Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.115
Filtrar
1.
J Ethnopharmacol ; 336: 118724, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39181283

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Wenshen Xiaozheng Tang (WXT), a traditional Chinese medicine (TCM) decoction, is effective for treating endometriosis. However, the effect of WXT on endometrium-derived mesenchymal stem cells (eMSCs) which play a key role in the fibrogenesis of endometriosis requires further elucidation. AIMS OF THE STUDY: The aim of this study was to clarify the potential mechanism of WXT in improving fibrosis in endometriosis by investigating the regulation of WXT on differentiation and paracrine of eMSCs. MATERIALS AND METHODS: The nude mice with endometriosis were randomly divided into model group, WXT group and mifepristone group. After 21 days of treatment, the lesion volume was calculated. Fibrosis in the lesions was evaluated by Masson staining and expression of fibrotic proteins. The differentiation of eMSCs in vivo was explored using a fate-tracking experiment. To further clarify the regulation of WXT on eMSCs, primary eMSCs from the ectopic lesions of endometriosis patients were isolated and characterized. The effect of WXT on the proliferation and differentiation of ectopic eMSCs was examined. To evaluate the role of WXT on the paracrine activity of ectopic eMSCs, the conditioned medium (CM) from ectopic eMSCs pretreated with WXT was collected and applied to treat ectopic endometrial stromal cells (ESCs), after which the expression of fibrotic proteins in ectopic ESCs was assessed. In addition, transcriptome sequencing was used to investigate the regulatory mechanism of WXT on ectopic eMSCs, and western blot and ELISA were employed to determine the key mediator. RESULTS: WXT impeded the growth of ectopic lesions in nude mice with endometriosis and reduced collagen deposition and the expression of fibrotic proteins fibronectin, collagen I, α-SMA and CTGF in the endometriotic lesions. The fate-tracking experiment showed that WXT prevented human eMSCs from differentiating into myofibroblasts in the nude mice. We successfully isolated eMSCs from the lesions of patients with endometriosis and demonstrated that WXT suppressed proliferation and myofibroblast differentiation of ectopic eMSCs. Moreover, the expression of α-SMA, collagen I, fibronectin and CTGF in ectopic ESCs was significantly down-regulated by the CM of ectopic MSCs pretreated with WXT. Combining the results of RNA sequencing, western blot and ELISA, we found that WXT not only reduced thrombospondin 4 expression in ectopic eMSCs, but also decreased thrombospondin 4 secretion from ectopic eMSCs. Thrombospondin 4 concentration-dependently upregulated the expression of collagen I, fibronectin, α-SMA and CTGF in ectopic ESCs, indicating that thrombospondin 4 was a key mediator of WXT in inhibiting the fibrotic process in endometriosis. CONCLUSION: WXT improved fibrosis in endometriosis by regulating differentiation and paracrine signaling of eMSCs. Thrombospondin 4, whose release from ectopic eMSCs is inhibited by WXT, may be a potential target for the treatment of endometriosis.


Assuntos
Diferenciação Celular , Medicamentos de Ervas Chinesas , Endometriose , Endométrio , Fibrose , Células-Tronco Mesenquimais , Camundongos Nus , Comunicação Parácrina , Endometriose/tratamento farmacológico , Endometriose/patologia , Endometriose/metabolismo , Feminino , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Humanos , Diferenciação Celular/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Endométrio/patologia , Camundongos , Células Cultivadas , Adulto , Modelos Animais de Doenças
2.
Stem Cell Res Ther ; 15(1): 343, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354635

RESUMO

Spinal cord injury (SCI) results in significant neural damage and inhibition of axonal regeneration due to an imbalanced microenvironment. Extensive evidence supports the efficacy of mesenchymal stem cell (MSC) transplantation as a therapeutic approach for SCI. This review aims to present an overview of MSC regulation on the imbalanced microenvironment following SCI, specifically focusing on inflammation, neurotrophy and axonal regeneration. The application, limitations and future prospects of MSC transplantation are discussed as well. Generally, a comprehensive perspective is provided for the clinical translation of MSC transplantation for SCI.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Células-Tronco Mesenquimais/metabolismo , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Microambiente Celular , Regeneração Nervosa
3.
Stem Cell Rev Rep ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259446

RESUMO

The discovery of adult neurogenesis in the middle of the past century is considered one of the most important breakthroughs in neuroscience. Despite its controversial nature, this discovery shaped our concept of neural plasticity, revolutionizing the way we look at our brains. In fact, after the discovery of adult neurogenesis, we started to consider the brain as something even more dynamic and highly adaptable. In neurogenic niches, adult neurogenesis is supported by neural stem cells (NSCs). These cells possess a unique set of characteristics such as being quiescent for long periods while actively sensing and reacting to their surroundings to influence a multitude of processes, including the generation of new neurons and glial cells. Therefore, NSCs can be viewed as sentinels to our brain's homeostasis, being able to replace damaged cells and simultaneously secrete numerous factors that restore regular brain function. In addition, it is becoming increasingly evident that NSCs play a central role in memory formation and consolidation. In this review, we will dissect how NSCs influence their surroundings through paracrine and autocrine types of action. We will also depict the mechanism of action of each factor. Finally, we will describe how NSCs integrate different and often opposing signals to guide their fate.

4.
Bone Rep ; 22: 101798, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39252697

RESUMO

In periodontitis, gingival fibroblasts (GF) appear to produce a multitude of paracrine factors. However, the influence of GF-derived soluble factors on osteoclastogenesis remains unclear. In this case study, production of paracrine factors by GF was assessed under inflammatory and non-inflammatory conditions, as well as their effect on osteoclastogenesis. Human primary GF were cultured in a transwell system and primed with a cocktail of IL-1ß, IL-6 and TNF-α to mimic inflammation. GF were co-cultured directly and indirectly with human peripheral blood mononuclear cells (PBMC). Cytokines and chemokines in supernatants (flow cytometry based multiplex assay), osteoclastogenesis (TRAcP staining) and gene expression (qPCR) were quantified on days 7 and 21. Results from this case study showed that GF communicated via soluble factors with PBMC resulting in a two-fold induction of osteoclasts. Reversely, PBMC induced gene expression of IL-6, OPG and MCP-1 by GF. Remarkably, after priming of GF with cytokines, this communication was impaired and resulted in fewer osteoclasts. This could be partly explained by an increase in IL-10 expression and a decrease in MCP-1 expression. Intriguingly, the short priming of GF resulted in significantly higher expression of inflammatory cytokines that was sustained at both 7 and 21 days. GF appear to produce paracrine factors capable of stimulating osteoclastogenesis in the absence of physical cell-cell interactions. GF cultured in the presence of PBMC or osteoclasts had a remarkably inflammatory phenotype. Given profound expression of both pro- and anti-inflammatory cytokines after the inflammatory stimulus, it is probably the effector hierarchy that leads to fewer osteoclasts.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39259666

RESUMO

Cardiopoiesis-primed human stem cells exert sustained benefit in treating heart failure despite limited retention following myocardial delivery. To assess potential paracrine contribution, the secretome of cardiopoiesis conditioned versus naïve human mesenchymal stromal cells was decoded by directed proteomics augmented with machine learning and systems interrogation. Cardiopoiesis doubled cellular protein output generating a distinct secretome that segregated the conditioned state. Altering the expression of 1035 secreted proteins, cardiopoiesis reshaped the secretome across functional classes. The resolved differential cardiopoietic secretome was enriched in mesoderm development and cardiac progenitor signaling processes, yielding a cardiovasculogenic profile bolstered by upregulated cardiogenic proteins. In tandem, cardiopoiesis enhanced the secretion of immunomodulatory proteins associated with cytokine signaling, leukocyte migration, and chemotaxis. Network analysis integrated the differential secretome within an interactome of 1745 molecules featuring prioritized regenerative processes. Secretome contribution to the repair signature of cardiopoietic cell-treated infarcted hearts was assessed in a murine coronary ligation model. Intramyocardial delivery of cardiopoietic cells improved the performance of failing hearts, with undirected proteomics revealing 50 myocardial proteins responsive to cell therapy. Pathway analysis linked the secretome to cardiac proteome remodeling, pinpointing 17 cardiopoiesis-upregulated secretome proteins directly upstream of 44% of the cell therapy-responsive cardiac proteome. Knockout, in silico, of this 22-protein secretome-dependent myocardial ensemble eliminated indices of the repair signature. Accordingly, in vivo, cell therapy rendered the secretome-dependent myocardial proteome of an infarcted heart indiscernible from healthy counterparts. Thus, the secretagogue effect of cardiopoiesis transforms the human stem cell secretome, endows regenerative competency, and upregulates candidate paracrine effectors of cell therapy-mediated molecular restitution.

6.
Ibrain ; 10(3): 305-322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346791

RESUMO

Cancer cells immediately expand and penetrate adjoining tissues, as opposed to metastasis, that is the spread of cancer cells through the circulatory or lymphatic systems to more distant places via the invasion process. We found that a lack of studies discussed tumor development with the nervous system, by the aspects of cancer-tissue invasion (biological) and chemical modulation of growth that cascades by releasing neural-related factors from the nerve endings via chemical substances known as neurotransmitters. In this review, we aimed to carefully demonstrate and describe the cancer invasion and interaction with the nervous system, as well as reveal the research progress and the emerging neuroscience of cancer. An initial set of 160 references underwent systematic review and summarization. Through a meticulous screening process, these data were refined, ultimately leading to the inclusion of 98 studies that adhered to predetermined criteria. The outcomes show that one formidable challenge in the realm of cancer lies in its intrinsic heterogeneity and remarkable capacity for rapid adaptation. Despite advancements in genomics and precision medicine, there is still a need to identify new molecular targets. Considering cancer within its molecular and cellular environment, including neural components, is crucial for addressing this challenge. In conclusion, this review provides good referential data for direct, indirect, biological, and chemical interaction for nerve tissue-tumor interaction, suggesting the establishment of new therapy techniques and mechanisms by controlling and modifying neuron networks that supply signals to tumors.

7.
Bioact Mater ; 41: 672-695, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39309110

RESUMO

Wholly defined ex vivo expansion conditions for biliary tree stem cell (BTSC) organoids were established, consisting of a defined proliferative medium (DPM) used in combination with soft hyaluronan hydrogels. The DPM consisted of commercially available Kubota's Medium (KM), to which a set of small molecules, particular paracrine signals, and heparan sulfate (HS) were added. The small molecules used were DNA methyltransferase inhibitor (RG108), TGF- ß Type I receptor inhibitor (A83-01), adenylate cyclase activator (Forskolin), and L-type Ca2+ channel agonist (Bay K8644). A key paracrine signal proved to be R-spondin 1 (RSPO1), a secreted protein that activates Wnts. Soluble hyaluronans, 0.05 % sodium hyaluronate, were used with DPM to expand monolayer cultures. Expansion of organoids was achieved by using DPM in combination with embedding organoids in Matrigel that was replaced with a defined thiol-hyaluronan triggered with PEGDA to form a hydrogel with a rheology [G*] of less than 100 Pa. The combination is called the BTSC-Expansion-Glycogel-System (BEX-gel system) for expanding BTSCs as a monolayer or as organoids. The BTSC organoids were expanded more than 3000-fold ex vivo in the BEX-gel system within 70 days while maintaining phenotypic traits indicative of stem/progenitors. Stem-cell-patch grafting of expanded BTSC organoids was performed on the livers of Fah-/- mice with tyrosinemia and resulted in the rescue of the mice and restoration of their normal liver functions. The BEX-gel system for BTSC organoid expansion provides a strategy to generate sufficient numbers of organoids for the therapeutic treatments of liver diseases.

8.
Cell ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39288764

RESUMO

TGF-ß, essential for development and immunity, is expressed as a latent complex (L-TGF-ß) non-covalently associated with its prodomain and presented on immune cell surfaces by covalent association with GARP. Binding to integrin αvß8 activates L-TGF-ß1/GARP. The dogma is that mature TGF-ß must physically dissociate from L-TGF-ß1 for signaling to occur. Our previous studies discovered that αvß8-mediated TGF-ß autocrine signaling can occur without TGF-ß1 release from its latent form. Here, we show that mice engineered to express TGF-ß1 that cannot release from L-TGF-ß1 survive without early lethal tissue inflammation, unlike those with TGF-ß1 deficiency. Combining cryogenic electron microscopy with cell-based assays, we reveal a dynamic allosteric mechanism of autocrine TGF-ß1 signaling without release where αvß8 binding redistributes the intrinsic flexibility of L-TGF-ß1 to expose TGF-ß1 to its receptors. Dynamic allostery explains the TGF-ß3 latency/activation mechanism and why TGF-ß3 functions distinctly from TGF-ß1, suggesting that it broadly applies to other flexible cell surface receptor/ligand systems.

9.
Acta Histochem ; 126(5-7): 152191, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39216306

RESUMO

Tumour endothelial cells (TECs) are genetically and phenotypically distinct from their normal, healthy counterparts and provide various pro-tumourigenic effects. This study aimed to investigate the impact of conditioned media (CM) from non-tumourigenic MCF-12A breast epithelial cells as well as from MCF-7 and MDA-MB-231 breast cancer cells on human umbilical vein endothelial cells (HUVECs). Significant increases in cell viability were observed across all breast CM groups compared to controls, with notable differences between the MCF-12A, MCF-7, and MDA-MB-231 groups. Despite increased viability, no significant differences in MCM2 expression, a marker of cell proliferation, were detected. Morphological changes in HUVECs, including elongation, lumen formation, and branching, were more pronounced in breast cancer CM groups, especially in the MDA-MB-231 CM group. qPCR and Western blot analyses showed increased expression of TEC markers such as MDR1, LOX, and TEM8 in HUVECs treated with MCF-12A CM. The MCF-7 CM group significantly enhanced HUVEC migratory activity compared to MCF-12A CM, as evidenced by a scratch assay. These findings underscore distinct angiogenic responses elicited by non-tumourigenic and tumourigenic breast epithelial cells, with tumourigenic cells inducing a hyperactivated angiogenic response. The study highlights the differential effects of breast cancer cell paracrine signalling on endothelial cells and suggests the need for further investigation into TEC markers' role in both physiological and tumour angiogenesis.


Assuntos
Neoplasias da Mama , Células Endoteliais da Veia Umbilical Humana , Comunicação Parácrina , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Meios de Cultivo Condicionados/farmacologia , Fenótipo , Células MCF-7 , Proliferação de Células , Linhagem Celular Tumoral , Movimento Celular , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Sobrevivência Celular
10.
Stem Cell Res Ther ; 15(1): 250, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39135129

RESUMO

BACKGROUND: In the repair of massive tissue defects using expanded large skin flaps, the incidence of complications increases with the size of the expanded area. Currently, stem cell therapy has limitations to solve this problem. We hypothesized that conditioned medium of adipose-derived stem cells (ADSC-CM) collected following mechanical pretreatment can assist skin expansion. METHODS: Rat aortic endothelial cells and fibroblasts were cultured with ADSC-CM collected under 0%, 10%, 12%, and 15% stretching force. Ten-milliliter cylindrical soft tissue expanders were subcutaneously implanted into the backs of 36 Sprague-Dawley rats. The 0% and 10% stretch groups were injected with ADSC-CM collected under 0% and 10% stretching force, respectively, while the control group was not injected. After 3, 7, 14, and 30 days of expansion, expanded skin tissue was harvested for staining and qPCR analyses. RESULTS: Endothelial cells had the best lumen formation and highest migration rate, and fibroblasts secreted the most collagen upon culture with ADSC-CM collected under 10% stretching force. The skin expansion rate was significantly increased in the 10% stretch group. After 7 days of expansion, the number of blood vessels in the expanded area, expression of the angiogenesis-associated proteins vascular endothelial growth factor, basic fibroblast growth factor, and hepatocyte growth factor, and collagen deposition were significantly increased in the 10% stretch group. CONCLUSIONS: The optimal mechanical force upregulates specific paracrine proteins in ADSCs to increase angiogenesis and collagen secretion, and thereby promote skin regeneration and expansion. This study provides a new auxiliary method to expand large skin flaps.


Assuntos
Tecido Adiposo , Comunicação Parácrina , Ratos Sprague-Dawley , Pele , Animais , Ratos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Pele/metabolismo , Fibroblastos/metabolismo , Fibroblastos/citologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Meios de Cultivo Condicionados/farmacologia , Expansão de Tecido/métodos , Masculino , Células-Tronco/metabolismo , Células-Tronco/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Células Cultivadas , Neovascularização Fisiológica , Estresse Mecânico
11.
Biomolecules ; 14(8)2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39199376

RESUMO

Epigenetic regulation is an important entry point to study the pathogenesis of selective fetal growth restriction (sFGR), and an understanding of the role of long noncoding RNAs (lncRNAs) in sFGR is lacking. Our study aimed to investigate the potential role of a lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), in sFGR using molecular biology experiments and gain- or loss-of-function assays. We found that the levels of MALAT1, ERRγ, and HSD17B1 were downregulated and that of miR-424 was upregulated in the placental shares of the smaller twins. Moreover, angiogenesis was impaired in the placental share of the smaller fetus and MALAT1 could regulate the paracrine effects of trophoblasts on endothelium angiogenesis and proliferation by regulating miR-424. In trophoblasts, MALAT1 could competitively bind to miR-424 to regulate the expression of ERRγ and HSD17B1, thus regulating trophoblast invasion and migration. MALAT1 overexpression could decrease apoptosis and promote proliferation, alleviating cell damage induced by hypoxia. Taken together, the downregulation of MALAT1 can reduce the expression of ERRγ and HSD17B1 by competitively binding to miR-424, impairing the proangiogenic effect of trophoblasts, trophoblast invasion and migration, and the ability of trophoblasts to compensate for hypoxia, which may be involved in the pathogenesis of sFGR through various aspects.


Assuntos
Movimento Celular , Proliferação de Células , Retardo do Crescimento Fetal , MicroRNAs , RNA Longo não Codificante , Trofoblastos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Trofoblastos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Movimento Celular/genética , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Gravidez , Proliferação de Células/genética , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Apoptose/genética , Neovascularização Fisiológica/genética , Placenta/metabolismo , Estradiol Desidrogenases
12.
Cancers (Basel) ; 16(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39199680

RESUMO

This study evaluated the paracrine signaling between breast carcinoma-associated fibroblasts (CAFs) and breast cancer (BCa) cells. Resolving cell-cell communication in the BCa tumor microenvironment (TME) will aid the development of new therapeutics. Here, we utilized our patented TAME (tissue architecture and microenvironment engineering) 3D culture microphysiological system, which is a suitable pathomimetic avatar for the study of the BCa TME. We cultured in 3D BCa cells and CAFs either alone or together in cocultures and found that when cocultured, CAFs enhanced the invasive characteristics of tumor cells, as shown by increased proliferation and spread of tumor cells into the surrounding matrix. Secretome analysis from 3D cultures revealed a relatively high secretion of IL-6 by CAFs. A marked increase in the secretion of granulocyte macrophage-colony stimulating factor (GM-CSF) when carcinoma cells and CAFs were in coculture was also observed. We theorized that the CAF-secreted IL-6 functions in a paracrine manner to induce GM-CSF expression and secretion from carcinoma cells. This was confirmed by evaluating the activation of STAT3 and gene expression of GM-CSF in carcinoma cells exposed to CAF-conditioned media (CAF-CM). In addition, the treatment of CAFs with BCa cell-CM yielded a brief upregulation of GM-CSF followed by a marked decrease, indicating a tightly regulated control of GM-CSF in CAFs. Secretion of IL-6 from CAFs drives the activation of STAT3 in BCa cells, which in turn drives the expression and secretion of GM-CSF. As a result, CAFs exposed to BCa cell-secreted GM-CSF upregulate inflammation-associated genes such as IL-6, IL-6R and IL-8, thereby forming a positive feedback loop. We propose that the tight regulation of GM-CSF in CAFs may be a novel regulatory pathway to target for disrupting the CAF:BCa cell symbiotic relationship. These data provide yet another piece of the cell-cell communication network governing the BCa TME.

13.
J Control Release ; 374: 384-399, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173953

RESUMO

Stem cell-based therapies offer promising avenues for treating inflammatory diseases owing to their immunomodulatory properties. However, challenges persist regarding their survival and efficacy in inflamed tissues. Our study introduces a novel approach by engineering adipose-derived stem cells (ADSCs) to enhance their viability in inflammatory environments and boost the secretion of paracrine factors for treating inflammatory bowel disease (IBD). An arginine-glycine-aspartate peptide-poly (ethylene glycol)-chlorin e6 conjugate (RPC) was synthesized and coupled with ADSCs, resulting in RPC-labeled ADSCs (ARPC). This conjugation strategy employed RGD-integrin interaction to shield stem cells and allowed visualization and tracking using chlorin e6. The engineered ARPC demonstrated enhanced viability and secretion of paracrine factors upon light irradiation, regulating the inflammatory microenvironment. RNA-sequencing analysis unveiled pathways favoring angiogenesis, DNA repair, and exosome secretion in ARPC(+) while downregulating inflammatory pathways. In in vivo models of acute and chronic IBD, ARPC(+) treatment led to reduced inflammation, preserved colon structure, and increased populations of regulatory T cells, highlighting its therapeutic potential. ARPC(+) selectively homed to inflammatory sites, demonstrating its targeted effect. Overall, ARPC(+) exhibits promise as an effective and safe therapeutic strategy for managing inflammatory diseases like IBD by modulating immune responses and creating an anti-inflammatory microenvironment.


Assuntos
Tecido Adiposo , Doenças Inflamatórias Intestinais , Células-Tronco , Animais , Doenças Inflamatórias Intestinais/terapia , Tecido Adiposo/citologia , Polietilenoglicóis/química , Humanos , Porfirinas/administração & dosagem , Camundongos Endogâmicos C57BL , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Oligopeptídeos , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Feminino
14.
Wound Repair Regen ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129718

RESUMO

Wound healing is a complex, dynamic process involving the coordinated interaction of diverse cell types, growth factors, cytokines, and extracellular matrix components. Despite emerging evidence highlighting their importance, dermal sheath cells remain a largely overlooked aspect of wound healing research. This review explores the multifunctional roles of dermal sheath cells in various phases of wound healing, including modulating inflammation, aiding in proliferation, and contributing to extracellular matrix remodelling. Special attention is devoted to the paracrine effects of dermal sheath cells and their role in fibrosis, highlighting their potential in improving healing outcomes, especially in differentiating between hairy and non-hairy skin sites. By drawing connections between dermal sheath cells activity and wound healing outcomes, this work proposes new insights into the mechanisms of tissue regeneration and repair, marking a step forward in our understanding of wound healing processes.

15.
Front Cell Dev Biol ; 12: 1411507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39129785

RESUMO

Osteoarthritis (OA) is a degenerative joint disease caused by chronic inflammation that damages articular cartilage. At present, the treatment of OA includes drug therapy to relieve symptoms and joint replacement therapy for advanced OA. However, these palliatives cannot truly block the progression of the disease from the immunological pathogenesis of OA. In recent years, bone marrow mesenchymal stem cell (BMSC) transplantation has shown great potential in tissue engineering repair. In addition, many studies have shown that BMSC paracrine signals play an important role in the treatment of OA through immune regulation and suppressing inflammation. At present, the mechanism of inflammation-induced OA and the use of BMSC transplantation in joint repair have been reviewed, but the mechanism and significance of BMSC paracrine signals in the treatment of OA have not been fully reviewed. Therefore, this article focused on the latest research progress on the paracrine effects of BMSCs in the treatment of OA and the related mechanisms by which BMSCs secrete cytokines to inhibit the inflammatory response, regulate immune balance, and promote cell proliferation and differentiation. In addition, the application potential of BMSC-Exos as a new type of cell-free therapy for OA is described. This review aimed to provide systematic theoretical support for the clinical application of BMSC transplantation in the treatment of OA.

16.
Adv Sci (Weinh) ; : e2405421, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207055

RESUMO

Currently, the oncogenic mechanism of endoplasmic reticulum stress-CAF (ERS-CAF) subpopulation in chordoma remains unknown. Here, single-cell RNA sequencing, spatial transcriptomics, GeoMx Digital Spatial Profiler, data-independent acquisition proteomics, bulk RNA-seq, and multiplexed quantitative immunofluorescence are used to unveil the precise molecular mechanism of how ERS-CAF affected chordoma progression. Results show that hypoxic microenvironment reprograms CAFs into ERS-CAF subtype. Mechanistically, this occurrs via hypoxia-mediated transcriptional upregulation of IER2. Overexpression of IER2 in CAFs promotes chordoma progression, which can be impeded by IER2 knockdown or use of ERS inhibitors. IER2 also induces expression of ERS-CAF marker genes and results in production of a pro-tumorigenic paracrine GMFG signaling, which exert its biological function via directly binding to ITGB1 on tumor cells. ITGB1 inhibition attenuates tumor malignant progression, which can be partially reversed by exogenous GMFG intervention. Further analyses reveal a positive correlation between ITGB1high tumor cell counts and SPP1+ macrophage density, as well as the spatial proximity of these two cell types. Clinically, a significant correlation of high IER2/ITGB1 expression with tumor aggressive phenotype and poor patient survival is observed. Collectively, the findings suggest that ERS-CAF regulates SPP1+ macrophage to aggravate chordoma progression via the IER2/GMFG/ITGB1 axis, which may be targeted therapeutically in future.

17.
Animals (Basel) ; 14(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39199883

RESUMO

Reproduction is classically controlled by gonadotropin-releasing hormone (GnRH-I) and its receptor (GnRHR-I) within the brain. In pigs, a second form (GnRH-II) and its specific receptor (GnRHR-II) are also produced, with greater abundance in peripheral vs. central reproductive tissues. The binding of GnRH-II to GnRHR-II has been implicated in the autocrine/paracrine regulation of gonadal steroidogenesis rather than gonadotropin secretion. Blood samples were collected from transgenic gilts, with the ubiquitous knockdown of GnRHR-II (GnRHR-II KD; n = 8) and littermate controls (n = 7) at the onset of estrus (follicular) and 10 days later (luteal); serum concentrations of 16 steroid hormones were quantified by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). Upon euthanasia, ovarian weight (OWT), ovulation rate (OR), and the weight of each excised Corpus luteum (CLWT) were recorded; HPLC-MS/MS was performed on CL homogenates. During the luteal phase, serum progesterone concentration was reduced by 18% in GnRHR-II KD versus control gilts (p = 0.0329). Age and weight at puberty, estrous cycle length, and OWT were similar between lines (p > 0.05). Interestingly, OR was reduced (p = 0.0123), and total CLWT tended to be reduced (p = 0.0958) in GnRHR-II KD compared with control females. Luteal cells in CL sections from GnRHR-II KD gilts were hypotrophic (p < 0.0001). Therefore, GnRH-II and its receptor may help regulate OR, CL development, and progesterone production in gilts.

18.
Biol Reprod ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190878

RESUMO

Sperm maturation depends on exposure to specific microenvironments within the different segments of the epididymis, but mechanisms underlying how these microenvironments are produced or maintained are not well understood. We hypothesized that epididymal extracellular vesicles (EVs) could play a role in the process of maintaining microenvironments in different regions of the epididymis. Specifically, we tested whether the EVs from different regions of the epididymis can serve as a form of paracrine communication between cells in different segments. Domestic cat tissues were used to develop a reproducible in vitro culture system for corpus epididymis explants that were then exposed to EVs collected from upstream (i.e. caput) segments. The impacts of different culture or exposure conditions were compared by analyzing the morphology, apoptosis, transcriptional activity, and gene expression in the explants. Here, we report the development of the first in vitro culture system for epididymal tissue explants in the domestic cat model. Using this system, we found that EVs from the caput segment have a significant effect on the transcriptional profile of tissue from the corpus segment (1233 differentially expressed genes due to EV supplementation). Of note, expression of genes associated with regulation of epithelial cell differentiation and cytokine signaling in the epididymis were regulated by the presence of EVs. Together, our findings comprise the first report of paracrine control of segmental gene regulation by epididymal EVs in any species. These results contribute to a better understanding of epididymis biology and could lead to techniques to enhance or suppress male fertility.

19.
bioRxiv ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39131374

RESUMO

Components of normal tissue architecture serve as barriers to tumor progression. Inflammatory and wound-healing programs are requisite features of solid tumorigenesis, wherein alterations to immune and non-immune stromal elements enable loss of homeostasis during tumor evolution. The precise mechanisms by which normal stromal cell states limit tissue plasticity and tumorigenesis, and which are lost during tumor progression, remain largely unknown. Here we show that healthy pancreatic mesenchyme expresses the paracrine signaling molecule KITL, also known as stem cell factor, and identify loss of stromal KITL during tumorigenesis as tumor-promoting. Genetic inhibition of mesenchymal KITL in the contexts of homeostasis, injury, and cancer together indicate a role for KITL signaling in maintenance of pancreas tissue architecture, such that loss of the stromal KITL pool increased tumor growth and reduced survival of tumor-bearing mice. Together, these findings implicate loss of mesenchymal KITL as a mechanism for establishing a tumor-permissive microenvironment.

20.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L359-L370, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39010825

RESUMO

The 18-kDa isoform of basic fibroblast growth factor (bFGF/FGF2) lacks a conventional signal peptide sequence and is exported by a novel membrane-associated transport pathway. Extracellular vesicles (EVs) are increasingly recognized as mediators of intercellular communication in the lung, and our prior work demonstrates that EVs carry cargo that contributes to hyperoxic lung injury and are biomarkers for bronchopulmonary dysplasia. We used primary human bronchial epithelial (HBE), pulmonary artery endothelial (HPAE), and fibroblast (HNF) cells to determine whether FGF2 was secreted in EVs. EVs were isolated by ultracentrifugation from HBE, HPAE, and HNF exposed to either normoxia or hyperoxia, followed by nanoparticle tracking analysis and electron microscopy. Hyperoxia exposure increased the total EV number. All three cell types released FGF2-18kDa both directly into the extracellular environment (secretome), as well as in EVs. HBE released more FGF2-18kDa in EVs during hyperoxia, and these were internalized and localized to both nuclei and cytoplasm of recipient cells. By co-immunoprecipitation, we identified potential binding partners of FGF2-18kDa in the nuclei, including histone 1.2 (H1.2) binding protein, that may mediate downstream effects that do not involve FGF2 binding to cell surface receptors. FGF2-18kDa interaction with H1.2 binding protein may indicate a mechanism by which FGF2 secreted in EVs modulates cellular processes. FGF2 was also found to increase angiogenesis by Matrigel assay. Further studies are necessary to determine the biological relevance of FGF2 in EVs as modulators of lung injury and disease.NEW & NOTEWORTHY We found that multiple lung cell types release basic fibroblast growth factor (FGF2)-18kDa both directly into the extracellular environment (secretome), as well as in extracellular vesicles (EVs). Bronchial epithelial cells released more FGF2-18kDa in EVs during hyperoxia, which could be internalized rapidly by recipient cells. We also identified potential binding partners of FGF2-18kDa in nuclei that may mediate downstream effects that do not involve FGF2 binding to cell surface receptors. We also confirmed a potential angiogenic role for FGF2-18kDa.


Assuntos
Vesículas Extracelulares , Fator 2 de Crescimento de Fibroblastos , Pulmão , Humanos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Vesículas Extracelulares/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Hiperóxia/metabolismo , Hiperóxia/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Brônquios/metabolismo , Brônquios/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...