Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.284
Filtrar
1.
Methods Mol Biol ; 2854: 75-82, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192120

RESUMO

Click chemistry, also known as "link chemistry," is an important molecular connection method that can achieve simple and efficient connections between specific small molecular groups at the molecular level. Click chemistry offers several advantages, including high efficiency, good selectivity, mild conditions, and few side reactions. These features make it a valuable tool for in-depth analysis of various protein posttranslational modifications (PTMs) caused by changes in cell metabolism during viral infection. This chapter considers the palmitoylation, carbonylation, and alkylation of STING and presents detailed information and experimental procedures for measuring PTMs using click chemistry.


Assuntos
Química Click , Processamento de Proteína Pós-Traducional , Química Click/métodos , Humanos , Alquilação , Lipoilação , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Carbonilação Proteica
2.
Nanomaterials (Basel) ; 14(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39195364

RESUMO

Rare earth-doped nanoparticles (RENPs) are promising biomaterials with substantial potential in biomedical applications. Their multilayered core-shell structure design allows for more diverse uses, such as orthogonal excitation. However, the typical synthesis strategies-one-pot successive layer-by-layer (LBL) method and seed-assisted (SA) method-for creating multilayered RENPs show notable differences in spectral performance. To clarify this issue, a thorough comparative analysis of the elemental distribution and spectral characteristics of RENPs synthesized by these two strategies was conducted. The SA strategy, which avoids the partial mixing stage of shell and core precursors inherent in the LBL strategy, produces RENPs with a distinct interface in elemental distribution. This unique elemental distribution reduces unnecessary energy loss via energy transfer between heterogeneous elements in different shell layers. Consequently, the synthesis method choice can effectively modulate the spectral properties of RENPs. This discovery has been applied to the design of orthogonal RENP biomedical probes with appropriate dimensions, where the SA strategy introduces a refined inert interface to prevent unnecessary energy loss. Notably, this strategy has exhibited a 4.3-fold enhancement in NIR-II in vivo imaging and a 2.1-fold increase in reactive oxygen species (ROS)-related photodynamic therapy (PDT) orthogonal applications.

3.
Biosens Bioelectron ; 264: 116638, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153261

RESUMO

Fluorophore chemistry is at the forefront of bioimaging, revolutionizing the visualization of biological processes with unparalleled precision. From the serendipitous discovery of mauveine in 1856 to cutting-edge fluorophore engineering, this field has undergone transformative evolution. Today, the synergy of chemistry, biology, and imaging technologies has produced diverse, specialized fluorophores that enhance brightness, photostability, and targeting capabilities. This review delves into the history and innovation of fluorescent probes, showcasing their pivotal role in advancing our understanding of cellular dynamics and disease mechanisms. We highlight groundbreaking molecules and their applications, envisioning future breakthroughs that promise to redefine biomedical research and diagnostics.


Assuntos
Técnicas Biossensoriais , Corantes Fluorescentes , Corantes Fluorescentes/química , Humanos , Técnicas Biossensoriais/métodos , Animais , Imagem Óptica/métodos
4.
Wellcome Open Res ; 9: 255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39184128

RESUMO

The major malaria mosquitoes, Anopheles gambiae s.l and Anopheles funestus, are some of the most studied organisms in medical research and also some of the most genetically diverse. When designing polymerase chain reaction (PCR) or hybridisation-based molecular assays, reliable primer and probe design is crucial. However, single nucleotide polymorphisms (SNPs) in primer binding sites can prevent primer binding, leading to null alleles, or bind suboptimally, leading to preferential amplification of specific alleles. Given the extreme genetic diversity of Anopheles mosquitoes, researchers need to consider this genetic variation when designing primers and probes to avoid amplification problems. In this note, we present a Python package, AnoPrimer, which exploits the Ag1000G and Af1000 datasets and allows users to rapidly design primers in An. gambiae or An. funestus, whilst summarising genetic variation in the primer binding sites and visualising the position of primer pairs. AnoPrimer allows the design of both genomic DNA and cDNA primers and hybridisation probes. By coupling this Python package with Google Colaboratory, AnoPrimer is an open and accessible platform for primer and probe design, hosted in the cloud for free. AnoPrimer is available here https://github.com/sanjaynagi/AnoPrimer and we hope it will be a useful resource for the community to design probe and primer sets that can be reliably deployed across the An. gambiae and funestus species ranges.


The majority of molecular biology applications require synthetic DNA sequences called primers, which bind to DNA and allow us to amplify specific stretches of DNA which we are interested in. Unfortunately, when mutations occur at primer binding sites, primers can fail to bind completely, or even worse, amplify differentially depending on the mutation present. Mutations can therefore bias molecular assays with often undetected effects. This is a particular problem in malaria mosquitoes, as they are some of the most genetically diverse species on earth. We present a user-friendly software tool, AnoPrimer, which allows users to design primers for molecular biology in malaria mosquitoes. AnoPrimer integrates high-quality whole-genome sequence data from the cloud, and creates clear, interactive visualisations, enabling users to avoid mutations that occur in wild malaria mosquitoes. By avoiding these mutations, we can ensure the design of reliable primers which result in robust molecular assays for research into malaria vectors.

5.
Neurophotonics ; 11(Suppl 1): S11514, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39132194

RESUMO

The continuous exchange between the neuroscience and neuroengineering communities that took place over the past decades has uncovered a multitude of technological solutions to interface with the brain. In this framework, a fascinating approach relies on the integration of multiple activation and monitoring capabilities in the same implantable neural probe to better study the multifaceted nature of neural signaling and related functions in the deep brain regions. We highlight current challenges and perspectives on technological developments that could potentially enable the integration of multiple functionalities on optical fiber-based non-planar implantable neurophotonics probes.

6.
Angew Chem Int Ed Engl ; : e202409369, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136230

RESUMO

Sterically distorted donor-acceptor p­systems, termed DA springs, can be progressively planarized under mechanical load causing a bathochromic shift of the photoluminescence (PL) spectrum. By combining theory and experiment, we here use a simple linear force calibration for two different conformational mechanochromophores to determine molecular forces in polymers from the mechanochromic shift in PL wavelength during multiple uniaxial tensile tests. Two systems are used, i) a highly entangled linear glassy polyphenylene and ii) a covalent elastomeric polydimethylsiloxane network. The mean forces estimated by this method are validated using known threshold forces for the mechanochemical ring-opening reactions of two different spiropyran force probes. The agreement between both approaches underlines that these DA springs provide the unique opportunity for the online monitoring of local molecular forces present in diverse polymer matrices.

7.
J Fluoresc ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136912

RESUMO

Carbon quantum dots are a new type of fluorescent carbon-based nanomaterials, and their excellent properties have provoked a strong research interest. Herein, blue-fluorescent carbon quantum dots (k-CQDs) were successfully synthesized by a simple one-step hydrothermal method using chitosan and ethylenediaminetetraacetic acid as precursors. It was found that Fe3+ could quench the fluorescence of k-CQDs by a dynamic quenching mechanism that increased the positive charge in solution. Due to ascorbic acid (AA) can reduce Fe3+ to Fe2+, the positive charge in solution was reduced and the fluorescence of k-CQDs was restored. Based on the mechanism of the fluorescence "on-off-on", k-CQDs were used for the detection of Fe3+ and AA with strong antijamming capability. The LOD for Fe3+ concentrations in the ranges of 0 to 30 µM and 30 to 100 µM were 0.3 µM and 0.76 µM, respectively. The LOD for AA concentrations in the ranges of 0 to 82.5 µM and 82.5 to 172.5 µM were 3.93 µM and 1.63 µM, respectively. Spiking recoveries of Fe3+ in tap water, AA in orange juice and tomato juice were 87.93 ∼ 101.13%, 86.77 ∼ 105.15% and 86.43 ∼ 103.80%, respectively. Meanwhile, k-CQDs also showed good potential for anti-counterfeiting encryption.

8.
Front Optoelectron ; 17(1): 26, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098865

RESUMO

On-chip optical power monitors are indispensable for functional implementation and stabilization of large-scale and complex photonic integrated circuits (PICs). Traditional on-chip optical monitoring is implemented by tapping a small portion of optical power from the waveguide, which leads to significant loss. Due to its advantages like non-invasive nature, miniaturization, and complementary metal-oxide-semiconductor (CMOS) process compatibility, a transparent monitor named the contactless integrated photonic probe (CLIPP), has been attracting great attention in recent years. The CLIPP indirectly monitors the optical power in the waveguide by detecting the conductance variation of the local optical waveguide caused by the surface state absorption (SSA) effect. In this review, we first introduce the fundamentals of the CLIPP including the concept, the equivalent electric model and the impedance read-out method, and then summarize some characteristics of the CLIPP. Finally, the functional applications of the CLIPP on the identification and feedback control of optical signal are discussed, followed by a brief outlook on the prospects of the CLIPP.

9.
J Photochem Photobiol B ; 259: 113006, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39128425

RESUMO

Molecular probes for sensing and imaging of various analytes and biological specimens are of great importance in clinical diagnostics, therapy, and disease management. Since the cellular concentration of free Zn2+ varies from nanomolar to micromolar range during cellular processes and the high affinity Zn2+ imaging probes tend to saturate at lower concentrations of free Zn2+, fluorescence based probes with moderate binding affinity are desirable in distinguishing the occurrence of higher zinc concentrations in the cells. Herein, we report a new, pentacyclic pyridinium based probe, PYD-PA, having a pendant N,N-di(pyridin-2-ylmethyl)amine (DPA) for Zn2+ detection in the cellular environment. The designed probe is soluble in water and serves as a mitochondria targeting unit, whereas the pendent DPA acts as the coordination site for Zn2+. PYD-PA displayed a threefold enhancement in fluorescence intensity upon Zn2+ binding with a 1:1 binding stoichiometry. Further, the probe showed a selective response to Zn2+ over other biologically relevant metal ions with a moderate binding affinity (Ka = 6.29 × 104 M-1), good photostability, pH insensitivity, and low cytotoxicity. The demonstration of bioimaging in SK-BR-3 breast cancer cell lines confirmed the intracellular Zn ion sensing ability of the probe. The probe was successfully applied for real time monitoring of the fluctuation of intracellular free zinc ions during autophagy conditions, demonstrating its potential for cellular imaging of Zn2+ at higher intracellular concentrations.

10.
Phys Eng Sci Med ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133371

RESUMO

The gamma probe is a commonly used detector for localizing sentinel lymph nodes after the injection of radiopharmaceuticals. In recent years, studies have focused on improving the features of gamma probes to achieve more consistent localization of the radiotracer uptake. As part of this effort, a novel gamma probe prototype based on an active shielding was developed, and its characteristics, including sensitivity, resolution and shielding effectiveness, were determined. The prototype integrates trapezoidal-shaped bismuth germanate (BGO) array coupled with a silicon photomultiplier (SiPM) array, accompanied by dedicated electronics and software for stand alone usage. We conducted a thorough characterization, validating experimental observations through Monte Carlo simulations using the GEANT4 simulation package. In scattering environment, with a probe-source distance of 30 mm, the experimental results show that the detector sensitivity is 120 ± 5 cps/MBq, and the spatial and angular resolutions, in terms of full width at half maximum (FWHM), are 44.8 ± 1.3 mm and 87.3 ± 1 . 5 ∘ , respectively. The shielding effectiveness of the probe was determined to be greater than 95 % . The prototype with active shielding was found to have comparable performance to conventional gamma probes.

11.
Mikrochim Acta ; 191(8): 502, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093358

RESUMO

An electrochemical sensor assisted by primer exchange reaction (PER) and CRISPR/Cas9 system (PER-CRISPR/Cas9-E) was established for the sensitive detection of dual microRNAs (miRNAs). Two PER hairpin (HP) were designed to produce a lot of extended PER products, which could hybridize with two kinds of hairpin probes modified on the electrode and initiate the cleavage of two CRISPR/Cas9 systems guided by single guide RNAs (sgRNAs) with different recognition sequences. The decrease of the two electrochemical redox signals indicated the presence of dual-target miRNAs. With the robustness and high specificity of PER amplification and CRISPR/Cas9 cleavage system, simultaneous detection of two targets was achieved and the detection limits for miRNA-21 and miRNA-155 were 0.43 fM and 0.12 fM, respectively. The developed biosensor has the advantages of low cost, easy operation, and in-situ detection, providing a promising platform for point-of-care detection of multiple miRNAs.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Técnicas Eletroquímicas , Limite de Detecção , MicroRNAs , MicroRNAs/análise , MicroRNAs/genética , Sistemas CRISPR-Cas/genética , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Humanos , RNA Guia de Sistemas CRISPR-Cas/genética
12.
Methods Mol Biol ; 2838: 163-170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126631

RESUMO

Real-time RT-PCR for the detection of epizootic hemorrhagic disease virus (EHDV) in clinical samples is a fast and sensitive tool for the diagnosis and confirmation of disease. Several real-time RT-PCR methods have been reported over the last 10 years. In this chapter, we describe seven duplex real-time RT-PCR assays to amplify part of genome segment 2 of EHDV to enable serotype identification. The assay includes the detection of an endogenous control gene-beta-actin.


Assuntos
Vírus da Doença Hemorrágica Epizoótica , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus da Doença Hemorrágica Epizoótica/genética , Vírus da Doença Hemorrágica Epizoótica/isolamento & purificação , Vírus da Doença Hemorrágica Epizoótica/classificação , Animais , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Infecções por Reoviridae/diagnóstico , RNA Viral/genética
13.
EJNMMI Radiopharm Chem ; 9(1): 58, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117920

RESUMO

BACKGROUND: The cysteine-aspartic acid protease caspase-3 is recognized as the main executioner of apoptosis in cells responding to specific extrinsic and intrinsic stimuli. Caspase-3 represents an interesting biomarker to evaluate treatment response, as many cancer therapies exert their effect by inducing tumour cell death. Previously developed caspase-3 PET tracers were unable to reach routine clinical use due to low tumour uptake or lack of target selectivity, which are two important requirements for effective treatment response evaluation in cancer patients. Therefore, the goal of this study was to develop and preclinically evaluate novel caspase-3-selective activity-based probes (ABPs) for apoptosis imaging. RESULTS: A library of caspase-3-selective ABPs was developed for tumour apoptosis detection. In a first attempt, the inhibitor Ac-DW3-KE (Ac-3Pal-Asp-ßhLeu-Phe-Asp-KE) was 18F-labelled on the N-terminus to generate a radiotracer that was incapable of adequately detecting an increase in apoptosis in vivo. The inability to effectively detect active caspase-3 in vivo was likely attributable to slow binding, as demonstrated with in vitro inhibition kinetics. Hence, a second generation of caspase-3 selective ABPs was developed based on the Ac-ATS010-KE (Ac-3Pal-Asp-Phe(F5)-Phe-Asp-KE) with greatly improved binding kinetics over Ac-DW3-KE. Our probes based on Ac-ATS010-KE were made by modifying the N-terminus with 6 different linkers. All the linker modifications had limited effect on the binding kinetics, target selectivity, and pharmacokinetic profile in healthy mice. In an in vitro apoptosis model, the least hydrophilic tracer [18F]MICA-316 showed an increased uptake in apoptotic cells in comparison to the control group. Finally, [18F]MICA-316 was tested in an in vivo colorectal cancer model, where it showed a limited tumour uptake and was unable to discriminate treated tumours from the untreated group, despite demonstrating that the radiotracer was able to bind caspase-3 in complex mixtures in vitro. In contrast, the phosphatidylethanolamine (PE)-binding radiotracer [99mTc]Tc-duramycin was able to recognize the increased cell death in the disease model, making it the best performing treatment response assessment tracer developed thus far. CONCLUSIONS: In conclusion, a novel library of caspase-3-binding PET tracers retaining similar binding kinetics as the original inhibitor was developed. The most promising tracer, [18F]MICA-316, showed an increase uptake in an in vitro apoptosis model and was able to selectively bind caspase-3 in apoptotic tumour cells. In order to distinguish therapy-responsive from non-responsive tumours, the next generation of caspase-3-selective ABPs will be developed with higher tumour accumulation and in vivo stability.

14.
Cells ; 13(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39120303

RESUMO

Human NAD(P)H-quinone oxidoreductase1 (HNQO1) is a two-electron reductase antioxidant enzyme whose expression is driven by the NRF2 transcription factor highly active in the prooxidant milieu found in human malignancies. The resulting abundance of NQO1 expression (up to 200-fold) in cancers and a barely detectable expression in body tissues makes it a selective marker of neoplasms. NQO1 can catalyze the repeated futile redox cycling of certain natural and synthetic quinones to their hydroxyquinones, consuming NADPH and generating rapid bursts of cytotoxic reactive oxygen species (ROS) and H2O2. A greater level of this quinone bioactivation due to elevated NQO1 content has been recognized as a tumor-specific therapeutic strategy, which, however, has not been clinically exploited. We review here the natural and new quinones activated by NQO1, the catalytic inhibitors, and the ensuing cell death mechanisms. Further, the cancer-selective expression of NQO1 has opened excellent opportunities for distinguishing cancer cells/tissues from their normal counterparts. Given this diagnostic, prognostic, and therapeutic importance, we and others have engineered a large number of specific NQO1 turn-on small molecule probes that remain latent but release intense fluorescence groups at near-infrared and other wavelengths, following enzymatic cleavage in cancer cells and tumor masses. This sensitive visualization/quantitation and powerful imaging technology based on NQO1 expression offers promise for guided cancer surgery, and the reagents suggest a theranostic potential for NQO1-targeted chemotherapy.


Assuntos
NAD(P)H Desidrogenase (Quinona) , Neoplasias , Humanos , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Quinonas/farmacologia , Quinonas/metabolismo , Terapia de Alvo Molecular
15.
Chembiochem ; : e202300689, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092796

RESUMO

Studying the complex and intricate retinoids metabolic pathways by chemical biology approaches requires design and synthesis of biologically functional molecular probes. Only few of such molecular retinoid probes could be found in literature, most of them bearing a molecular structure quite different from natural retinoids. To provide close-to-native retinoid probes, we have developed a versatile late-stage method for the insertion of azide function at the C4 position of several retinoids. This one-step process opens straightforward access to different retinoid and carotenoid probes from commercially available precursors. We have further demonstrated that the different molecular probes retain ability of the original compound to activate genes' transcription, despite azide insertion, highlighting biological activities that were further validated in zebrafish in vivo model. The present work paves the way to future studies on vitamin A's metabolism.

16.
Angew Chem Int Ed Engl ; : e202403792, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145518

RESUMO

RNA methylation is a metabolic process validated for its association with various diseases, and thus, RNA methyltransferases (MTases) have become increasingly important in drug discovery. Yet, most frequently utilized RNA MTase assays are limited in their throughput and hamper this rapidly evolving field of medicinal chemistry. In this study, we describe a modular nanomole scale building block system that allowed the identification of tailored fluorescent MTase probes to unlock a broad selection of MTase drug targets for fluorescence-based binding assays. Probe candidates were initially prepared on a 4 nanomole scale and could be tested directly from crude reaction mixtures to allow rapid probe identification and optimization. Using an alkyne-azide click late-stage functionalization strategy and in silico protein databank mining, we established a selection of fluorescent probes suitable for relevant drug targets from the METTL and NSUN families, as well as bacterial and viral MTases. Using this concept, a high-throughput screening on the unexplored drug target METTL1 discovered three hit compounds with micromolar potency providing a first-in-class starting point for METTL1 drug discovery.

17.
ACS Sens ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145986

RESUMO

Fluorescent protein-based pH biosensors enable the tracking of pH changes during protein trafficking and, in particular, exocytosis. The recent development of chemogenetic reporters combining synthetic fluorophores with self-labeling protein tags offers a versatile alternative to fluorescent proteins that combines the diversity of chemical probes and indicators with the selectivity of the genetic encoding. However, this hybrid protein labeling strategy does not avoid common drawbacks of organic fluorophores such as the risk of off-target signal due to unbound molecules. Here, we describe a novel fluorogenic and chemogenetic pH sensor based on a cell-permeable molecular pH indicator called pHluo-Halo-1, whose fluorescence can be locally activated in cells by reaction with HaloTag, ensuring excellent signal selectivity in wash-free imaging experiments. pHluo-Halo-1 was selected out of a series of four fluorogenic molecular rotor structures based on protein chromophore analogues. It displays good pH sensitivity with a pKa of 6.3 well-suited to monitor pH variations during exocytosis and an excellent labeling selectivity in cells. It was applied to follow the secretion of CD63-HaloTag fusion proteins using TIRF microscopy. We anticipate that this strategy based on the combination of a tunable and chemically accessible fluorogenic probe with a well-established protein tag will open new possibilities for the development of versatile alternatives to fluorescent proteins for elucidating the dynamics and regulatory mechanisms of proteins in living cells.

18.
Angew Chem Int Ed Engl ; : e202409295, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150907

RESUMO

Selective detection of reactive oxygen species (ROS) is vital for studying their role in brain diseases. Fluorescence probes can distinguish ONOO- species from other ROS; however, their selectivity toward ONOO- species depends on the ONOO- recognition group. Aryl-boronic acids and esters, which are common ONOO- recognition groups, are not selective for ONOO- over H2O2. In this study, we developed a diaminonaphthalene (DAN)-protected boronic acid as a new ONOO- recognition group that selectively reacts with ONOO- over H2O2 and other ROS. Three DAN-protected boronic acid (DANBA)-based fluorophores that emit fluorescence over visible to near-infrared (NIR) regions, Cou-BN, BVP-BN, and HDM-BN, and their aryl-boronic acid-based counterparts (Cou-BO, BVP-BO, and HDM-BO), were developed. The DANBA-based probes exhibited enhanced selectivity toward ONOO- over that of their control group, as well as universality in MTT assays and in vitro experiments with PC12 cells. The NIR-emissive HDM-BN was optimized to delineate in vivo ONOO- levels in mouse brains with Parkinson's disease. This DAN-protected boronic acid belongs to a new generation of recognition groups for developing ONOO- probes, and this strategy could be extended to other common hydroxyl-containing dyes to detect ONOO- levels in complex biological systems and processes.

19.
Cell Chem Biol ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39137783

RESUMO

Malaria, caused by Plasmodium falciparum, remains a significant health burden. One major barrier for developing antimalarial drugs is the ability of the parasite to rapidly generate resistance. We previously demonstrated that salinipostin A (SalA), a natural product, potently kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism that results in a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a small library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent antiparasitic potencies that enabled the identification of therapeutically relevant targets. The active compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor orlistat and shows synergistic killing with orlistat. Our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are promising, synthetically tractable antimalarials.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124983, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39159511

RESUMO

Mercury ion (Hg2+), a heavy metal cation with greater toxicity, is widely present in the ecological environment and has become a serious threat to human health and environmental safety. Currently, developing a solution to simultaneously visualize and monitor Hg2+ in environmental samples, including water, soil, and plants, remains a great challenge. In this work, we created and synthesized a near-infrared fluorescent probe, BBN-Hg, and utilized Hg2+ to trigger the partial cleavage of the carbon sulfate ester in BBN-Hg as a sensing mechanism, and the fluorescence intensity of BBN-Hg was significantly enhanced at 650 nm, thus realizing the visualization of Hg2+ with good selectivity (detection limit, 53 nM). In live cells and zebrafish, the probe BBN-Hg enhances the red fluorescence signal in the presence of Hg2+, and successfully performs 3D imaging on zebrafish, making it a powerful tool for detecting Hg2+ in living systems. More importantly, with BBN-Hg, we are able to detect Hg2+ in actual water samples, soil and plant seedling roots. Furthermore, the probe was prepared as a test strip for on-site determination of Hg2+ with the assistance of a smartphone. Therefore, this study offers an easy-to-use and useful method for tracking Hg2+ levels in living organisms and their surroundings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...