Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
Curr Protoc ; 4(7): e1099, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39024028

RESUMO

With the ever-expanding toolkit of molecular viewers, the ability to visualize macromolecular structures has never been more accessible. Yet, the idiosyncratic technical intricacies across tools and the integration complexities associated with handling structure annotation data present significant barriers to seamless interoperability and steep learning curves for many users. The necessity for reproducible data visualizations is at the forefront of the current challenges. Recently, we introduced MolViewSpec (homepage: https://molstar.org/mol-view-spec/, GitHub project: https://github.com/molstar/mol-view-spec), a specification approach that defines molecular visualizations, decoupling them from the varying implementation details of different molecular viewers. Through the protocols presented herein, we demonstrate how to use MolViewSpec and its 3D view-building Python library for creating sophisticated, customized 3D views covering all standard molecular visualizations. MolViewSpec supports representations like cartoon and ball-and-stick with coloring, labeling, and applying complex transformations such as superposition to any macromolecular structure file in mmCIF, BinaryCIF, and PDB formats. These examples showcase progress towards reusability and interoperability of molecular 3D visualization in an era when handling molecular structures at scale is a timely and pressing matter in structural bioinformatics as well as research and education across the life sciences. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Creating a MolViewSpec view using the MolViewSpec Python package Basic Protocol 2: Creating a MolViewSpec view with reference to MolViewSpec annotation files Basic Protocol 3: Creating a MolViewSpec view with labels and other advanced features Support Protocol 1: Computing rotation and translation vectors Support Protocol 2: Creating a MolViewSpec annotation file.


Assuntos
Software , Imageamento Tridimensional , Substâncias Macromoleculares/química , Modelos Moleculares
2.
Biomolecules ; 14(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38927071

RESUMO

Bacterial peptidyl tRNA hydrolase (Pth) or Pth1 emerges as a pivotal enzyme involved in the maintenance of cellular homeostasis by catalyzing the release of peptidyl moieties from peptidyl-tRNA molecules and the maintenance of a free pool of specific tRNAs. This enzyme is vital for bacterial cells and an emerging drug target for various bacterial infections. Understanding the enzymatic mechanisms and structural intricacies of bacterial Pth is pivotal in designing novel therapeutics to combat antibiotic resistance. This review provides a comprehensive analysis of the multifaceted roles of Pth in bacterial physiology, shedding light on its significance as a potential drug target. This article delves into the diverse functions of Pth, encompassing its involvement in ribosome rescue, the maintenance of a free tRNA pool in bacterial systems, the regulation of translation fidelity, and stress response pathways within bacterial systems. Moreover, it also explores the druggability of bacterial Pth, emphasizing its promise as a target for antibacterial agents and highlighting the challenges associated with developing specific inhibitors against this enzyme. Structural elucidation represents a cornerstone in unraveling the catalytic mechanisms and substrate recognition of Pth. This review encapsulates the current structural insights of Pth garnered through various biophysical techniques, such as X-ray crystallography and NMR spectroscopy, providing a detailed understanding of the enzyme's architecture and conformational dynamics. Additionally, biophysical aspects, including its interaction with ligands, inhibitors, and substrates, are discussed, elucidating the molecular basis of bacterial Pth's function and its potential use in drug design strategies. Through this review article, we aim to put together all the available information on bacterial Pth and emphasize its potential in advancing innovative therapeutic interventions and combating bacterial infections.


Assuntos
Antibacterianos , Bactérias , Bactérias/enzimologia , Antibacterianos/farmacologia , Antibacterianos/química , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Infecções Bacterianas/tratamento farmacológico
3.
Acta Crystallogr D Struct Biol ; 80(Pt 7): 506-527, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38935343

RESUMO

The Protein Data Bank (PDB) includes a carefully curated treasury of experimentally derived structural data on biological macromolecules and their various complexes. Such information is fundamental for a multitude of projects that involve large-scale data mining and/or detailed evaluation of individual structures of importance to chemistry, biology and, most of all, to medicine, where it provides the foundation for structure-based drug discovery. However, despite extensive validation mechanisms, it is almost inevitable that among the ∼215 000 entries there will occasionally be suboptimal or incorrect structure models. It is thus vital to apply careful verification procedures to those segments of the PDB that are of direct medicinal interest. Here, such an analysis was carried out for crystallographic models of L-asparaginases, enzymes that include approved drugs for the treatment of certain types of leukemia. The focus was on the adherence of the atomic coordinates to the rules of stereochemistry and their agreement with the experimental electron-density maps. Whereas the current clinical application of L-asparaginases is limited to two bacterial proteins and their chemical modifications, the field of investigations of such enzymes has expanded tremendously in recent years with the discovery of three entirely different structural classes and with numerous reports, not always quite reliable, of the anticancer properties of L-asparaginases of different origins.


Assuntos
Asparaginase , Bases de Dados de Proteínas , Asparaginase/química , Humanos , Modelos Moleculares , Cristalografia por Raios X/métodos , Conformação Proteica
4.
J Comput Aided Mol Des ; 38(1): 23, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814371

RESUMO

In this work, we present the frontend of GeoMine and showcase its application, focusing on the new features of its latest version. GeoMine is a search engine for ligand-bound and predicted empty binding sites in the Protein Data Bank. In addition to its basic text-based search functionalities, GeoMine offers a geometric query type for searching binding sites with a specific relative spatial arrangement of chemical features such as heavy atoms and intermolecular interactions. In contrast to a text search that requires simple and easy-to-formulate user input, a 3D input is more complex, and its specification can be challenging for users. GeoMine's new version aims to address this issue from the graphical user interface perspective by introducing an additional visualization concept and a new query template type. In its latest version, GeoMine extends its query-building capabilities primarily through input formulation in 2D. The 2D editor is fully synchronized with GeoMine's 3D editor and provides the same functionality. It enables template-free query generation and template-based query selection directly in 2D pose diagrams. In addition, the query generation with the 3D editor now supports predicted empty binding sites for AlphaFold structures as query templates. GeoMine is freely accessible on the ProteinsPlus web server ( https://proteins.plus ).


Assuntos
Bases de Dados de Proteínas , Ligação Proteica , Proteínas , Interface Usuário-Computador , Ligantes , Sítios de Ligação , Proteínas/química , Proteínas/metabolismo , Software , Ferramenta de Busca , Conformação Proteica , Modelos Moleculares
5.
Comput Biol Chem ; 110: 108069, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581839

RESUMO

Artificial intelligence (AI) has revolutionized structural biology by predicting protein 3D structures with near-experimental accuracy. Here, short backbone N-O distances in high-resolution crystal structures were compared to those in three-dimensional models based on AI AlphaFold/ColabFold, specifically considering their estimated standard errors. Experimental and computationally modeled distances very often differ significantly, showing that these models' precision is inadequate to reproduce experimental results at high resolution. T-tests and normal probability plots showed that these computational methods predict atomic position standard errors 3.5-6 times bigger than experimental errors. SYNOPSIS: Positional standard errors in AI-based protein 3D models are 3.5-6 times larger than in atomic resolution crystal structures.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas , Proteínas/química , Cristalografia por Raios X , Inteligência Artificial
6.
IUCrJ ; 11(Pt 3): 279-286, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597878

RESUMO

The Protein Data Bank (PDB) was established as the first open-access digital data resource in biology and medicine in 1971 with seven X-ray crystal structures of proteins. Today, the PDB houses >210 000 experimentally determined, atomic level, 3D structures of proteins and nucleic acids as well as their complexes with one another and small molecules (e.g. approved drugs, enzyme cofactors). These data provide insights into fundamental biology, biomedicine, bioenergy and biotechnology. They proved particularly important for understanding the SARS-CoV-2 global pandemic. The US-funded Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and other members of the Worldwide Protein Data Bank (wwPDB) partnership jointly manage the PDB archive and support >60 000 `data depositors' (structural biologists) around the world. wwPDB ensures the quality and integrity of the data in the ever-expanding PDB archive and supports global open access without limitations on data usage. The RCSB PDB research-focused web portal at https://www.rcsb.org/ (RCSB.org) supports millions of users worldwide, representing a broad range of expertise and interests. In addition to retrieving 3D structure data, PDB `data consumers' access comparative data and external annotations, such as information about disease-causing point mutations and genetic variations. RCSB.org also provides access to >1 000 000 computed structure models (CSMs) generated using artificial intelligence/machine-learning methods. To avoid doubt, the provenance and reliability of experimentally determined PDB structures and CSMs are identified. Related training materials are available to support users in their RCSB.org explorations.


Assuntos
COVID-19 , Bases de Dados de Proteínas , Conformação Proteica , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Biologia Computacional/métodos , Proteínas/química
7.
Structure ; 32(6): 824-837.e1, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38490206

RESUMO

Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NEF and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB restraint violation report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.


Assuntos
Bases de Dados de Proteínas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Software
8.
J Mol Biol ; : 168546, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508301

RESUMO

IHMCIF (github.com/ihmwg/IHMCIF) is a data information framework that supports archiving and disseminating macromolecular structures determined by integrative or hybrid modeling (IHM), and making them Findable, Accessible, Interoperable, and Reusable (FAIR). IHMCIF is an extension of the Protein Data Bank Exchange/macromolecular Crystallographic Information Framework (PDBx/mmCIF) that serves as the framework for the Protein Data Bank (PDB) to archive experimentally determined atomic structures of biological macromolecules and their complexes with one another and small molecule ligands (e.g., enzyme cofactors and drugs). IHMCIF serves as the foundational data standard for the PDB-Dev prototype system, developed for archiving and disseminating integrative structures. It utilizes a flexible data representation to describe integrative structures that span multiple spatiotemporal scales and structural states with definitions for restraints from a variety of experimental methods contributing to integrative structural biology. The IHMCIF extension was created with the benefit of considerable community input and recommendations gathered by the Worldwide Protein Data Bank (wwPDB) Task Force for Integrative or Hybrid Methods (wwpdb.org/task/hybrid). Herein, we describe the development of IHMCIF to support evolving methodologies and ongoing advancements in integrative structural biology. Ultimately, IHMCIF will facilitate the unification of PDB-Dev data and tools with the PDB archive so that integrative structures can be archived and disseminated through PDB.

9.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38328042

RESUMO

Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NMR exchange (NEF) and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB Restraint Violation Report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.

10.
J Biomol Struct Dyn ; : 1-11, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407190

RESUMO

The Unfolded protein response (UPR) is an adaptive signalling pathway which is triggered by accumulation of unfolded/misfolded protein in ER lumen. The UPR consist of three transmembrane proteins-IRE1α, PERK and ATF6 that sense ER stress which leads to activation and downstream signaling from ER lumen to cytosol to restore homeostasis. IRE1α is an evolutionary conserved arm of UPR and acts as an interaction platform for many potential proteins that become activated under ER stress conditions. We investigated potential partners of IRE1 α through MS studies and found EXOSC3 as one of the binding partner of IRE1α. Exosomal complex proteins have 3'5' exonuclease properties (EXOSC3) that play an important role in mRNA surveillance. This property of exosomal proteins coincides with IRE1α ribonuclease activities and its mechanism of action is similar to that of IRE1α-RIDD pathway which degrades any unstable mRNA that disrupts cellular homeostasis. At the same time, studies have shown that knockdown of EXOSC3 causes ER stress in human cells, so we speculated that there might be a functional crosstalk between IRE1α and EXOSC3 under ER stress conditions. Therefore, we employed computational tools to predict and explore the stability and dynamics of the IRE1α-EXOSC3 complex. The analysis indicates that IRE1α and EXOSC3 exhibit potential interaction with the involvement of ScanNet, predicting binding pockets between the two proteins. Further, the interaction was validated via co-immunoprecipitation and yeast two-hybrid assays, thus suggesting EXOSC3 as a component of the UPRosome complex. Hence, this functional crosstalk might influence the dynamic functional output of IRE1α.Communicated by Ramaswamy H. Sarma.

11.
IUCrJ ; 11(Pt 2): 140-151, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358351

RESUMO

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for the deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and the resulting consensus recommendations. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.


Assuntos
Curadoria de Dados , Microscopia Crioeletrônica/métodos
12.
Proteins ; 92(4): 464-473, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37941304

RESUMO

Although S-nitrosylation of cysteines is a common protein posttranslational modification, little is known about its three-dimensional structural features. This paper describes a systematic survey of the data available in the Protein Data Bank. Several interesting observations could be made. (1) As a result of radiation damage, S-nitrosylated cysteines (Snc) are frequently reduced, at least partially. (2) S-nitrosylation may be a protection against irreversible thiol oxidation; because the NO group of Snc is relatively accessible to the solvent, it may act as a cork to protect the sulfur atoms of cysteines from oxidation by molecular oxygen to sulfenic, sulfinic, and sulfonic acid; moreover, Snc are frequently found at the start or end of helices and strands and this might shield secondary structural elements from unfolding.


Assuntos
Cisteína , Proteínas , Proteínas/química , Cisteína/química , Compostos de Sulfidrila/metabolismo , Oxirredução
13.
ArXiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38076521

RESUMO

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and consensus recommendations resulting from the workshop. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.

14.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003510

RESUMO

Aptamers are synthetic nucleic acids that are developed to target with high affinity and specificity chemical entities ranging from single ions to macromolecules and present a wide range of chemical and physical properties. Their ability to selectively bind proteins has made these compounds very attractive and versatile tools, in both basic and applied sciences, to such an extent that they are considered an appealing alternative to antibodies. Here, by exhaustively surveying the content of the Protein Data Bank (PDB), we review the structural aspects of the protein-aptamer recognition process. As a result of three decades of structural studies, we identified 144 PDB entries containing atomic-level information on protein-aptamer complexes. Interestingly, we found a remarkable increase in the number of determined structures in the last two years as a consequence of the effective application of the cryo-electron microscopy technique to these systems. In the present paper, particular attention is devoted to the articulated architectures that protein-aptamer complexes may exhibit. Moreover, the molecular mechanism of the binding process was analyzed by collecting all available information on the structural transitions that aptamers undergo, from their protein-unbound to the protein-bound state. The contribution of computational approaches in this area is also highlighted.


Assuntos
Aptâmeros de Nucleotídeos , Ácidos Nucleicos , Microscopia Crioeletrônica , Aptâmeros de Nucleotídeos/química , Proteínas/química , Anticorpos
15.
Molecules ; 28(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764313

RESUMO

The structural determination and characterization of molecules, namely proteins and enzymes, is crucial to gaining a better understanding of their role in different chemical and biological processes. The continuous technical developments in the experimental and computational resources of X-ray diffraction (XRD) and, more recently, cryogenic Electron Microscopy (cryo-EM) led to an enormous growth in the number of structures deposited in the Protein Data Bank (PDB). Bioinorganic chemistry arose as a relevant discipline in biology and therapeutics, with a massive number of studies reporting the effects of metal complexes on biological systems, with vanadium complexes being one of the relevant systems addressed. In this review, we focus on the interactions of vanadium compounds (VCs) with proteins. Several types of binding are established between VCs and proteins/enzymes. Considering that the V-species that bind may differ from those initially added, the mentioned structural techniques are pivotal to clarifying the nature and variety of interactions of VCs with proteins and to proposing the mechanisms involved either in enzymatic inhibition or catalysis. As such, we provide an account of the available structural information of VCs bound to proteins obtained by both XRD and/or cryo-EM, mainly exploring the more recent structures, particularly those containing organic-based vanadium complexes.

16.
Acta Crystallogr D Struct Biol ; 79(Pt 9): 792-795, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37561405

RESUMO

The Protein Data Bank (PDB) is the single global archive of atomic-level, three-dimensional structures of biological macromolecules experimentally determined by macromolecular crystallography, nuclear magnetic resonance spectroscopy or three-dimensional cryo-electron microscopy. The PDB is growing continuously, with a recent rapid increase in new structure depositions from Asia. In 2022, the Worldwide Protein Data Bank (wwPDB; https://www.wwpdb.org/) partners welcomed Protein Data Bank China (PDBc; https://www.pdbc.org.cn) to the organization as an Associate Member. PDBc is based in the National Facility for Protein Science in Shanghai which is associated with the Shanghai Advanced Research Institute of Chinese Academy of Sciences, the Shanghai Institute for Advanced Immunochemical Studies and the iHuman Institute of ShanghaiTech University. This letter describes the history of the wwPDB, recently established mechanisms for adding new wwPDB data centers and the processes developed to bring PDBc into the partnership.


Assuntos
Proteínas , Humanos , Conformação Proteica , Microscopia Crioeletrônica , China , Proteínas/química , Espectroscopia de Ressonância Magnética , Bases de Dados de Proteínas
17.
Methods Mol Biol ; 2695: 89-110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450113

RESUMO

Proteins participate in many processes of the organism and are very important for maintaining the health of the organism. However, proteins cannot function independently in the body. They must interact with proteins, DNA, RNA, and other substances to perform biological functions and maintain the body's health. At present, there are many experimental methods and software tools that can detect and predict the interaction between proteins and other substances. There are also many databases that record the interaction between proteins and other substances. This article mainly describes protein-protein, protein-DNA, and protein-RNA interactions in detail by introducing some commonly used experimental methods, the software tools produced with the accumulation of experimental data and the rapid development of machine learning, and the related databases that record the relationship between proteins and some substances. By this review, we hope that through the analysis and summary of various aspects, it will be convenient for researchers to conduct further research on protein interactions.


Assuntos
Proteínas , RNA , RNA/genética , RNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas/genética , DNA/genética , DNA/metabolismo , Software
18.
J Comput Aided Mol Des ; 37(10): 491-503, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37515714

RESUMO

In this article, we present PoseEdit, a new, interactive frontend of the popular pose visualization tool PoseView. PoseEdit automatically produces high-quality 2D diagrams of intermolecular interactions in 3D binding sites calculated from ligands in complex with protein, DNA, and RNA. The PoseView diagrams have been improved in several aspects, most notably in their interactivity. Thanks to the easy-to-use 2D editor of PoseEdit, the diagrams are extensively editable and extendible by the user, can be merged with other diagrams, and even be created from scratch. A large variety of graphical objects in the diagram can be moved, rotated, selected and highlighted, mirrored, removed, or even newly added. Furthermore, PoseEdit enables a synchronized 2D-3D view of macromolecule-ligand complexes simplifying the analysis of structural features and interactions. The representation of individual diagram objects regarding their visualized chemical properties, like stereochemistry, and general graphical styles, like the color of interactions, can additionally be edited. The primary objective of PoseEdit is to support scientists with an enhanced way to communicate ligand binding mode information through graphical 2D representations optimized with the scientist's input in accordance with objective criteria and individual needs. PoseEdit is freely available on the ProteinsPlus web server ( https://proteins.plus ).


Assuntos
Proteínas , Software , Ligantes , Proteínas/química , Sítios de Ligação , Comunicação
19.
Heliyon ; 9(3): e14029, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911881

RESUMO

Acute lung injury (ALI) is a clinically severe lung illness with high incidence rate and mortality. Especially, coronavirus disease 2019 (COVID-19) poses a serious threat to world wide governmental fitness. It has distributed to almost from corner to corner of the universe, and the situation in the prevention and control of COVID-19 remains grave. Traditional Chinese medicine plays a vital role in the precaution and therapy of sicknesses. At present, there is a lack of drugs for treating these diseases, so it is necessary to develop drugs for treating COVID-19 related ALI. Fagopyrum dibotrys (D. Don) Hara is an annual plant of the Polygonaceae family and one of the long-history used traditional medicine in China. In recent years, its rhizomes (medicinal parts) have attracted the attention of scholars at home and abroad due to their significant anti-inflammatory, antibacterial and anticancer activities. It can work on SARS-COV-2 with numerous components, targets, and pathways, and has a certain effect on coronavirus disease 2019 (COVID-19) related acute lung injury (ALI). However, there are few systematic studies on its aerial parts (including stems and leaves) and its potential therapeutic mechanism has not been studied. The phytochemical constituents of rhizome of F. dibotrys were collected using TCMSP database. And metabolites of F. dibotrys' s aerial parts were detected by metabonomics. The phytochemical targets of F. dibotrys were predicted by the PharmMapper website tool. COVID-19 and ALI-related genes were retrieved from GeneCards. Cross targets and active phytochemicals of COVID-19 and ALI related genes in F. dibotrys were enriched by gene ontology (GO) and KEGG by metscape bioinformatics tools. The interplay network entre active phytochemicals and anti COVID-19 and ALI targets was established and broke down using Cytoscape software. Discovery Studio (version 2019) was used to perform molecular docking of crux active plant chemicals with anti COVID-19 and ALI targets. We identified 1136 chemicals from the aerial parts of F. dibotrys, among which 47 were active flavonoids and phenolic chemicals. A total of 61 chemicals were searched from the rhizome of F. dibotrys, and 15 of them were active chemicals. So there are 6 commonly key active chemicals at the aerial parts and the rhizome of F. dibotrys, 89 these phytochemicals's potential targets, and 211 COVID-19 and ALI related genes. GO enrichment bespoken that F. dibotrys might be involved in influencing gene targets contained numerous biological processes, for instance, negative regulation of megakaryocyte differentiation, regulation of DNA metabolic process, which could be put down to its anti COVID-19 associated ALI effects. KEGG pathway indicated that viral carcinogenesis, spliceosome, salmonella infection, coronavirus disease - COVID-19, legionellosis and human immunodeficiency virus 1 infection pathway are the primary pathways obsessed in the anti COVID-19 associated ALI effects of F. dibotrys. Molecular docking confirmed that the 6 critical active phytochemicals of F. dibotrys, such as luteolin, (+) -epicatechin, quercetin, isorhamnetin, (+) -catechin, and (-) -catechin gallate, can combine with kernel therapeutic targets NEDD8, SRPK1, DCUN1D1, and PARP1. In vitro activity experiments showed that the total antioxidant capacity of the aerial parts and rhizomes of F. dibotrys increased with the increase of concentration in a certain range. In addition, as a whole, the antioxidant capacity of the aerial part of F. dibotrys was stronger than that of the rhizome. Our research afford cues for farther exploration of the anti COVID-19 associated ALI chemical compositions and mechanisms of F. dibotrys and afford scientific foundation for progressing modern anti COVID-19 associated ALI drugs based on phytochemicals in F. dibotrys. We also fully developed the medicinal value of F. dibotrys' s aerial parts, which can effectively avoid the waste of resources. Meanwhile, our work provides a new strategy for integrating metabonomics, network pharmacology, and molecular docking techniques which was an efficient way for recognizing effective constituents and mechanisms valid to the pharmacologic actions of traditional Chinese medicine.

20.
Comput Struct Biotechnol J ; 21: 1995-2008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950221

RESUMO

The vital cellular functions in Gram-positive bacteria are controlled by signaling molecules known as quorum sensing peptides (QSPs), considered promising therapeutic interventions for bacterial infections. In the bacterial system QSPs bind to membrane-coupled receptors, which then auto-phosphorylate and activate intracellular response regulators. These response regulators induce target gene expression in bacteria. One of the most reliable trends in drug discovery research for virulence-associated molecular targets is the use of peptide drugs or new functionalities. In this perspective, computational methods act as auxiliary aids for biologists, where methodologies based on machine learning and in silico analysis are developed as suitable tools for target peptide identification. Therefore, the development of quick and reliable computational resources to identify or predict these QSPs along with their receptors and inhibitors is receiving considerable attention. The databases such as Quorumpeps and Quorum Sensing of Human Gut Microbes (QSHGM) provide a detailed overview of the structures and functions of QSPs. The tools and algorithms such as QSPpred, QSPred-FL, iQSP, EnsembleQS and PEPred-Suite have been used for the generic prediction of QSPs and feature representation. The availability of compiled key resources for utilizing peptide features based on amino acid composition, positional preferences, and motifs as well as structural and physicochemical properties, including biofilm inhibitory peptides, can aid in elucidating the QSP and membrane receptor interactions in infectious Gram-positive pathogens. Herein, we present a comprehensive survey of diverse computational approaches that are suitable for detecting QSPs and QS interference molecules. This review highlights the utility of these methods for developing potential biomarkers against infectious Gram-positive pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...