Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cancer Sci ; 115(1): 17-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048779

RESUMO

Plakophilin 3 (PKP3), a component of desmosome, is aberrantly expressed in many kinds of human diseases, especially in cancers. Through direct interaction, PKP3 binds with a series of desmosomal proteins, such as desmoglein, desmocollin, plakoglobin, and desmoplakin, to initiate desmosome aggregation, then promotes its stability. As PKP3 is mostly expressed in the skin, loss of PKP3 promotes the development of several skin diseases, such as paraneoplastic pemphigus, pemphigus vulgaris, and hypertrophic scar. Moreover, accumulated clinical data indicate that PKP3 dysregulates in diverse cancers, including breast, ovarian, colon, and lung cancers. Numerous lines of evidence have shown that PKP3 plays important roles in multiple cellular processes during cancer progression, including metastasis, invasion, tumor formation, autophagy, and proliferation. This review examines the diverse functions of PKP3 in regulating tumor formation and development in various types of cancers and summarizes its detailed mechanisms in the occurrence of skin diseases.


Assuntos
Neoplasias , Placofilinas , Dermatopatias , Humanos , Desmossomos/metabolismo , Neoplasias/metabolismo , Placofilinas/genética , Placofilinas/metabolismo
2.
Cell Rep ; 42(1): 112031, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689330

RESUMO

Plakophilin 3 (PKP3) is a component of desmosomes and is frequently overexpressed in cancer. Using keratinocytes either lacking or overexpressing PKP3, we identify a signaling axis from ERK to the retinoblastoma (RB) protein and the E2F1 transcription factor that is controlled by PKP3. RB and E2F1 are key components controlling G1/S transition in the cell cycle. We show that PKP3 stimulates the activity of ERK and its target RSK1. This inhibits expression of the transcription factor RUNX3, a positive regulator of the CDK inhibitor CDKN1A/p21, which is also downregulated by PKP3. Elevated CDKN1A prevents RB phosphorylation and E2F1 target gene expression, leading to delayed S phase entry and reduced proliferation in PKP3-depleted cells. Elevated PKP3 expression not only increases ERK activity but also captures phosphorylated RB (phospho-RB) in the cytoplasm to promote E2F1 activity and cell-cycle progression. These data identify a mechanism by which PKP3 promotes proliferation and acts as an oncogene.


Assuntos
Placofilinas , Proteína do Retinoblastoma , Animais , Camundongos , Divisão Celular , Citoplasma/metabolismo , Fator de Transcrição E2F1/metabolismo , Receptores ErbB/metabolismo , Fosforilação , Placofilinas/genética , Placofilinas/metabolismo , Proteína do Retinoblastoma/metabolismo , Fase S , Transdução de Sinais
3.
Biochem Biophys Res Commun ; 620: 1-7, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35772211

RESUMO

Loss of the desmosomal plaque protein plakophilin3 (PKP3) leads to increased tumor progression and metastasis. As metastatic tumors are often resistant to therapy, we wished to determine whether PKP3 loss led to increased radioresistance. PKP3 knockdown cells showed increased resistance to radiation in vitro and in vivo. The increase in resistance was accompanied by an increased ability to clear reactive oxygen species (ROS) and increased autophagy. The increase in autophagy was required for radioresistance and ROS clearance as inhibiting autophagy using either chloroquine or knocking down ATG3 re-sensitized the PKP3 knockdown clones to radiotherapy. These experiments suggest that autophagy inhibitors could target therapy-resistant PKP3 deficient tumors.


Assuntos
Neoplasias , Placofilinas , Autofagia/genética , Linhagem Celular Tumoral , Células Clonais/metabolismo , Humanos , Neoplasias/metabolismo , Placofilinas/genética , Placofilinas/metabolismo , Espécies Reativas de Oxigênio
4.
Biochem Biophys Res Commun ; 586: 14-19, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34823217

RESUMO

Plakophilin3 (PKP3) loss leads to tumor progression and metastasis of colon cancer cells. The goal of this report was to determine if PKP3 loss led to increased disease progression in mice. We generated a colonocyte-specific knockout of PKP3 in APCmin mice, which led to increased adenoma formation, the formation of rectal prolapse, and a significant decrease in survival. The observed increase in rectal prolapse formation and decrease in survival correlated with an increase in the expression of Lipocalin2 (LCN2). Increased disease progression was observed even upon treatment with 5-fluorouracil (5FU). These results suggest that an increase in LCN2 expression might lead to therapy resistance and that LCN2 might serve as a potential therapeutic target in colorectal cancer.


Assuntos
Adenoma/genética , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Lipocalina-2/genética , Placofilinas/genética , Prolapso Retal/genética , Adenoma/tratamento farmacológico , Adenoma/mortalidade , Adenoma/patologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Queratina-8/genética , Queratina-8/metabolismo , Lipocalina-2/metabolismo , Masculino , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placofilinas/deficiência , Prolapso Retal/tratamento farmacológico , Prolapso Retal/mortalidade , Prolapso Retal/patologia , Transdução de Sinais , Análise de Sobrevida
5.
Mol Cancer ; 20(1): 105, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34416901

RESUMO

BACKGROUND: An in-depth understanding of immune evasion mechanisms in tumors is crucial to overcome resistance and enable innovative advances in immunotherapy. Circular RNAs (circRNAs) have been implicated in cancer progression. However, much remains unknown regarding whether circRNAs impact immune escape in non-small-cell lung carcinoma (NSCLC). METHODS: We performed bioinformatics analysis to profile and identify the circRNAs mediating immune evasion in NSCLC. A luciferase reporter assay, RNA immunoprecipitation (RIP), RNA pulldown assays and fluorescence in situ hybridization were performed to identify the interactions among circIGF2BP3, miR-328-3p, miR-3173-5p and plakophilin 3 (PKP3). In vitro T cell-mediated killing assays and in vivo syngeneic mouse models were used to investigate the functional roles of circIGF2BP3 and its downstream target PKP3 in antitumor immunity in NSCLC. The molecular mechanism of PKP3-induced PD-L1 upregulation was explored by immunoprecipitation, RIP, and ubiquitination assays. RESULTS: We demonstrated that circIGF2BP3 (hsa_circ_0079587) expression was increased in NSCLC and negatively correlated with CD8+ T cell infiltration. Functionally, elevated circIGF2BP3 inactivated cocultured T cells in vitro and compromised antitumor immunity in an immunocompetent mouse model, and this effect was dependent on CD8+ T cells. Mechanistically, METTL3 mediates the N6-methyladenosine (m6A) modification of circIGF2BP3 and promotes its circularization in a manner dependent on the m6A reader protein YTHDC1. circIGF2BP3 competitively upregulates PKP3 expression by sponging miR-328-3p and miR-3173-5p to compromise the cancer immune response. Furthermore, PKP3 engages with the RNA-binding protein FXR1 to stabilize OTUB1 mRNA, and OTUB1 elevates PD-L1 abundance by facilitating its deubiquitination. Tumor PD-L1 deletion completely blocked the impact of the circIGF2BP3/PKP3 axis on the CD8+ T cell response. The inhibition of circIGF2BP3/PKP3 enhanced the treatment efficacy of anti-PD-1 therapy in a Lewis lung carcinoma mouse model. Collectively, the PKP3/PD-L1 signature and the infiltrating CD8+ T cell status stratified NSCLC patients into different risk groups. CONCLUSION: Our results reveal the function of circIGF2BP3 in causing immune escape from CD8+ T cell-mediated killing through a decrease in PD-L1 ubiquitination and subsequent proteasomal degradation by stabilizing OTUB1 mRNA in a PKP3-dependent manner. This work sheds light on a novel mechanism of PD-L1 regulation in NSCLC and provides a rationale to enhance the efficacy of anti-PD-1 treatment in NSCLC.


Assuntos
Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , RNA Circular/genética , Proteínas de Ligação a RNA/genética , Adenosina/análogos & derivados , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral , Camundongos , Modelos Biológicos , Estabilidade de RNA , RNA Circular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Biochem Biophys Res Commun ; 563: 31-39, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34058472

RESUMO

Vertebrate beta-catenin plays a key role as a transducer of canonical-Wnt signals. We earlier reported that, similar to beta-catenin, the cytoplasmic signaling pool of p120-catenin-isoform1 is stabilized in response to canonical-Wnt signals. To obtain a yet broader view of the Wnt-pathway's impact upon catenin proteins, we focused upon plakophilin3 (plakophilin-3; Pkp3) as a representative of the plakophilin-catenin subfamily. Promoting tissue integrity, the plakophilins assist in linking desmosomal cadherins to intermediate filaments at desmosome junctions, and in common with other catenins they perform additional functions including in the nucleus. In this report, we test whether canonical-Wnt pathway components modulate Pkp3 protein levels. We find that in common with beta-catenin and p120-catenin-isoform1, Pkp3 is stabilized in the presence of a Wnt-ligand or a dominant-active form of the LRP6 receptor. Pkp3's levels are conversely lowered upon expressing destruction-complex components such as GSK3ß and Axin, and in further likeness to beta-catenin and p120-isoform1, Pkp3 associates with GSK3beta and Axin. Finally, we note that Pkp3-catenin trans-localizes into the nucleus in response to Wnt-ligand and its exogenous expression stimulates an accepted Wnt reporter. These findings fit an expanded model where context-dependent Wnt-signals or pathway components modulate Pkp3-catenin levels. Future studies will be needed to assess potential gene regulatory, cell adhesive, or cytoskeletal effects.


Assuntos
Placofilinas/metabolismo , Animais , Células Cultivadas , Humanos , Via de Sinalização Wnt , Xenopus laevis
7.
Mol Carcinog ; 57(12): 1763-1779, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30144176

RESUMO

Nasopharyngeal carcinoma (NPC) has a high metastatic clinicopathological feature. As a carcinogen factor, N,N'-dinitrosopiperazine (DNP) is involved in NPC metastasis, but its precise mechanism has not been fully elucidated. Herein, we showed that DNP promotes NPC metastasis through upregulating miR-149. DNP was found to decrease Plakophilin3 (PKP3) expression, further DNP-decreased PKP3 was verified to be through upregulating miR-149. We also found that DNP induced proliferation, adhesion, migration and invasion of NPC cell, which was inhibited by miR-149-inhibitor. DNP may promote NPC metastasis through miR-149-decreased PKP3 expression. Therefore, DNP-increased miR-149 expression may be an important factor of NPC high metastasis, and miR-149 may serve as a molecular target for anti-metastasis therapy of NPC.


Assuntos
MicroRNAs/genética , Carcinoma Nasofaríngeo/genética , Metástase Neoplásica/genética , Nitrosaminas/toxicidade , Placofilinas/genética , Regiões 3' não Traduzidas , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Nasofaríngeas/genética , Nitrosaminas/química , Piperazina/química , Placofilinas/metabolismo , Regulação para Cima , Adulto Jovem
8.
Exp Cell Res ; 369(2): 251-265, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29803740

RESUMO

An increase in tumour formation and metastasis are observed upon plakophilin3 (PKP3) loss. To identify pathways downstream of PKP3 loss that are required for increased tumour formation, a gene expression analysis was performed, which demonstrated that the expression of lipocalin2 (LCN2) was elevated upon PKP3 loss and this is consistent with expression data from human tumour samples suggesting that PKP3 loss correlates with an increase in LCN2 expression. PKP3 loss leads to an increase in invasion, tumour formation and metastasis and these phenotypes were dependent on the increase in LCN2 expression. The increased LCN2 expression was due to an increase in the activation of p38 MAPK in the HCT116 derived PKP3 knockdown clones as LCN2 expression decreased upon inhibition of p38 MAPK. The phosphorylated active form of p38 MAPK is translocated to the nucleus upon PKP3 loss and is dependent on complex formation between p38 MAPK and PKP3. WT PKP3 inhibits LCN2 reporter activity in PKP3 knockdown cells but a PKP3 mutant that fails to form a complex with p38 MAPK cannot suppress LCN2 promoter activity. Further, LCN2 expression is decreased upon loss of p38ß, but not p38α, in the PKP3 knockdown cells. These results suggest that PKP3 loss leads to an increase in the nuclear translocation of p38 MAPK and p38ß MAPK is required for the increase in LCN2 expression.


Assuntos
Lipocalina-2/metabolismo , Neoplasias/metabolismo , Placofilinas/deficiência , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HCT116 , Xenoenxertos , Humanos , Lipocalina-2/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Neoplasias/etiologia , Neoplasias/genética , Placofilinas/antagonistas & inibidores , Placofilinas/genética , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Biochem Biophys Res Commun ; 495(1): 768-774, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29146182

RESUMO

Previous reports show that the desmosomal plaque protein plakophilin3 (PKP3) is essential for desmosome formation. Here, we report that PKP3 over-expression decreases calcium dependency for de novo desmosome formation and makes existing cell-cell adhesion junctions more resilient in low calcium medium due to an increase in desmocollin2 expression. PKP3 overexpression increases the stability of other desmosomal proteins independently of the increase in DSC2 levels and regulates desmosome formation and stability by a multimodal mechanism affecting transcription, protein stability and cell border localization of desmosomal proteins.


Assuntos
Adesão Celular/fisiologia , Desmocolinas/metabolismo , Desmossomos/fisiologia , Desmossomos/ultraestrutura , Placofilinas/metabolismo , Linhagem Celular , Humanos , Tamanho da Partícula
10.
Eur J Immunol ; 45(10): 2898-910, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26173741

RESUMO

Plakophilin-3 (PKP3) is a member of the armadillo protein family, which is important in cell-cell contacts and signaling during development and tumorigenesis. In conventional facilities, PKP3-deficient mice (PKP3(-/-)) develop spontaneous dermatitis, indicating a possible involvement of PKP3 in inflammatory responses. Here, we show that PKP3 deficiency sensitizes mice to irritant contact dermatitis induced by phorbol myristate acetate (PMA). This sensitization occurred in mice with PKP3 deficiency in the hematopoietic system (PKP3(-/-hem)), but not if the deficiency was specific to skin keratinocytes (PKP3(-/-ker)). In a model of dextran sulfate sodium induced colitis, ubiquitous PKP3 deletion, but not intestinal epithelial PKP3 deficiency (PKP3(-/-IEC)), impaired survival from disease. Interestingly, PKP3(-/-hem) mice also displayed increased sensitivity to dextran sulfate sodium induced colitis. Finally, PKP3(-/-) mice were more sensitive to the lethality of lipopolysaccharide (LPS) injection than wild-type (WT) mice, and this phenotype was associated with increased intestinal permeability. PKP3(-/-IEC) mice did not reproduce the enhanced endotoxin reactivity of PKP3(-/-) mice, in contrast to PKP3(-/-hem) mice. Finally, in vitro stimulation of WT neutrophils with LPS or PMA increased Pkp3 expression. In conclusion, our data highlight a novel role for hematopoietic PKP3 in the regulation of both locally and systemically induced immune responses. Nonetheless, further research is needed to unravel the underlying mechanism.


Assuntos
Colite/imunologia , Dermatite de Contato/imunologia , Regulação da Expressão Gênica/imunologia , Neutrófilos/imunologia , Placofilinas/imunologia , Animais , Colite/induzido quimicamente , Dermatite de Contato/genética , Dermatite de Contato/patologia , Sulfato de Dextrana/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Neutrófilos/patologia , Placofilinas/genética , Acetato de Tetradecanoilforbol/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...