Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Glia ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989661

RESUMO

Rapid nerve conduction in the peripheral nervous system (PNS) is facilitated by the multilamellar myelin sheath encasing many axons of peripheral nerves. Charcot-Marie-Tooth type 1A (CMT1A), and hereditary neuropathy with liability to pressure palsy (HNPP) are common demyelinating inherited peripheral neuropathies and are caused by mutations in the peripheral myelin protein 22 (PMP22) gene. Duplication of PMP22 leads to its overexpression and causes CMT1A, while its deletion results in PMP22 under expression and causes HNPP. Here, we investigated novel targets for modulating the protein level of PMP22 in HNPP. We found that genetic attenuation of the transcriptional coactivator Yap in Schwann cells reduces p-TAZ levels, increased TAZ activity, and increases PMP22 in peripheral nerves. Based on these findings, we ablated Yap alleles in Schwann cells of the Pmp22-haploinsufficient mouse model of HNPP and identified fewer tomacula on morphological assessment and improved nerve conduction in peripheral nerves. These findings suggest YAP modulation may be a new avenue for treatment of HNPP.

2.
Biochem Soc Trans ; 52(4): 1747-1756, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38979632

RESUMO

Underexpression, overexpression, and point mutations in peripheral myelin protein 22 (PMP22) cause most cases of Charcot-Marie-Tooth disease (CMTD). While its exact functions remain unclear, PMP22 is clearly essential for formation and maintenance of healthy myelin in the peripheral nervous system. This review explores emerging evidence for roles of PMP22 in cholesterol homeostasis. First, we highlight dysregulation of lipid metabolism in PMP22-based forms of CMTD and recently-discovered interactions between PMP22 and cholesterol biosynthesis machinery. We then examine data that demonstrates PMP22 and cholesterol co-traffic in cells and co-localize in lipid rafts, including how disease-causing PMP22 mutations result in aberrations in cholesterol localization. Finally, we examine roles for interactions between PMP22 and ABCA1 in cholesterol efflux. Together, this emerging body of evidence suggests that PMP22 plays a role in facilitating enhanced cholesterol synthesis and trafficking necessary for production and maintenance of healthy myelin.


Assuntos
Doença de Charcot-Marie-Tooth , Colesterol , Homeostase , Proteínas da Mielina , Células de Schwann , Colesterol/metabolismo , Humanos , Células de Schwann/metabolismo , Proteínas da Mielina/metabolismo , Proteínas da Mielina/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/genética , Animais , Bainha de Mielina/metabolismo , Metabolismo dos Lipídeos , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Mutação
3.
J Struct Biol X ; 9: 100100, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38883400

RESUMO

NMR spectroscopy has played a pivotal role in fragment-based drug discovery by coupling detection of weak ligand-target binding with structural mapping of the binding site. Fragment-based screening by NMR has been successfully applied to many soluble protein targets, but only to a limited number of membrane proteins, despite the fact that many drug targets are membrane proteins. This is partly because of difficulties preparing membrane proteins for NMR-especially human membrane proteins-and because of the inherent complexity associated with solution NMR spectroscopy on membrane protein samples, which require the inclusion of membrane-mimetic agents such as micelles, nanodiscs, or bicelles. Here, we developed a generalizable protocol for fragment-based screening of membrane proteins using NMR. We employed two human membrane protein targets, both in fully protonated detergent micelles: the single-pass C-terminal domain of the amyloid precursor protein, C99, and the tetraspan peripheral myelin protein 22 (PMP22). For both we determined the optimal NMR acquisition parameters, protein concentration, protein-to-micelle ratio, and upper limit to the concentration of D6-DMSO in screening samples. Furthermore, we conducted preliminary screens of a plate-format molecular fragment mixture library using our optimized conditions and were able to identify hit compounds that selectively bound to the respective target proteins. It is hoped that the approaches presented here will be useful in complementing existing methods for discovering lead compounds that target membrane proteins.

4.
J Peripher Nerv Syst ; 29(2): 202-212, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581130

RESUMO

BACKGROUND: Caused by duplications of the gene encoding peripheral myelin protein 22 (PMP22), Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common hereditary neuropathy. Despite this shared genetic origin, there is considerable variability in clinical severity. It is hypothesized that genetic modifiers contribute to this heterogeneity, the identification of which may reveal novel therapeutic targets. In this study, we present a comprehensive analysis of clinical examination results from 1564 CMT1A patients sourced from a prospective natural history study conducted by the RDCRN-INC (Inherited Neuropathy Consortium). Our primary objective is to delineate extreme phenotype profiles (mild and severe) within this patient cohort, thereby enhancing our ability to detect genetic modifiers with large effects. METHODS: We have conducted large-scale statistical analyses of the RDCRN-INC database to characterize CMT1A severity across multiple metrics. RESULTS: We defined patients below the 10th (mild) and above the 90th (severe) percentiles of age-normalized disease severity based on the CMT Examination Score V2 and foot dorsiflexion strength (MRC scale). Based on extreme phenotype categories, we defined a statistically justified recruitment strategy, which we propose to use in future modifier studies. INTERPRETATION: Leveraging whole genome sequencing with base pair resolution, a future genetic modifier evaluation will include single nucleotide association, gene burden tests, and structural variant analysis. The present work not only provides insight into the severity and course of CMT1A, but also elucidates the statistical foundation and practical considerations for a cost-efficient and straightforward patient enrollment strategy that we intend to conduct on additional patients recruited globally.


Assuntos
Doença de Charcot-Marie-Tooth , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Humanos , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Índice de Gravidade de Doença , Criança , Proteínas da Mielina/genética , Seleção de Pacientes , Fenótipo , Idoso , Genes Modificadores , Pré-Escolar
5.
Cureus ; 16(3): e55948, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38601388

RESUMO

Hereditary neuropathy with liability to pressure palsy (HNPP) is an autosomal dominant disorder caused by heteroplasmic deletion of the peripheral myelin protein 22 (PMP22) gene. HNPP typically presents with clinical features such as peroneal nerve palsy or cubital tunnel syndrome, which are caused by mechanical compression. Diagnosing cases where neuropathy is absent at the pressure site can be challenging. This is a case study of an 18-year-old man who underwent surgery on the left side of his neck over 10 years ago to remove lymphadenopathy. Following the surgery, he experienced recurrent weakness but only sought medical attention when muscle weakness persisted for longer than a week postoperatively. Upon admission, the patient exhibited neurological symptoms consistent with C5 neuropathy, mainly affecting the deltoid muscles. No serological abnormalities were found to be associated with neuropathy. Neither magnetic resonance imaging nor computed tomography scans detected any lesions around the C5 nerve root. The posture during sleep was believed to cause excessive extension of the C5 nerve root, leading to the assumption that there was some vulnerability in the nerve. A transient sensory loss in the area innervated by the ulnar nerve prompted us to examine the fluorescence in situ hybridization study on the blood sample, which revealed a deletion of the PMP22 gene. The patient was diagnosed with HNPP and was advised to avoid risky postures. Following the implementation of these lifestyle changes, he did not experience any further weakness in his shoulders.

6.
Healthcare (Basel) ; 12(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667620

RESUMO

Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant demyelinating neuropathy characterized by an increased susceptibility to peripheral nerve injury from trauma, compression, or shear forces. Patients with this condition are unique, necessitating distinct considerations for anesthesia and surgical teams. This review describes the etiology, prevalence, clinical presentation, and management of HNPP and presents contemporary evidence and recommendations for optimal care for HNPP patients in the perioperative period. While the incidence of HNPP is reported at 7-16:100,000, this figure may be an underestimation due to underdiagnosis, further complicating medicolegal issues. With the subtle nature of symptoms associated with HNPP, patients with this condition may remain unrecognized during the perioperative period, posing significant risks. Several aspects of caring for this population, including anesthetic choices, intraoperative positioning, and monitoring strategy, may deviate from standard practices. As such, a tailored approach to caring for this unique population, coupled with meticulous preoperative planning, is crucial and requires a multidisciplinary approach.

7.
J Neuropathol Exp Neurol ; 83(5): 318-330, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38472136

RESUMO

Charcot-Marie-Tooth disease type 1A (CMT1A) is a demyelinating peripheral neuropathy caused by the duplication of peripheral myelin protein 22 (PMP22), leading to muscle weakness and loss of sensation in the hands and feet. A recent case-only genome-wide association study of CMT1A patients conducted by the Inherited Neuropathy Consortium identified a strong association between strength of foot dorsiflexion and variants in signal induced proliferation associated 1 like 2 (SIPA1L2), indicating that it may be a genetic modifier of disease. To validate SIPA1L2 as a candidate modifier and to assess its potential as a therapeutic target, we engineered mice with deletion of exon 1 (including the start codon) of the Sipa1l2 gene and crossed them to the C3-PMP22 mouse model of CMT1A. Neuromuscular phenotyping showed that Sipa1l2 deletion in C3-PMP22 mice preserved muscular endurance assayed by inverted wire hang duration and changed femoral nerve axon morphometrics such as myelin thickness. Gene expression changes suggest involvement of Sipa1l2 in cholesterol biosynthesis, a pathway that is also implicated in C3-PMP22 mice. Although Sipa1l2 deletion did impact CMT1A-associated phenotypes, thereby validating a genetic interaction, the overall effect on neuropathy was mild.


Assuntos
Doença de Charcot-Marie-Tooth , Estudo de Associação Genômica Ampla , Animais , Camundongos , Axônios/metabolismo , Doença de Charcot-Marie-Tooth/genética , Debilidade Muscular , Bainha de Mielina/metabolismo
8.
Eur J Neurol ; 31(5): e16199, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409938

RESUMO

BACKGROUND AND PURPOSE: Charcot-Marie-Tooth disease type 1A (CMT1A) is the most prevalent hereditary neuropathy worldwide and classically has slow nerve conduction velocity (NCV), in most cases below 38 m/s. Two unrelated patients with motor NCVs in the upper limbs above 38 m/s are reported. METHOD: Case report. RESULTS: Two genetically confirmed CMT1A patients are presented, from two unrelated families (one of British origin and the other of Brazilian origin). Both individuals had upper limb motor NCVs above 38 m/s, with values ranging from 41.9 to 45 m/s in the median nerve and from 42 to 42.3 m/s in the ulnar nerve. They presented with a very mild phenotype, with CMT Neuropathy Score version 2 (CMTNSv2) of 6 and 5, respectively. In contrast, affected family members within both kinships exhibited a classical phenotype with more severe disease manifestation (CMTNSv2 ranging from 12 to 20) and motor NCVs below 30 m/s. CONCLUSION: These cases, although very rare, highlight the importance of testing PMP22 duplication in patients with intermediate conduction velocities.


Assuntos
Doença de Charcot-Marie-Tooth , Humanos , Doença de Charcot-Marie-Tooth/genética , Fenótipo , Condução Nervosa , Nervo Mediano , Família
9.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38378628

RESUMO

Altered expression of peripheral myelin protein 22 (PMP22) results in demyelinating peripheral neuropathy. PMP22 exhibits a highly restricted tissue distribution with marked expression in the myelinating Schwann cells of peripheral nerves. Auditory and vestibular Schwann cells and the afferent neurons also express PMP22, suggesting a unique role in hearing and balancing. Indeed, neuropathic patients diagnosed with PMP22-linked hereditary neuropathies often present with auditory and balance deficits, an understudied clinical complication. To investigate the mechanism by which abnormal expression of PMP22 may cause auditory and vestibular deficits, we studied gene-targeted PMP22-null mice. PMP22-null mice exhibit an unsteady gait, have difficulty maintaining balance, and live for only ∼3-5 weeks relative to unaffected littermates. Histological analysis of the inner ear revealed reduced auditory and vestibular afferent nerve myelination and profound Na+ channel redistribution without PMP22. Yet, Na+ current density was unaltered, in stark contrast to increased K+ current density. Atypical postsynaptic densities and a range of neuronal abnormalities in the organ of Corti were also identified. Analyses of auditory brainstem responses (ABRs) and vestibular sensory-evoked potential (VsEP) revealed that PMP22-null mice had auditory and vestibular hypofunction. These results demonstrate that PMP22 is required for hearing and balance, and the protein is indispensable for the formation and maintenance of myelin in the peripheral arm of the eighth nerve. Our findings indicate that myelin abnormalities and altered signal propagation in the peripheral arm of the auditory nerve are likely causes of auditory deficits in patients with PMP22-linked neuropathies.


Assuntos
Doenças Desmielinizantes , Proteínas da Mielina , Animais , Humanos , Camundongos , Doenças Desmielinizantes/metabolismo , Camundongos Knockout , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Células de Schwann/metabolismo
10.
Clin Case Rep ; 12(1): e8358, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38161636

RESUMO

This report highlights the successful treatment of a Charcot-Marie-Tooth disease case using the Regentime stem cell procedure, suggesting its potential as a promising therapeutic approach for patients suffering from this challenging condition.

11.
J Hand Surg Eur Vol ; 49(2): 257-263, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37717179

RESUMO

The aim of this single-centre retrospective study was to evaluate the outcomes of carpal tunnel release surgery in patients with hereditary neuropathy with pressure palsies (HNPP). The secondary aims were to identify prognostic factors for the outcome of carpal tunnel release and to assess the outcome of cubital tunnel release. Our primary hypothesis was postoperative improvement. In total, 18 patients (26 carpal tunnel releases) with at least one symptomatic carpal tunnel syndrome were included. At a median follow-up of 8.5 years, more than 73% of the patients were satisfied with the results. The visual analogue scale (0 to 10) for discomfort decreased by 2.2 points (p < 0.001). The Boston Carpal Tunnel Questionnaire symptom severity scale decreased by 1.3 points (p < 0.001). The decrease in the Functional Status Scale was not significant. No significant prognostic factor for outcome was identified. A total of 12 patients also underwent cubital tunnel release, and three patients underwent just this procedure (23 procedures). Despite the lack of preoperative data, cubital tunnel release provided encouraging results. Level of evidence: III.


Assuntos
Síndrome do Túnel Carpal , Humanos , Estudos Retrospectivos , Síndrome do Túnel Carpal/cirurgia , Medição da Dor , Paralisia , Extremidade Superior
12.
Intern Med ; 63(2): 315-318, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37225480

RESUMO

Charcot-Marie-Tooth (CMT) disease is a heterogeneous hereditary motor and sensory neuropathy of the peripheral nervous system, with CMT1A in particular being the most common form. We encountered a 76-year-old woman with CMT1A who had a history of pain attacks and hearing loss from a young age, with motor symptoms manifesting late in life. Her pain and hearing loss may have been related to CMT. Our case also raises the possibility that neuropathic pain and hearing loss may precede the classic motor symptoms of CMT1A.


Assuntos
Doença de Charcot-Marie-Tooth , Surdez , Perda Auditiva , Neuropatia Hereditária Motora e Sensorial , Feminino , Humanos , Idoso , Doença de Charcot-Marie-Tooth/complicações , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Perda Auditiva/etiologia , Perda Auditiva/genética , Dor , Proteínas da Mielina/genética
13.
Heliyon ; 9(11): e22196, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045147

RESUMO

Background: Charcot-Marie-Tooth type 1A (CMT1A), the most frequent type of Charcot-Marie-Tooth disease, is mainly caused by a 1.4-Mb duplication containing the PMP22 gene. There is no effective treatment other than general supportive care and symptomatic treatment. Preimplantation genetic testing for monogenic defects (PGT-M) is an alternative approach for obtaining healthy babies. Methods: A new technology and analysis method based on next-generation sequencing (NGS) was developed to detect duplication mutations directly. Simultaneously, aneuploidy and linkage analyses were performed to achieve a comprehensive and accurate embryo diagnosis. Results: Eight couples were recruited in this study; PMP22 duplication was validated in seven couples, and PMP22 splicing mutation was found in one. Forty-five embryos from 12 PGT cycles were successfully detected using this novel method. The direct detection results for all embryos were consistent with the linkage analyses, suggesting a 100 % accuracy rate, and the aneuploidy rate of the biopsied blastocysts was 33.3 %. Eventually, 18 of the 45 diagnosed embryos were deemed suitable for transfer. Four healthy babies from three families were delivered and their genetic status confirmed by amniocentesis. Additionally, there were no adverse effects of anesthesia or increased pregnancy complications during PGT-M in female patients with CMT1A. Conclusions: This study provided a simple, reliable, and efficient method that can directly detect PMP22 mutations based on NGS data and does not require positive family members. A clinical workflow for CMT1A interruption in the offspring before embryo implantation is also summarized.

14.
Neurogenetics ; 24(4): 291-301, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37606798

RESUMO

Charcot-Marie-Tooth disease (CMT) is a heterogeneous set of hereditary neuropathies whose genetic causes are not fully understood. Here, we characterize three previously unknown variants in PMP22 and assess their effect on the recently described potential CMT biomarkers' growth differentiation factor 15 (GDF15) and neurofilament light (NFL): first, a heterozygous PMP22 c.178G > A (p.Glu60Lys) in one mother-son pair with adult-onset mild axonal neuropathy. The variant led to abnormal splicing, confirmed in fibroblasts by reverse transcription PCR. Second, a de novo PMP22 c.35A > C (p.His12Pro), and third, a heterozygous 3.2 kb deletion predicting loss of exon 4. The latter two had severe CMT and ultrasonography showing strong nerve enlargement similar to a previous case of exon 4 loss due to a larger deletion. We further studied patients with PMP22 duplication (CMT1A) finding slightly elevated plasma NFL, as measured by the single molecule array immunoassay (SIMOA). In addition, plasma GDF15, as measured by ELISA, correlated with symptom severity for CMT1A. However, in the severely affected individuals with PMP22 exon 4 deletion or p.His12Pro, these biomarkers were within the range of variability of CMT1A and controls, although they had more pronounced nerve hypertrophy. This study adds p.His12Pro and confirms PMP22 exon 4 deletion as causes of severe CMT, whereas the previously unknown splice variant p.Glu60Lys leads to mild axonal neuropathy. Our results suggest that GDF15 and NFL do not distinguish CMT1A from advanced hypertrophic neuropathy caused by rare PMP22 variants.


Assuntos
Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Adulto , Humanos , Fator 15 de Diferenciação de Crescimento/genética , Filamentos Intermediários , Proteínas da Mielina/genética , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/diagnóstico , Biomarcadores
15.
Handb Clin Neurol ; 195: 609-617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37562889

RESUMO

The hereditary neuropathies, collectively referred as Charcot-Marie-Tooth disease (CMT) and related disorders, are heterogeneous genetic peripheral nerve disorders that collectively comprise the commonest inherited neurological disease with an estimated prevalence of 1:2500 individuals. The field of hereditary neuropathies has made significant progress in recent years with respect to both gene discovery and treatment as a result of next-generation sequencing (NGS) approach. These investigations which have identified over 100 causative genes and new mutations have made the classification of CMT even more challenging. Despite so many different mutated genes, the majority of CMT forms share a similar clinical phenotype, and due to this phenotypic homogeneity, genetic testing in CMT is increasingly being performed through the use of NGS panels. The majority of patients still have a mutation in one the four most common genes (PMP22 duplication-CMT1A, MPZ-CMT1B, GJB1-CMTX1, and MFN2-CMT2A). This chapter focuses primarily on these four forms and their potential therapeutic approaches.


Assuntos
Doença de Charcot-Marie-Tooth , Humanos , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Testes Genéticos , Mutação/genética , Fenótipo
16.
Heliyon ; 9(7): e18340, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37519674

RESUMO

Hereditary neuropathy with liability to pressure palsy (HNPP) is characterized by acute, painless and recurrent mononeuropathies. Genetic testing shows PMP22 gene deletion of chromosome 17p11.2 can provide evidence for the diagnosis of HNPP. Reports on tibial neuropathy as the main manifestation of HNPP are very rare. We report a 14-year-old girl who was admitted to our hospital due to plantar foot numbness and plantar flexion weakness of her left foot. The patient had a history of lateral dorsal numbness and right foot drop when she was 3 years old. Clinical symptoms, and neurological examination demonstrated tibial neuropathy. Electromyography showed extensive peripheral nerve, including median nerve, ulnar nerve, tibial nerve and peroneal nerve, were involved. The diagnosis of HNPP was confirmed by genetic testing which disclosed a deletion of PMP22 gene. She was completely asymptomatic in one month after neurotrophic drug treatments.

17.
Brain ; 146(9): 3608-3615, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37143322

RESUMO

The duplication of the peripheral myelin protein 22 (PMP22) gene causes a demyelinating type of neuropathy, commonly known as Charcot-Marie-Tooth disease type 1A (CMT1A). Development of effective drugs for CMT1A still remains as an unmet medical need. In the present study, we assessed the role of the transforming growth factor beta 4 (TGFß4)/Nodal axis in the pathogenesis of CMT1A. First, we identified PMP22 overexpression-induced Nodal expression in Schwann cells, which might be one of the downstream effectors in CMT1A. Administration of Nodal protein at the developmental stage of peripheral nerves induced the demyelinating phenotype in vivo. Second, we further isolated TGFß4 as an antagonist that could abolish Nodal-induced demyelination. Finally, we developed a recombinant TGFß4-fragment crystallizable (Fc) fusion protein, CX201, and demonstrated that its application had promyelinating efficacy in Schwann cells. CX201 administration improved the demyelinating phenotypes of CMT1A mouse models at both pre-symptomatic and post-symptomatic stages. These results suggest that the TGFß4/Nodal axis plays a crucial role in the pathogenesis of CMT1A and might be a potential therapeutic target for CMT1A.


Assuntos
Doença de Charcot-Marie-Tooth , Animais , Camundongos , Doença de Charcot-Marie-Tooth/patologia , Proteínas da Mielina/metabolismo , Células de Schwann , Fenótipo , Fator de Crescimento Transformador beta/metabolismo
18.
J Biol Chem ; 299(2): 102839, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581210

RESUMO

Data from gnomAD indicate that a missense mutation encoding the T118M variation in human peripheral myelin protein 22 (PMP22) is found in roughly one of every 75 genomes of western European lineage (1:120 in the overall human population). It is unusual among PMP22 variants that cause Charcot-Marie-Tooth (CMT) disease in that it is not 100% penetrant. Here, we conducted cellular and biophysical studies to determine why T118M PMP22 predisposes humans to CMT, but with only incomplete penetrance. We found that T118M PMP22 is prone to mistraffic but differs even from the WT protein in that increased expression levels do not result in a reduction in trafficking efficiency. Moreover, the T118M mutant exhibits a reduced tendency to form large intracellular aggregates relative to other disease mutants and even WT PMP22. NMR spectroscopy revealed that the structure and dynamics of T118M PMP22 resembled those of WT. These results show that the main consequence of T118M PMP22 in WT/T118M heterozygous individuals is a reduction in surface-trafficked PMP22, unaccompanied by formation of toxic intracellular aggregates. This explains the incomplete disease penetrance and the mild neuropathy observed for WT/T118M CMT cases. We also analyzed BioVU, a biobank linked to deidentified electronic medical records, and found a statistically robust association of the T118M mutation with the occurrence of long and/or repeated episodes of carpal tunnel syndrome. Collectively, our results illuminate the cellular effects of the T118M PMP22 variation leading to CMT disease and indicate a second disorder for which it is a risk factor.


Assuntos
Doença de Charcot-Marie-Tooth , Proteínas da Mielina , Humanos , Doença de Charcot-Marie-Tooth/genética , Mutação de Sentido Incorreto , Proteínas da Mielina/genética , Predisposição Genética para Doença
19.
Brain ; 146(7): 2885-2896, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36511878

RESUMO

Charcot-Marie-Tooth disease is the most common inherited disorder of the PNS. CMT1A accounts for 40-50% of all cases and is caused by a duplication of the PMP22 gene on chromosome 17, leading to dysmyelination in the PNS. Patient-derived models to study such myelination defects are lacking as the in vitro generation of human myelinating Schwann cells has proved to be particularly challenging. Here, we present an induced pluripotent stem cell-derived organoid culture, containing various cell types of the PNS, including myelinating human Schwann cells, which mimics the human PNS. Single-cell analysis confirmed the PNS-like cellular composition and provides insight into the developmental trajectory. We used this organoid model to study disease signatures of CMT1A, revealing early ultrastructural myelin alterations, including increased myelin periodic line distance and hypermyelination of small axons. Furthermore, we observed the presence of onion-bulb-like formations in a later developmental stage. These hallmarks were not present in the CMT1A-corrected isogenic line or in a CMT2A iPSC line, supporting the notion that these alterations are specific to CMT1A. Downregulation of PMP22 expression using short-hairpin RNAs or a combinatorial drug consisting of baclofen, naltrexone hydrochloride and D-sorbitol was able to ameliorate the myelin defects in CMT1A-organoids. In summary, this self-organizing organoid model can capture biologically meaningful features of the disease and capture the physiological complexity, forms an excellent model for studying demyelinating diseases and supports the therapeutic approach of reducing PMP22 expression.


Assuntos
Doença de Charcot-Marie-Tooth , Células-Tronco Pluripotentes Induzidas , Humanos , Bainha de Mielina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Regulação para Baixo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Organoides/metabolismo , Células de Schwann
20.
Neurophysiol Clin ; 52(6): 482-485, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36253232

RESUMO

Charcot-Marie-Tooth disease type 1A (CMT1A) is related to PMP22 gene duplication. It is characterized at electrodiagnostic testing (EDX) by diffuse homogeneous signs of demyelination, such as velocity slowing and prolonged distal latencies. These abnormalities are less pronounced in infants under two years old, and the possibility of normal nerve conduction studies (NCS) in infants with CMT1A under one year of age has been questioned. We report three infants who displayed normal or almost normal NCS. EDX abnormalities in CMT1A patients may therefore appear late during development. This may affect early EDX diagnosis in infants and should be considered for upcoming clinical trials.


Assuntos
Doença de Charcot-Marie-Tooth , Proteínas da Mielina , Pré-Escolar , Humanos , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Proteínas da Mielina/genética , Condução Nervosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...