAC cells. Remarkably, we observed substantial plasticity in the activation status of super-enhancers, with a considerable proportion of these cis-elements becoming deactivated in chemo-resistant cells. Furthermore, we pinpointed the NDRG1 super-enhancer (NDRG1-SE) as a crucial regulator in gemcitabine resistance among the loss-of-function super-enhancers. NDRG1-SE deactivation induced activation of WNT/ß-catenin signaling, thereby conferring gemcitabine resistance. This work underscores a NDRG1 super-enhancer deactivation-driven ß-catenin pathway activation as a crucial regulator in the acquisition of gemcitabine-resistance. These findings advance our understanding of PDAC biology and provide valuable insights for the development of effective therapeutic approaches against chemoresistance in this malignant disease.

16.
Int J Mol Sci ; 25(20)2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39457004

RESUMO

The treatment of pancreatic ductal adenocarcinoma (PDAC) is an unmet challenge, with the median overall survival rate remaining less than a year, even with the use of FOLFIRINOX-based therapies. This study analyzed archived macrophage-associated mRNA expression using datasets deposited in the UCSC Xena web platform to compare normal pancreatic tissue and PDAC tumor samples. The TGFB2 gene exhibited low mRNA expression levels in normal tissue, with less than one TPM. In contrast, in tumor tissue, TGFB2 expression levels exhibited a 7.9-fold increase in mRNA expression relative to normal tissue (p < 0.0001). Additionally, components of the type-I interferon signaling pathway exhibited significant upregulation of mRNA levels in tumor tissue, including Interferon alpha/beta receptor 1 (IFNAR1; 3.4-fold increase, p < 0.0001), Interferon regulatory factor 9 (IRF9; 4.2-fold increase, p < 0.0001), Signal transducer and activator of transcription 1 (STAT1; 7.1-fold increase, p < 0.0001), and Interferon Alpha Inducible Protein 27 (IFI27; 66.3-fold increase, p < 0.0001). We also utilized TCGA datasets deposited in cBioportal and KMplotter to relate mRNA expression levels to overall survival outcomes. These increased levels of mRNA expression were found to be prognostically significant, whereby patients with high expression levels of either TGFB2, IRF9, or IFI27 showed median OS times ranging from 16 to 20 months (p < 0.01 compared to 72 months for patients with low levels of expression for both TGFB2 and either IRF9 or IFI27). Examination of the KMplotter database determined the prognostic impact of TGFB2 mRNA expression levels by comparing patients expressing high versus low levels of TGFB2 (50th percentile cut-off) in low macrophage TME. In TME with low macrophage levels, patients with high levels of TGFB2 mRNA exhibited significantly shorter OS outcomes than patients with low TGFB2 mRNA levels (Median OS of 15.3 versus 72.7 months, p < 0.0001). Furthermore, multivariate Cox regression models were applied to control for age at diagnosis. Nine genes exhibited significant increases in hazard ratios for TGFB2 mRNA expression, marker gene mRNA expression, and a significant interaction term between TGFB2 and marker gene expression (mRNA for markers: C1QA, CD74, HLA-DQB1, HLA-DRB1, HLA-F, IFI27, IRF9, LGALS9, MARCO). The results of our study suggest that a combination of pharmacological tools can be used in treating PDAC patients, targeting both TGFB2 and the components of the type-I interferon signaling pathway. The significant statistical interaction between TGFB2 and the nine marker genes suggests that TGFB2 is a negative prognostic indicator at low levels of the IFN-I activated genes and TAM marker expression, including the immune checkpoint LGALS9 (upregulated 16.5-fold in tumor tissue; p < 0.0001).


Assuntos
Carcinoma Ductal Pancreático , Regulação Neoplásica da Expressão Gênica , Fator Gênico 3 Estimulado por Interferon, Subunidade gama , Neoplasias Pancreáticas , RNA Mensageiro , Fator de Crescimento Transformador beta2 , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Feminino , Masculino , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Pessoa de Meia-Idade , Idoso , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Galectinas
17.
Artigo em Inglês | MEDLINE | ID: mdl-39422735

RESUMO

PURPOSE: Sonodynamic therapy (SDT) is a promising strategy as an "in situ vaccine" to enhance activation of antitumor immune responses in solid tumors. However, the dense extracellular matrix (ECM) in pancreatic ductal adenocarcinoma (PDAC) lead to hypoxia and limited penetration of most drugs, aggravating the immunosuppressive tumor microenvironment and limiting the efficacy of synergistic sonodynamic immunotherapy. Therefore, it is essential to regulate ECM in order to alleviate tumor hypoxia and enhance the efficacy of sonodynamic immunotherapy for PDAC. METHODS: The CPIM nanoplatform, consisting of a macrophage membrane-coated oxygen and drug delivery system (CM@PFOB-ICG-α-Mangostin), was synthesized using ultrasound and extrusion methods. The in vivo homologous targeting and hypoxia alleviation capabilities of CPIM were evaluated through near-infrared (NIR) imaging and photoacoustic (PA) imaging. The tumor growth inhibition potential and ability to reprogram the tumor microenvironment by the CPIM nanoplatform were also investigated. RESULTS: Co-delivery of α-Mangostin inhibits CAFs and enhances stromal depletion, thereby facilitating better infiltration of macromolecules. Additionally, the nanoemulsion containing perfluorocarbon (PFC) can target tumor cells and accumulate within them through homologous targeting. The US irradiation results in the rapid release of oxygen, serving as a potential source of sonodynamic therapy for hypoxic tumors. Moreover, CPIM reshapes the immunosuppressive microenvironment increasing the population of cytotoxic T lymphocytes (CTLs), and enhancing their anti-tumor immune response through the use of anti-PDL1 antibodies to block immune checkpoints. CONCLUSION: The present study offers a potential strategy for the co-delivery of oxygen and α-Mangostin, aiming to enhance the penetration of tumors to improve SDT. This approach effectively addresses the existing limitations of immune checkpoint blockade (ICB) treatment in solid tumors, while simultaneously boosting the immune response through synergistic sonodynamic immunotherapy.

18.
Front Oncol ; 14: 1411096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39435278

RESUMO

Introduction: Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a poor survival outcome. Predicting patient survival allows physicians to tailor treatments to specific individuals. Thus, a simple and cost-effective prognosis model is sorely needed. Methods: This retrospective study assesses the prognostic value of blood biomarkers in advanced and metastatic PDAC patients (n=96) from Spain. Cut-off points for hematological parameters were calculated and correlated with overall survival (OS) using Kaplan-Meier, log-rank test, robust Cox proportional hazards and logistic regressions. Results: In univariate analysis, individuals with low levels of GGT, LDH, ALP, leukocyte-, neutrophil- and monocyte counts showed significantly longer survival than patients with higher levels. In multivariate analysis, lower levels of GGT (HR (95%CI), 2.734 (1.223-6.111); p=0.014), LDH (HR (95%CI), 1.876 (1.035-3.400); p=0.038) and monocyte count (HR (95%CI), 1.657 (1.095-2.506); p = 0.017) remained significantly beneficial. In consequence, we propose a prognostic model based on logistic regression (AUC=0.741) of these three biomarkers as a pioneer tool to estimate OS in PDAC. Conclusion: This study has demonstrated that the joint use of GGT (<92.00), LDH (<220.00) and monocyte count (<800) are independent positive prognostic factors in PDAC that can predict one-year survival in a novel prognostic logistic model.

19.
Cancer Lett ; 604: 217275, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39321913

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy, with limited therapeutic options. Here, we evaluated the role of regulator of chromosome condensation 1 (RCC1) in PDAC. RCC1 functions as a guanine exchange factor for GTP-binding nuclear protein Ran (Ran) GTPase and is involved in nucleocytoplasmic transport. RCC1 RNA expression is elevated in PDAC tissues compared to normal pancreatic tissues and correlates with poor prognosis. RCC1 silencing by RNAi and CRISPR-Cas9 knockout (KO) results in reduced proliferation in 2-D and 3-D cell cultures. RCC1 knockdown (KD) reduced migration and clonogenicity, enhanced apoptosis, and altered cell cycle progression in human PDAC and murine cells from LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre (KPC) tumors. Mechanistically, RCC1 KO shows widespread transcriptomic alterations including regulation of PTK7, a co-receptor of the Wnt signaling pathway. RCC1 KD disrupted subcellular Ran localization and the Ran gradient. Nuclear and cytosolic proteomics revealed altered subcellular proteome localization in Rcc1 KD KPC-tumor-derived cells and several altered metabolic biosynthesis pathways. In vivo, RCC1 KO cells show reduced tumor growth potential when injected as sub-cutaneous xenografts. Finally, RCC1 KD sensitized PDAC cells to gemcitabine chemotherapy treatment. This study reveals the role of RCC1 in pancreatic cancer as a novel molecular vulnerability that could be exploited to enhance therapeutic response.


Assuntos
Carcinoma Ductal Pancreático , Proliferação de Células , Fatores de Troca do Nucleotídeo Guanina , Neoplasias Pancreáticas , Proteína ran de Ligação ao GTP , Humanos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Proteína ran de Ligação ao GTP/metabolismo , Proteína ran de Ligação ao GTP/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Animais , Camundongos , Linhagem Celular Tumoral , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Gencitabina , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Movimento Celular , Apoptose
20.
J Adv Res ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270979

RESUMO

INTRODUCTION: Gemcitabine (GEM) is the first-line drug for pancreatic ductal adenocarcinoma (PDAC), but drug resistance severely restricts its chemotherapeutic efficacy. Laminin subunit γ2 (LAMC2) plays a crucial role in extracellular matrix formation in the development of GEM-resistance. However, the biological function of LAMC2 in GEM resistance and its molecular mechanisms are still unclear. 20(S)-Ginsenoside Rh2 (Rh2), one of the principal active components isolated from Ginseng Radix et Rhizoma, possesses strong anti-tumor effects. However, the effects of Rh2 on overcoming GEM resistance and its action mechanisms remain to be elucidated. OBJECTIVES: This study aimed to determine the efficacy of Rh2 on overcoming GEM resistance and to explore its underlying molecular mechanisms. METHODS: Clinical study, Western blotting, publicly available databasesand bioinformatic analyses were performed to investigate the protein expression of LAMC2 in the GEM-resistant PDAC patients and the acquired GEM-resistant PDAC cells. Then, the effects of Rh2 on overcoming the GEM resistance in PDAC were evaluated both in vitro and in vivo. Stable silencing or overexpression of LAMC2 in the GEM-resistant PDAC cells were established for validating the role of LAMC2 on Rh2 overcoming the GEM resistance in PDAC. RESULTS: The protein expression of LAMC2 was markedly increased in the GEM-resistant PDAC patient biopsies compared to the sensitive cases. The protein expression of LAMC2 was significantly higher in the acquired GEM-resistant PDAC cells than that in their parental cells. Rh2 enhanced the chemosensitivity of GEM in the GEM-resistant PDAC cells, and inhibited the tumor growth of Miapaca-2-GR cell-bearing mice and Krastm4TyjTrp53tm1BrnTg (Pdx1-cre/Esr1*) #Dam/J (KPC) mice. Rh2 effectively reversed the GEM resistance in Miapaca-2-GR and Capan-2-GR cells by inhibiting LAMC2 expression through regulating the ubiquitin-proteasome pathway. Knockdown of LAMC2 enhanced the chemosensitivity of GEM and the effects of Rh2 on overcoming the GEM resistance in PDAC cells and the orthotopic PDAC mouse model. Conversely, LAMC2 overexpression aggravated the chemoresistance of GEM and abolished the effects of Rh2 on overcoming GEM resistance via modulating ATP-binding cassette (ABC) transporters leading to the active GEM efflux. CONCLUSIONS: LAMC2 plays an important role in the GEM resistance in PDAC, and Rh2 is a potential adjuvant for overcoming the chemoresistance of GEM in PDAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...