Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
1.
Gene ; 932: 148900, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39209180

RESUMO

Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide because of its high morbidity and the absence of effective therapies. Even though paclitaxel is a powerful anticancer chemotherapy drug, recent studies have indicated its ineffectiveness against GC cells. Long non-coding RNA (lncRNA) PVT1 has a high expression in GC cells and increases the progression of tumors via inducing drug resistance. In the present study, the effects of the siRNA-mediated lncRNA PVT1 gene silencing along with paclitaxel treatment on the rate of apoptosis, growth, and migration of AGS GC cells were investigated. AGS cells were cultured and then transfected with siRNA PVT1 using electroporation. The MTT test was used to examine the effect of treatments on the viability of cultured cells. Furthermore, the flow cytometry method was used to evaluate the impact of treatments on the cell cycle process and apoptosis induction in GC cells. Finally, the mRNA expression of target genes was assessed using the qRT-PCR method. The results showed that lncRNA PVT1 gene suppression, along with paclitaxel treatment, reduces the viability of cancer cells and significantly increases the apoptosis rate of cancer cells and the number of cells arrested in the G2/M phase compared to the control group. Based on the results of qRT-PCR, combined treatment significantly decreased the expression of MMP3, MMP9, MDR1, MRP1, Bcl-2, k-Ras, and c-Myc genes and increased the expression of the Bax gene compared to the control group. The results of our study showed that lncRNA PVT1 gene targeting, together with paclitaxel treatment, induces apoptosis, inhibits growth, alleviates drug resistance, and reduces the migratory capability of GC cells. Therefore, there is a need for further investigations to evaluate the feasibility and effectiveness of this approach in vivo in animal models.


Assuntos
Apoptose , Resistencia a Medicamentos Antineoplásicos , Inativação Gênica , Paclitaxel , RNA Longo não Codificante , Neoplasias Gástricas , RNA Longo não Codificante/genética , Paclitaxel/farmacologia , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Apoptose/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , RNA Interferente Pequeno/genética
2.
Front Immunol ; 15: 1435593, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39376555

RESUMO

Pancreatic cancer is an extremely malignant tumor. PVT1 and MYC signaling has been considered as a therapeutic target recently. Nonetheless, the prognostic values and critical regulatory networks of PVT1-MYC duet in pancreatic cancer remain unclear. Firstly, we identified PVT1-MYC duet-related genes using public databases. Then we analyzed our Hi-C and ChIP-seq data to confirm PVT1-MYC duet. We performed LASSO regression and multivariate Cox regression analysis to build a prognostic model whose effectiveness and robustness were validated by Cox regression, ROC analysis, calibration curve, and nomogram. Besides, we conducted functional enrichment analyses, mutation profiles analyses and the immune features analyses to compare low- and high-risk group. Functional enrichment analyses revealed that several terms associated with cancer progression were enriched in the high-risk group. Mutation profile analysis showed that high-risk group had higher tumor mutation burden, and immune analysis demonstrated high-risk group had more immunosuppressive tumor microenvironment. Finally, we detected PVT1 expression in pancreatic cancer and paracancer tissues from the PUMCH cohort, which showed that PVT1 was significantly upregulated in pancreatic cancer and associated with invasion, metastasis, and poor prognosis. We further performed transwell and proliferation assays and found that PVT1, CDC6, and COL17A1 could promote migration or proliferation of PDAC cells. This study constructed a prognostic model based on three PVT1-MYC duet-related genes, which had a significant potential in predicting the prognosis and tumor microenvironment of pancreatic cancer. These results suggested that targeting PVT1-MYC duet or its regulatory processes could be a therapeutic option with great interests.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-myc , RNA Longo não Codificante , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , RNA Longo não Codificante/genética , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , Biomarcadores Tumorais/genética , Nomogramas , Mutação , Masculino , Feminino
3.
World J Surg Oncol ; 22(1): 254, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39300515

RESUMO

Hypopharyngeal carcinoma is one of the malignant tumors of the head and neck with a particularly poor prognosis. Recurrence and metastasis are important reasons for poor prognosis of hypopharyngeal cancer patients, and malignant proliferation, migration, and invasion of tumor cells are important factors for recurrence and metastasis of hypopharyngeal cancer. Therefore, elucidating hypopharyngeal cancer cells' proliferation, migration, and invasion mechanism is essential for improving diagnosis, treatment, and prognosis. Plasmacytoma Variant Translocation 1 (PVT1) is considered a potential diagnostic marker and therapeutic target for tumors. However, it remains unclear whether PVT1 is related to the occurrence and development of hypopharyngeal cancer and its specific mechanism. In this study, the promoting effect of PVT1 on the proliferation, migration, and invasion of hypopharyngeal carcinoma FaDu cells was verified by cell biology experiments and animal studies, and it was found that PVT1 inhibited the expression of TGF-ß, suggesting that PVT1 may regulate the occurrence and development of hypopharyngeal carcinoma FaDu cells through TGF-ß.


Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Hipofaríngeas , Invasividade Neoplásica , RNA Longo não Codificante , Animais , Humanos , Camundongos , Apoptose , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Neoplasias Hipofaríngeas/patologia , Neoplasias Hipofaríngeas/genética , Neoplasias Hipofaríngeas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino
4.
Mol Med ; 30(1): 157, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317938

RESUMO

BACKGROUND: Noncoding RNAs play pivotal roles in the process of autoimmune diseases. However, the definite contributions of these molecules to Behçet's disease (BD) are still unknown. This study aimed to explore the clinical value of a novel competing endogenous (ce) RNA network in the pathogenesis of BD and to assess its use in primary diagnosis. METHODS: Bioinformatic analysis was applied to construct a BD-related ceRNA network: lncRNA (MIAT and PVT1)-miRNA (miR-93-5p and miR-124-3p)-mRNA (SOD-2 and MICA). Blood was obtained from 70 BD patients and 30 healthy subjects, and the serum expression of the tested RNAs was estimated via quantitative real-time PCR (qPCR). Serum tumor necrosis factor-alpha (TNF-α) levels were also determined. The associations between these RNAs were further analyzed, and receiver operating characteristic (ROC) curve and logistic regression analyses were employed to validate their diagnostic and prognostic values. RESULTS: The expression levels of the lncRNAs PVT1 and miR-93-5p were significantly increased, whereas those of the lncRNAs MIAT and miR-124-3p, as well as those of the SOD-2 and MICA mRNAs, were significantly decreased in BD patients compared with controls. BD patients had significantly higher serum TNF-α levels than controls did. ROC curve analysis indicated that the selected RNAs could be candidate diagnostic biomarkers for BD. Moreover, the highest diagnostic efficiency was achieved with the combination of MIAT and miR-93-5p or PVT1 and miR-124-3p with either SOD-2 or MICA. Logistic regression analysis revealed that all RNA expression levels could be predictors for BD. CONCLUSION: Mechanistically, our research revealed a novel ceRNA network that is significantly disrupted in BD. The findings reported herein, highlight the noncoding RNA-molecular pathways underlying BD and identify potential targets for therapeutic intervention. These insights will likely be applicable for developing new strategies for the early diagnosis, management and risk assessment of BD as well as the design of novel preventive measures. Trial registration The protocol for the clinical studies was approved by Cairo University's Faculty of Pharmacy's Research Ethics Committee (approval number: BC 3590).


Assuntos
Síndrome de Behçet , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/sangue , RNA Longo não Codificante/genética , RNA Longo não Codificante/sangue , Síndrome de Behçet/genética , Síndrome de Behçet/diagnóstico , Síndrome de Behçet/sangue , Masculino , Feminino , Adulto , Regulação da Expressão Gênica , Pessoa de Meia-Idade , Curva ROC , Estudos de Casos e Controles , Biomarcadores/sangue , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética , Redes Reguladoras de Genes , Biologia Computacional/métodos
5.
J Cell Mol Med ; 28(18): e70112, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39320020

RESUMO

Oral submucous fibrosis (OSF) is a precancerous condition in the oral cavity, which is closely related to the myofibroblast conversion of buccal mucosal fibroblasts (BMFs) after chronic consumption of areca nut. Emerging evidence suggests pyroptosis, a form of programmed cell death that is mediated by inflammasome, is implicated in persistent myofibroblast activation and fibrosis. Besides, numerous studies have demonstrated the effects of non-coding RNAs on pyroptosis and myofibroblast activities. Herein, we aimed to target key long non-coding RNA PVT1 with natural compound, carvacrol, to alleviate pyroptosis and myofibroblast activation in OSF. We first identified PVT1 was downregulated in the carvacrol-treated fBMFs and then demonstrated that myofibroblast features and expression of pyroptosis makers were all reduced in response to carvacrol treatment. Subsequently, we analysed the expression of PVT1 and found that PVT1 was aberrantly upregulated in OSF specimens and positively correlated with several fibrosis markers. After revealing the suppressive effects of carvacrol on myofibroblast characterisitcs and pyroptosis were mediated by repression of PVT1, we then explored the potential mechanisms. Our data showed that PVT1 may serve as a sponge of microRNA(miR)-20a to mitigate the myofibroblast activation and pyroptosis. Altogether, these findings indicated that the anti-fibrosis effects of carvacrol merit consideration and may be due to the attenuation of pyroptosis and myofibroblast activation by targeting the PVT1/miR-20a axis.


Assuntos
Cimenos , MicroRNAs , Miofibroblastos , Fibrose Oral Submucosa , Piroptose , RNA Longo não Codificante , Fibrose Oral Submucosa/patologia , Fibrose Oral Submucosa/genética , Fibrose Oral Submucosa/metabolismo , Fibrose Oral Submucosa/tratamento farmacológico , Piroptose/efeitos dos fármacos , Piroptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Cimenos/farmacologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Progressão da Doença , Regulação para Baixo/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos
6.
Artigo em Inglês | MEDLINE | ID: mdl-39304186

RESUMO

Inefficient control of elevated inflammatory mediators in coronavirus disease 2019 (COVID-19) has led to health complications, prompting the exploration of efficient biomarkers for monitoring this condition. We herein sought to investigate the implications of plasmacytoma variant translocation 1 (PVT-1), microRNA-200c (miR-200c), signal transducer and activator of transcription 4 (STAT-4), and interleukin-6 (IL-6), as well as how they correlated with creatinine, C-reactive protein (CRP), and lactate dehydrogenase (LDH) activity to identify biomarkers able to the early prognosis and diagnosis of COVID-19. Our study included a total of 105 infected COVID-19 patients and 35 healthy subjects as controls. Individuals with COVID-19 showed a significant increase in CRP, creatinine, and LDH activity. In addition, COVID-19 patients exhibited significantly higher levels of IL-6. These patients also demonstrated notably elevated expressions of miR-200c and PVT-1. The expression level of STAT4 decreased in the COVID-19 patients, and this decrease was negatively correlated with creatinine and LDH activity. The levels of miR-200c and PVT-1 expressions, and their connections with IL-6 and STAT4 levels, increased significantly with the severity of COVID-19 cases. In addition, receiver operating characteristic analysis showed that PVT-1 and miR-200c could be reliable biomarkers for determining the severity of COVID-19.

7.
Immunol Invest ; : 1-14, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189542

RESUMO

INTRODUCTION: Human oral squamous cell carcinoma (OSCC) is the most common type of oral cancer and has a poor survival rate. Cell-cell communication between OSCC cells and cancer-associated fibroblasts (CAFs) plays important roles in OSCC progression. We previously demonstrated that CAFs promote OSCC cell migration and invasion. However, how OSCC cells influence CAFs proliferation is unknown. METHODS: Knockdown of PVT1 was confirmed using lentivirus infection technique. CAFs in tissues were identified by staining the cells with α-SMA using immunohistochemical technique. CCK-8 assay was used to evaluate cell proliferation. The mRNA level of a gene was measured by qRT-PCR. Secreted TGF-ß were detected using ELISA assay. RESULTS: We found that knockdown of the long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) was associated with a low density of CAFs in xenograft tumors in mice; further analysis revealed that PVT1 in OSCC cells induced CAF proliferation through transforming growth factor (TGF)-ß. DISCUSSION: Our results demonstrate that lncRNA PVT1 in tumor cells participates in CAF development in OSCC by regulating TGF-ß. This study revealed a new mechanism by which PVT1 regulates OSCC progression and PVT1 is a potential therapeutic target in OSCC.

8.
Cancer Rep (Hoboken) ; 7(7): e2115, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994720

RESUMO

BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common type of blood cancer in children. Aberrant expression of long noncoding RNAs (lncRNAs) may set stages for ALL development. LncRNAs are emerging as a novel diagnostic and prognostic biomarker for ALL. Herein, we aimed to evaluate the expression of lncRNA GJA9-MYCBP and PVT1 in blood samples of ALL and healthy individuals. METHODS: As a case-control study, 40 pairs of ALL and healthy individual samples were used. The expression of MYC and each candidate lncRNA was measured using quantitative real-time PCR. Any possible association between the expression of putative noncoding RNAs and clinicopathological characteristics was also evaluated. RESULTS: LncRNA GJA9-MYCBP and PVT1 were significantly upregulated in ALL samples compared with healthy ones. Similarly, mRNA levels of MYC were increased in ALL samples than control ones. Receiver operating characteristic curve analysis indicated a satisfactory diagnostic efficacy (p-value <.0001), suggesting that lncRNA GJA9-MYCBP and PVT1 may serve as a diagnostic biomarker for ALL. Linear regression analysis unveiled positive correlations between the expression level of MYC and lncRNA GJA9-MYCBP and PVT1 in ALL patients (p-values <.01). CONCLUSIONS: In this study, we provided approval for the clinical diagnostic significance of lncRNA GJA9-MYCBP and PVT1that their upregulations may be a diagnostic biomarker for ALL.


Assuntos
Biomarcadores Tumorais , Leucemia-Linfoma Linfoblástico de Células Precursoras , RNA Longo não Codificante , Regulação para Cima , Humanos , RNA Longo não Codificante/genética , Biomarcadores Tumorais/genética , Masculino , Feminino , Estudos de Casos e Controles , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Criança , Prognóstico , Pré-Escolar , Adolescente , Curva ROC , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
9.
Mol Cell Biochem ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997507

RESUMO

Cardiac fibrosis is a commonly seen pathophysiological process in various cardiovascular disorders, such as coronary heart disorder, hypertension, and cardiomyopathy. Cardiac fibroblast trans-differentiation into myofibroblasts (MFs) is a key link in myocardial fibrosis. LncRNA PVT1 participates in fibrotic diseases in multiple organs; however, its role and mechanism in cardiac fibrosis remain largely unknown. Human cardiac fibroblasts (HCFs) were stimulated with TGF-ß1 to induce myofibroblast; Immunofluorescent staining, Immunoblotting, and fluorescence in situ hybridization were used to detect the myofibroblasts phenotypes and lnc PVT1 expression. Cell biological phenotypes induced by lnc PVT1 knockdown or overexpression were detected by CCK-8, flow cytometry, and Immunoblotting. A mouse model of myocardial fibrosis was induced using isoproterenol (ISO), and the cardiac functions were examined by echocardiography measurements, cardiac tissues by H&E, and Masson trichrome staining. In this study, TGF-ß1 induced HCF transformation into myofibroblasts, as manifested as significantly increased levels of α-SMA, vimentin, collagen I, and collagen III; the expression level of lnc PVT1 expression showed to be significantly increased by TGF-ß1 stimulation. The protein levels of TGF-ß1, TGFBR1, and TGFBR2 were also decreased by lnc PVT1 knockdown. Under TGF-ß1 stimulation, lnc PVT1 knockdown decreased FN1, α-SMA, collagen I, and collagen III protein contents, inhibited HCF cell viability and enhanced cell apoptosis, and inhibited Smad2/3 phosphorylation. Lnc PVT1 positively regulated MYC expression with or without TGF-ß1 stimulation; MYC overexpression in TGF-ß1-stimulated HCFs significantly attenuated the effects of lnc PVT1 knockdown on HCF proliferation and trans-differentiation to MFs. In the ISO-induced myocardial fibrosis model, lnc PVT1 knockdown partially reduced fibrotic area, improved cardiac functions, and decreased the levels of fibrotic markers. In addition, lnc PVT1 knockdown decreased MYC and CDK4 levels but increased E-cadherin in mice heart tissues. lnc PVT1 is up-regulated in cardiac fibrosis and TGF-ß1-stimulated HCFs. Lnc PVT1 knockdown partially ameliorates TGF-ß1-induced HCF activation and trans-differentiation into MFs in vitro and ISO-induced myocardial fibrosis in vivo, potentially through interacting with MYC and up-regulating MYC.

10.
Front Biosci (Landmark Ed) ; 29(6): 207, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38940027

RESUMO

BACKGROUND: Osteosarcoma (OS) is a primary malignant bone tumor in the pediatric and adolescent populations. Long non-coding RNAs (LncRNAs), such as plasma-cytoma variant translocation 1 (PVT1), have emerged as significant regulators of OS metastasis. Recent studies have indicated that activation of signal transducer and activator of transcription 3 (STAT3) signaling, which might be controlled by PVT1, inhibits ferroptosis to promote the malignant progression of cancer. Therefore, the present study aimed to determine the role of PVT1 in OS pathogenesis and investigate whether PVT1 affects OS progression by regulating STAT3/GPX4 pathway-mediated ferroptosis. METHODS: The human OS cell line MG63 were transfected with sh-PVT1 plasmid to inhibit PVT1 expression, with or without co-transfection with a STAT3 overexpression plasmid. The expression of PVT1 was determined by real-time quantitative polymerase chain reaction (RT-qPCR). The proliferation, migration, invasion, and apoptosis of MG63 cells were determined using the cell counting kit-8 (CCK8), Transwell assay, and flow cytometry. The levels of malondialdehyde (MDA), Fe2+, and glutathione (GSH) were determined by ELISA kits, whereas reactive oxygen species (ROS) level was determined by immunofluorescence. The protein expression levels of STAT3, p-STAT3, and glutathione peroxidase 4 (GPX4) were detected by western blot (WB). RESULTS: PVT1 expression was significantly increased in MG63 cells. When knocking down PVT1 with sh-PVT1 plasmid, the proliferation, migration, and invasion of MG63 cells were markedly inhibited, while the rate of apoptosis was upregulated. Further investigation revealed that MG63 cells with PVT1 knockdown exhibited elevated levels of MDA, Fe2+, and ROS. In addition, the inhibition of PVT1 expression resulted in decreased levels of GSH and inhibited expression of p-STAT3 and GPX4. When sh-PVT1 was co-transfected with STAT3 overexpression plasmid in MG63 cells, the increased levels of MDA, Fe2+, and ROS were downregulated, and the decreased expressions of GSH, p-STAT3, and GPX4 were upregulated. CONCLUSION: PVT1 promotes OS metastasis by activating the STAT3/GPX4 pathway to inhibit ferroptosis. Targeting PVT1 might be a novel therapeutic strategy for OS treatment.


Assuntos
Neoplasias Ósseas , Ferroptose , Osteossarcoma , RNA Longo não Codificante , Humanos , Apoptose/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Espécies Reativas de Oxigênio/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética
11.
Cancer Rep (Hoboken) ; 7(6): e2085, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837682

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the second most common cause of cancer-related death worldwide. Long noncoding RNA (lncRNA) is involved in many malignant tumors. This study aimed to clarify the role of the lncRNA plasmacytoma variant translocation 1 (PVT1) in CRC growth and metastasis. METHODS: Differentially expressed lncRNAs in CRC were analyzed using the Cancer Genome Atlas. Gene expression profiling interactive analysis and a comprehensive resource for lncRNAs from cancer arrays databases were used to analyze lncRNA PVT1 expression and CRC prognosis, respectively. Cell counting kit-8, wound healing, colony formation, Transwell, and immunofluorescence assays were used to evaluate CRC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), respectively. Tumor growth and metastasis models were used to explore the PVT1 effect on the growth and metastasis of CRC in vivo. RESULTS: PVT1 was highly expressed in CRC, associated with a poor prognosis of CRC, and showed good diagnostic value. Transfection of sh-PVT1 or pcDNA3.1-PVT1 reduced or increased the proliferation, wound healing rate, colony formation, invasion, and EMT of CRC cells. PVT1 and miR-3619-5p were co-expressed in CRC cytoplasm, and PVT1 acted as a competitive endogenous RNA (ceRNA) by sponging miR-3619-5p to up-regulate tripartite motif containing 29 (TRIM29) expression. MiR-3619-5p overexpression and TRIM29 knockdown reduced proliferation, wound healing rate, invasion, and EMT of CRC cells. However, simultaneous PVT1 and miR-3619-5p overexpression or knockdown of miR-3619-5p and TRIM29 knockdown rescued the malignant phenotype of CRC cells. CONCLUSIONS: We first clarified the ceRNA mechanism of PVT1 in CRC, which induced growth and metastasis by sponging with miR-3619-5p to regulate TRIM29.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , MicroRNAs , RNA Longo não Codificante , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , RNA Longo não Codificante/genética , MicroRNAs/genética , Proliferação de Células/genética , Camundongos , Animais , Prognóstico , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Masculino , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos Nus , Feminino , Linhagem Celular Tumoral , Metástase Neoplásica , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Histochem Cell Biol ; 162(1-2): 91-107, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763947

RESUMO

Super-enhancers are unique gene expression regulators widely involved in cancer development. Spread over large DNA segments, they tend to be found next to oncogenes. The super-enhancer c-MYC locus forms long-range chromatin looping with nearby genes, which brings the enhancer and the genes into proximity, to promote gene activation. The colon cancer-associated transcript 1 (CCAT1) gene, which is part of the MYC locus, transcribes a lncRNA that is overexpressed in colon cancer cells through activation by MYC. Comparing different types of cancer cell lines using RNA fluorescence in situ hybridization (RNA FISH), we detected very prominent CCAT1 expression in HeLa cells, observed as several large CCAT1 nuclear foci. We found that dozens of CCAT1 transcripts accumulate on the gene locus, in addition to active transcription occurring from the gene. The accumulating transcripts are released from the chromatin during cell division. Examination of CCAT1 lncRNA expression patterns on the single-RNA level showed that unspliced CCAT1 transcripts are released from the gene into the nucleoplasm. Most of these unspliced transcripts were observed in proximity to the active gene but were not associated with nuclear speckles in which unspliced RNAs usually accumulate. At larger distances from the gene, the CCAT1 transcripts appeared spliced, implying that most CCAT1 transcripts undergo post-transcriptional splicing in the zone of the active gene. Finally, we show that unspliced CCAT1 transcripts can be detected in the cytoplasm during splicing inhibition, which suggests that there are several CCAT1 variants, spliced and unspliced, that the cell can recognize as suitable for export.


Assuntos
Cromatina , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromatina/metabolismo , Cromatina/genética , Cromatina/química , Splicing de RNA , Células HeLa , Hibridização in Situ Fluorescente
13.
Gene ; 924: 148605, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38788816

RESUMO

BACKGROUND: Cerebral cavernous malformation (CCM) is a low-flow, bleeding-prone vascular disease that can cause cerebral hemorrhage, seizure and neurological deficits. Its inheritance mode includes sporadic or autosomal dominant inheritance with incomplete penetrance, namely sporadic CCM (SCCM) and familial CCM. SCCM is featured by single lesion and single affection in a family. Among CCM patients especially SCCM, the pathogenesis of the corresponding phenotypes and pathological features or candidate genes have not been fully elucidated yet. METHODS: Here, we performed in-depth single-cell RNA sequencing (scRNA-Seq) and bulk assay for transposase-accessible chromatin sequencing (ATAC-Seq) in SCCM and control patients. Further validation was conducted for the gene of interest using qPCR and RNA in situ hybridization (RNA FISH) techniques to provide further atlas and evidence for SCCM generative process. RESULTS: We identified six cell types in the SCCM and control vessels and found that the expression of NEK1, RNPC3, FBRSL1, IQGAP2, MCUB, AP3B1, ESCO1, MYO9B and PVT1 were up-regulated in SCCM tissues. Among the six cell types, we found that compared with control conditions, PVT1 showed a rising peak which followed the pseudo-time axis in endothelial cell clusters of SCCM samples, while showed an increasing trend in smooth muscle cell clusters of SCCM samples. Further experiments indicated that, compared with the control vessels, PVT1 exhibited significantly elevated expression in SCCM samples. CONCLUSION: In SCCM conditions, We found that in the process of development from control to lesion conditions, PVT1 showed a rising peak in endothelial cells and showed an increasing trend in smooth muscle cells at the same time. Overall, there was a significantly elevated expression of NEK1, RNPC3, FBRSL1, IQGAP2, MCUB, AP3B1, ESCO1, MYO9B and PVT1 in SCCM specimens compared to control samples.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Análise de Célula Única , Humanos , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Análise de Célula Única/métodos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Células Endoteliais/metabolismo , Células Endoteliais/patologia
14.
Biomedicines ; 12(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38790894

RESUMO

Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved in the regulation of cellular processes and functions. Many human diseases, including cancer, have been shown to be associated with deregulated lncRNAs, rendering them potential therapeutic targets and biomarkers for differential diagnosis. The expression of lncRNAs in the nervous system varies in different cell types, implicated in mechanisms of neurons and glia, with effects on the development and functioning of the brain. Reports have also shown a link between changes in lncRNA molecules and the etiopathogenesis of brain neoplasia, including glioblastoma multiforme (GBM). GBM is an aggressive variant of brain cancer with an unfavourable prognosis and a median survival of 14-16 months. It is considered a brain-specific disease with the highly invasive malignant cells spreading throughout the neural tissue, impeding the complete resection, and leading to post-surgery recurrences, which are the prime cause of mortality. The early diagnosis of GBM could improve the treatment and extend survival, with the lncRNA profiling of biological fluids promising the detection of neoplastic changes at their initial stages and more effective therapeutic interventions. This review presents a systematic overview of GBM-associated deregulation of lncRNAs with a focus on lncRNA fingerprints in patients' blood.

15.
Acta Neurol Belg ; 124(4): 1295-1301, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38625499

RESUMO

BACKGROUND: Current studies have shown emerging roles of lncRNAs in the pathobiology of neuropathic pain and migraine. METHODS: We have chosen five lncRNAs, namely, PVT1, DSCAM-AS, MEG3, LINC-ROR, and SPRY4-IT1 for assessment of their expression in the circulation of migraineurs. RESULTS: Expressions of PVT1 and MEG3 were higher in total migraineurs and both subgroups compared with controls (P < 0.0001). Meanwhile, expression of both lncRNA was higher in migraineurs with aura versus migraineurs without aura (P value < 0.0001 and = 0.01, respectively). Expression of DSCAM-AS1 was not different between any groups of patients compared with controls. Expression of LINC-ROR was elevated in total patients and patients with aura compared with controls (P value = 0.0002 and < 0.0001, respectively). It was also over-expressed in migraineurs with aura vs. migraineurs without aura (P = 0.01). Finally, expression of SPRY4-IT1 was higher in total patients and patients without aura compared with migraine-free persons (P values < 0.0001). Expressions of five mentioned lncRNAs were correlated in almost all study groups. In patients without aura, correlations were significant only for two pairs (SPRY4-IT1/PVT1 and SPRY4-IT1/DSCAM-AS1). PVT1 and MEG3 had the appropriate AUC, sensitivity and specificity values for separation of total migraineurs and both groups of patients from controls. The highest AUC value was reported for PVT1 in separation of migraineurs with aura from healthy controls (AUC = 0.98). CONCLUSION: Cumulatively, our study shows evidence for deregulation of lncRNAs in migraineurs.


Assuntos
Transtornos de Enxaqueca , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/metabolismo , Enxaqueca com Aura/genética
16.
Hum Exp Toxicol ; 43: 9603271241251451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685136

RESUMO

BACKGROUND & AIMS: The liver is a vital organ responsible for numerous metabolic processes, which can be significantly impacted by long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). These ribonucleic acid (RNA) molecules have been shown to play a crucial role in regulating gene expression, and their dysregulation has been implicated in numerous liver disorders. Our study aimed to investigate the diagnostic accuracy of plasmacytoma variant translocation-1 (PVT-1), microRNA-29a/29b (miR-29a/miR-29b), and inflammatory biomarkers [ interleukine-6 (IL-6), tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-ß), and insulin growth factor-1 (IGF-1)] as diagnostic and prognostic biomarkers for liver cirrhosis. Therefore, understanding the mechanisms by which lncRNAs and miRNAs influence liver metabolism is of paramount importance in developing effective treatments for liver-related diseases. METHODS: Serum samples were collected from 164 participants, comprising 114 cirrhotic patients with varying grades (35 grade I, 35 grade II, and 44 grade III) and 50 healthy controls. PVT-1 and miR-29a/miR-29b expression was analyzed by reverse transcription-quantitative polymerase chain reaction (RT-PCR), while the serum levels of inflammatory biomarkers were assessed using enzyme-linked immunosorbent assay (ELISA). RESULTS: The study participants exhibited notable differences in PVT-1 and miR-29a/miR-29b expression. ROC analysis revealed excellent discriminative power for PVT-1 and miR-29a/miR-29b in distinguishing cirrhotic patients from healthy controls. CONCLUSION: This study demonstrates the promising potential of PVT-1 and miR-29a/miR-29b as early diagnostic biomarkers for liver cirrhosis detection, requiring further validation in larger cohorts. Our findings also reinforce the diagnostic value of circulating inflammatory biomarkers (IL-6, TNF-α, TGF-ß, and IGF-1) levels for liver cirrhosis screening.


Assuntos
Biomarcadores , Cirrose Hepática , MicroRNAs , RNA Longo não Codificante , Humanos , Cirrose Hepática/sangue , Cirrose Hepática/genética , MicroRNAs/sangue , MicroRNAs/genética , RNA Longo não Codificante/sangue , RNA Longo não Codificante/genética , Biomarcadores/sangue , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Idoso , Inflamação/sangue , Inflamação/genética
17.
Anticancer Res ; 44(5): 1817-1827, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677725

RESUMO

BACKGROUND/AIM: The 8q24 chromosomal region, which contains the MYC and PVT1 candidate oncogenes, is amplified in carcinomas. Both genes have been involved in the etiopathogenesis of ovarian cancer (OC). In this study, we used an in vitro OC model with a known 8q24 copy number increase and in silico tools to investigate the expression of MYC/PVT1 loci and copy number variation in OC. We also assessed the effects of rucaparib (a PARP inhibitor) in the presence or absence of 10058F4 (a MYC inhibitor) on the expression of MYC/linear PVT1/circular PVT1. MATERIALS AND METHODS: Tissue culture, chromosome preparation, RNA extraction, RT-qPCR, FISH, and wound healing assays were employed. OncoDB, cBioportal, UALKAN, and ROC Plotter in silico tools were also utilized. RESULTS: Although PVT1 and MYC expression levels remained unaltered in OC, putative copy number alterations across all cancers showed a marked difference between the two genes, particularly in gain and amplification for MYC. PVT1 expression demonstrated prognostic value for the treatment of patients with serous and endometrioid OC. Both genes correlated with PARP10, FAM83H, and DEPTOR. The use of rucaparib in the presence or absence of the MYC inhibitor (10058F4) in vitro, led to a significant down-regulation in the expression of MYC, linear, and circular PVT1. CONCLUSION: Our data provide a novel insight into the potential interactions of MYC and PVT1 with other genes. Moreover, we identified a new PARP inhibition mechanism down-regulating MYC, as well as the linear and circular PVT1 transcripts. Future work should expand on clinical studies to better understand the prognostic role of PVT1 in OC.


Assuntos
Indóis , Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas Proto-Oncogênicas c-myc , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Indóis/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Variações do Número de Cópias de DNA
18.
Cardiovasc Toxicol ; 24(3): 302-320, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38453799

RESUMO

Abdominal aortic aneurysm (AAA) is a chronic vascular degenerative disease. Vascular smooth muscle cells (VSMCs) are essential for maintaining the integrity of healthy blood vessels. Macrophages play an important role in the inflammatory process of AAA. However, the effect of macrophage-derived exosome LncRNA PVT1 on VSMCs is unclear. Exosomes from M1 macrophages (M1φ-exos) were isolated and identified. The expression of LncRNA PVT1 in M1φ-exos was determined. AAA cell model was constructed by treating VSMCs with Ang-II. AAA cell model was treated with M1φ exosomes transfected with si-LncRNA PVT1 (M1φsi-LncRNA PVT1-exo). VSMCs were transfected with miR-186-5p mimic and oe-HMGB1. Cell viability was detected by CCK-8. The accumulation of LDH was detected by ELISA. Western blot was used to detect the expression of HMGB1, inflammatory factors (IL-6, TNF-α and IL-1ß) and pyroptosis-related proteins (GSDMD, N-GSDMD, ASC, NLRP3, Caspase-1 and Cleaved-Capase-1). Cell pyroptosis rate was detected by flow cytometry. At the same time, the targeting relationship between miR-186-5p and LncRNA PVT1 and HMGB1 was verified by double fluorescein experiment. Exosomes from M1φ were successfully extracted. The expression of LncRNA PVT1 in M1φ-exos was significantly increased. M1φ-exo promotes inflammation and pyroptosis of VSMCs. M1φsi-LncRNA PVT1-exos inhibited the inflammation and pyroptosis of VSMCs. LncRNA PVT1 can sponge miR-186-5p mimic to regulate HMGB1 expression. MiR-186-5p mimic further inhibited inflammation and pyroptosis induced by M1φsi-LncRNA PVT1-exos. However, oe-HMGB1 could inhibit the reversal effect of miR-186-5p mimic. LncRNA PVT1 in exosomes secreted by M1φ can regulate HMGB1 by acting as ceRNA on sponge miR-186-5p, thereby promoting cell inflammatory and pyroptosis and accelerating AAA progression.


Assuntos
Aneurisma da Aorta Abdominal , Exossomos , Proteína HMGB1 , MicroRNAs , RNA Longo não Codificante , Humanos , Músculo Liso Vascular , Piroptose , Inflamação , Macrófagos
19.
Pathol Res Pract ; 254: 155119, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309019

RESUMO

According to estimates, cancer will be the leading cause of death globally in 2022, accounting for 9.6 million deaths. At present, the three main therapeutic modalities utilized to treat cancer are radiation therapy, chemotherapy, and surgery. However, during treatment, tumor cells resistant to chemotherapy may arise. Drug resistance remains a major oppose since it often leads to therapeutic failure. Furthermore, the term "acquired drug resistance" describes the situation where tumor cells already display drug resistance before undergoing chemotherapy. However, little is still known about the basic mechanisms underlying chemotherapy-induced drug resistance. The development of new technologies and bioinformatics has led to the discovery of additional genes associated with drug resistance. Long noncoding RNA plasmacytoma variant translocation 1 (PVT1) has been linked to an increased risk of cancer, according to a growing body of research. Apart from biological functions associated with cell division, development, pluripotency, and cell cycle, lncRNA PVT1 contributes significantly to the regulation of various aspects of genome function, such as transcription, splicing, and epigenetics. The article will address the mechanism by which lncRNA PVT1 influences drug resistance in cancer cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Neoplasias/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
20.
Curr Pharm Biotechnol ; 25(15): 1969-1985, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38275054

RESUMO

Colorectal cancer affects 1 in 25 females and 1 in 24 males, making it the third most frequent cancer with over 6,08,030 deaths worldwide, despite advancements in detection and treatments, including surgery, chemotherapeutics, radiotherapy, and immune therapeutics. Novel potential agents have increased survival in acute and chronic disease conditions, with a higher risk of side effects and cost. However, metastatic disease has an insignificant long-term diagnosis, and significant challenges remain due to last-stage diagnosis and treatment failure. Early detection, survival, and treatment efficacy are all improved by biomarkers. The advancement of cancer biomarkers' molecular pathology and genomics during the last three decades has improved therapy. Clinically useful prognostic biomarkers assist clinical judgment, for example, by predicting the success of EGFR-inhibiting antibodies in the presence of KRAS gene mutations. Few biomarkers are currently used in clinical settings, so further research is still needed. Nanocarriers, with materials like Carbon nanotubes and gold nanoparticles, provide targeted CRC drug delivery and diagnostics. Light-responsive drugs with gold and silica nanoparticles effectively target and destroy CRC cells. We evaluate the potential use of the long non-coding RNA (non-coding RNA) oncogene plasmacytoma variant translocation 1 (PVT1) as a diagnostic, prognostic, and therapeutic biomarker, along with the latest nanotech breakthroughs in CRC diagnosis and treatment.


Assuntos
Antineoplásicos , Biomarcadores Tumorais , Neoplasias Colorretais , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/diagnóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...