Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(6): e11523, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932974

RESUMO

Emerging infectious diseases threaten wildlife globally. While the effects of infectious diseases on hosts with severe infections and high mortality rates often receive considerable attention, effects on hosts that persist despite infection are less frequently studied. To understand how persisting host populations change in the face of disease, we quantified changes to the capture rates of Eptesicus fuscus (big brown bats), a persisting species susceptible to infection by the invasive fungal pathogen Pseudogymnoascus destructans (Pd; causative agent for white-nose syndrome), across the eastern US using a 30-year dataset. Capture rates of male and female E. fuscus increased from preinvasion to pathogen establishment years, with greater increases to the capture rates of females than males. Among females, capture rates of pregnant and post-lactating females increased by pathogen establishment. We outline potential mechanisms for these broad demographic changes in E. fuscus capture rates (i.e., increases to foraging from energy deficits created by Pd infection, increases to relative abundance, or changes to reproductive cycles), and suggest future research for identifying mechanisms for increasing capture rates across the eastern US. These data highlight the importance of understanding how populations of persisting host species change following pathogen invasion across a broad spatial scale. Understanding changes to population composition following pathogen invasion can identify broad ecological patterns across space and time, and open new avenues for research to identify drivers of those patterns.

2.
J Wildl Dis ; 60(2): 298-305, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329747

RESUMO

White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans, has decimated bat populations across North America. Despite ongoing management programs, WNS continues to expand into new populations, including in US states previously thought to be free from the pathogen and disease. This expansion highlights a growing need for surveillance tools that can be used to enhance existing monitoring programs and support the early detection of P. destructans in new areas. We evaluated the feasibility of using a handheld, field-portable, real-time (quantitative) PCR (qPCR) thermocycler known as the Biomeme two3 and the associated field-based nucleic acid extraction kit and assay reagents for the detection of P. destructans in little brown bats (Myotis lucifugus). Results from the field-based protocol using the Biomeme platform were compared with those from a commonly used laboratory-based qPCR protocol. When using dilutions of known conidia concentrations, the lowest detectable concentration with the laboratory-based approach was 108.8 conidia/mL, compared with 1,087.5 conidia/mL (10 times higher, i.e., one fewer 10× dilution) using the field-based approach. Further comparisons using field samples suggest a high level of concordance between the two protocols, with positive and negative agreements of 98.2% and 100% respectively. The cycle threshold values were marginally higher for most samples using the field-based protocol. These results are an important step in establishing and validating a rapid, field-assessable detection platform for P. destructans, which is urgently needed to improve the surveillance and monitoring capacity for WNS and support on-the-ground management and response efforts.


Assuntos
Ascomicetos , Quirópteros , Animais , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Quirópteros/microbiologia , Ascomicetos/genética , Nariz/microbiologia , Síndrome
3.
PeerJ ; 11: e15782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868049

RESUMO

Since the emergence of White-nose Syndrome, a fungal disease in bats, caused by Pseudogymnoascus destructans, hibernating populations of little brown bats (Myotis lucifugus) have declined by 70-90% within P. destructans positive hibernacula. To reduce the impact of White-nose Syndrome to North American little brown bat populations we evaluated if exposure to volatile organic compounds produced by induced cells from Rhodococcus rhodochrous strain DAP96253 could improve the overwinter survival of bats infected by P. destructans. Two simultaneous field treatment trials were conducted at natural hibernacula located in Rockcastle and Breckinridge counties, Kentucky, USA. A combined total of 120 little brown bats were randomly divided into control groups (n = 60) which were not exposed to volatile organic compounds and treatment groups (n = 60) which were exposed to volatile organic compounds produced by non-growth, fermented cell paste composed of R. rhodochrous strain DAP96253 cells. Cox proportional hazard models revealed a significant decreased survival at the Rockcastle field trial site but not the Breckinridge field site. At the Breckinridge hibernacula, overwinter survival for both treatment and control groups were 60%. At the Rockcastle hibernacula, Kaplan-Meier survival curves indicated significantly increased overwinter survival of bats in the control group (43% survived) compared to the treatment group (20% survived). Although complete inhibition of P. destructans by volatile organic compounds produced by induced R. rhodochrous strain DAP96253 cells was observed in vitro studies, our results suggest that these volatile organic compounds do not inhibit P. destructans in situ and may promote P. destructans growth.


Assuntos
Quirópteros , Hibernação , Compostos Orgânicos Voláteis , Animais , Quirópteros/microbiologia , Taxa de Sobrevida , Compostos Orgânicos Voláteis/farmacologia , Síndrome
4.
Microbiol Spectr ; 11(6): e0271523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37888992

RESUMO

IMPORTANCE: Inherent complexities in the composition of microbiomes can often preclude investigations of microbe-associated diseases. Instead of single organisms being associated with disease, community characteristics may be more relevant. Longitudinal microbiome studies of the same individual bats as pathogens arrive and infect a population are the ideal experiment but remain logistically challenging; therefore, investigations like our approach that are able to correlate invasive pathogens to alterations within a microbiome may be the next best alternative. The results of this study potentially suggest that microbiome-host interactions may determine the likelihood of infection. However, the contrasting relationship between Pd and the bacterial microbiomes of Myotis lucifugus and Perimyotis subflavus indicate that we are just beginning to understand how the bat microbiome interacts with a fungal invader such as Pd.


Assuntos
Ascomicetos , Quirópteros , Hibernação , Animais , Quirópteros/microbiologia , Pele , Nariz
5.
Data Brief ; 49: 109353, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37600136

RESUMO

Emerging infectious diseases threaten wildlife populations. Without well monitored wildlife systems, it is challenging to determine accurate population and ecosystem losses following disease emergence. North American temperate bats present a unique opportunity for studying the broad impacts of wildlife disease emergence, as their federal monitoring programs were prioritized in the USA throughout the 20th century and they are currently threatened by the invasive fungal pathogen, Pseudogymnoascus destructans (Pd), which causes white-nose syndrome. Here we provide a long-term dataset for capture records of Eptesicus fuscus (big brown bat) across the eastern USA, spanning 16 years before and 14 years after Pd invasion into North America. These data represent 30,496 E. fuscus captures across 3,567 unique sites. We encourage the use of this dataset for quantifying impacts of wildlife disease and other threats to wildlife (e.g., climate change) with the incorporation of other available data. We welcome additional data contributions for E. fuscus captures across North and Central America as well as the inclusion of other variables into the dataset that contribute to the quantification of wildlife health.

6.
Ecol Evol ; 13(7): e10267, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37435023

RESUMO

White-nose syndrome is a fungal disease that is threatening bat populations across North America. The disease primarily affects cave-hibernating bats by depleting fat reserves during hibernation and causing a range of other physiological consequences when immune responses are suppressed. Since it was first detected in 2006, the disease has killed millions of bats and is responsible for extensive local extinctions. To better understand the effects of white-nose syndrome on various bat species, we analyzed summer acoustic survey data collected from 2016 to 2020 at nine US National Parks within the Great Lakes region. We examined the effect that white-nose syndrome, time of the year relative to pup volancy, habitat type, and regional variation (i.e., park) have on the acoustic abundance (i.e., mean call abundance) of six bat species. As expected, little brown bat (Myotis lucifugus) and northern long-eared bat (Myotis septentrionalis), both hibernating species, experienced a significant decline in acoustic abundance following white-nose syndrome detection. We observed a significant increase in acoustic abundance as white-nose syndrome progressed for hoary bats (Lasiurus cinereus) and silver-haired bats (Lasionycteris noctivagans), both migratory species that are not impacted by the disease. Contrary to our predictions, we observed an increase in big brown bat (Eptesicus fuscus; hibernating) acoustic abundance and a decrease in eastern red bat (Lasiurus borealis; migratory) acoustic abundance following the detection of white-nose syndrome. We did not observe any significant changes after the onset of white-nose syndrome in the seasonal patterns of acoustic activity related to pup volancy, suggesting that production or recruitment of young may not be affected by the disease. Our results suggest that white-nose syndrome is affecting the acoustic abundance of certain species; however, these changes may not be a result of reduced reproductive success caused by the disease. In addition, species population dynamics may be indirectly affected by white-nose syndrome as a result of reduced competition or a foraging niche release. We also found that for parks located at higher latitudes, little brown bat and northern long-eared bat were more likely to experience greater declines in acoustic abundance as a result of white-nose syndrome. Our work provides insight into species-specific responses to white-nose syndrome at a regional scale and examines factors that may facilitate resistance or resiliency to the disease.

7.
Mol Ecol ; 32(16): 4695-4707, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37322601

RESUMO

Skin microbiota play an important role in protecting bat hosts from the fungal pathogen Pseudogymnoascus destructans, which has caused dramatic bat population declines and extinctions. Recent studies have provided insights into the bacterial communities of bat skin, but variation in skin bacterial community structure in the context of the seasonal dynamics of fungal invasion, as well as the processes that drive such variation, remain largely unexplored. In this study, we characterized bat skin microbiota over the course of the bat hibernation and active season stages and used a neutral model of community ecology to determine the relative roles of neutral and selective processes in driving microbial community variation. Our results showed significant seasonal shifts in skin community structure, as well as less diverse microbiota in hibernation than in the active season. Skin microbiota were influenced by the environmental bacterial reservoir. During both the hibernation and active season stages, more than 78% of ASVs in bat skin microbiota were consistent with neutral distribution, implying that neutral processes, that is, dispersal or ecological drift contributing the most to shifts in skin microbiota. In addition, the neutral model showed that some ASVs were actively selected by the bats from the environmental bacterial reservoir, accounting for approximately 20% and 31% of the total community during hibernation and active season stages, respectively. Overall, this research provides insights into the assemblage of bat-associated bacterial communities and will aid in the development of conservation strategies against fungal disease.


Assuntos
Quirópteros , Hibernação , Microbiota , Micoses , Animais , Quirópteros/microbiologia , Estações do Ano , Micoses/microbiologia , Pele/microbiologia , Bactérias/genética , Microbiota/genética
8.
Mycologia ; 115(4): 484-498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37289484

RESUMO

Bats can be affected by fungal pathogens such as Pseudogymnoascus destructans, the causative agent of the white-nose syndrome. Their body surface can also be colonized by fungal commensals or carry transient fungal species and participate in their dispersal. In this study, 114 bat specimens belonging to seven species were sampled from various locations in northern Belgium. Culture-based methods revealed an important mycological diversity, with a total of 209 different taxa out of the 418 isolates. Overall, a mean of 3.7 taxa per bat was recorded, but significant differences were observed between sampling sites and seasons. The mycobiomes were dominated by cosmopolitan and plant-associated species, in particular from the genera Cladosporium, Penicillium, and Aspergillus. Other species known to be related to bats or their environment, such as Apiotrichum otae, were also retrieved. Sampling of hibernacula indicated that diverse fungal species can inhabit these sites, including a yet undescribed Pseudogymnoascus species, distinct from Ps. destructans, namely, Ps. cavicola.


Assuntos
Quirópteros , Micoses , Penicillium , Animais , Micoses/microbiologia , Quirópteros/microbiologia , Bélgica , Biodiversidade
9.
J Wildl Dis ; 59(3): 381-397, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37270186

RESUMO

White-nose syndrome (WNS) has notably affected the abundance of Myotis lucifugus (little brown myotis) in North America. Thus far, substantial mortality has been restricted to the eastern part of the continent where the cause of WNS, the invasive fungus Pseudogymnoascus destructans, has infected bats since 2006. To date, the state of Washington is the only area in the Western US or Canada (the Rocky Mountains and further west in North America) with confirmed cases of WNS in bats, and there the disease has spread more slowly than it did in Eastern North America. Here, we review differences between M. lucifugus in western and eastern parts of the continent that may affect transmission, spread, and severity of WNS in the West and highlight important gaps in knowledge. We explore the hypothesis that western M. lucifugus may respond differently to WNS on the basis of different hibernation strategies, habitat use, and greater genetic structure. To document the effect of WNS on M. lucifugus in the West most effectively, we recommend focusing on maternity roosts for strategic disease surveillance and monitoring abundance. We further recommend continuing the challenging work of identifying hibernation and swarming sites to better understand the microclimates, microbial communities, and role in disease transmission of these sites, as well as the ecology and hibernation physiology of bats in noncavernous hibernacula.


Assuntos
Quirópteros , Hibernação , Micoses , Gravidez , Animais , Feminino , Micoses/epidemiologia , Micoses/veterinária , Micoses/microbiologia , Quirópteros/microbiologia , Ecossistema , América do Norte/epidemiologia
10.
Biol Lett ; 19(3): 20220574, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36855852

RESUMO

Understanding host persistence with emerging pathogens is essential for conserving populations. Hosts may initially survive pathogen invasions through pre-adaptive mechanisms. However, whether pre-adaptive traits are directionally selected to increase in frequency depends on the heritability and environmental dependence of the trait and the costs of trait maintenance. Body condition is likely an important pre-adaptive mechanism aiding in host survival, although can be seasonally variable in wildlife hosts. We used data collected over 7 years on bat body mass, infection and survival to determine the role of host body condition during the invasion and establishment of the emerging disease, white-nose syndrome. We found that when the pathogen first invaded, bats with higher body mass were more likely to survive, but this effect dissipated following the initial epizootic. We also found that heavier bats lost more weight overwinter, but fat loss depended on infection severity. Lastly, we found mixed support that bat mass increased in the population after pathogen arrival; high annual plasticity in individual bat masses may have reduced the potential for directional selection. Overall, our results suggest that some factors that contribute to host survival during pathogen invasion may diminish over time and are potentially replaced by other host adaptations.


Assuntos
Quirópteros , Animais , Animais Selvagens , Fenótipo
11.
BMC Vet Res ; 19(1): 40, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36759833

RESUMO

BACKGROUND: North American bat populations have suffered severe declines over the last decade due to the Pseudogymnoascus destructans fungus infection. The skin disease associated with this causative agent, known as white-nose syndrome (WNS), is specific to bats hibernating in temperate regions. As cultured fungal isolates are required for epidemiological and phylogeographical studies, the purpose of the present work was to compare the efficacy and reliability of different culture approaches based on either skin swabs or wing membrane tissue biopsies for obtaining viable fungal isolates of P. destructans. RESULTS: In total, we collected and analysed 69 fungal and 65 bacterial skin swabs and 51 wing membrane tissue biopsies from three bat species in the Czech Republic, Poland and the Republic of Armenia. From these, we obtained 12 viable P. destructans culture isolates. CONCLUSIONS: Our results indicated that the efficacy of cultures based on wing membrane biopsies were significantly higher. Cultivable samples tended to be based on collections from bats with lower body surface temperature and higher counts of UV-visualised lesions. While cultures based on both skin swabs and wing membrane tissue biopsies can be utilised for monitoring and surveillance of P. destructans in bat populations, wing membrane biopsies guided by UV light for skin lesions proved higher efficacy. Interactions between bacteria on the host's skin also appear to play an important role.


Assuntos
Quirópteros , Hibernação , Dermatopatias , Animais , Quirópteros/microbiologia , Meios de Cultura , Raios Ultravioleta , Reprodutibilidade dos Testes , Pele/patologia , Dermatopatias/veterinária , Síndrome
12.
Virulence ; 14(1): 2156185, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36599840

RESUMO

Skin acts as a mechanical barrier between the body and its surrounding environment and plays an important role in resistance to pathogens. However, we still know little regarding skin responses to physiological changes, particularly with regard to responses against potential pathogens. We herein executed RNA-seq on the wing of the Rhinolophus ferrumequinum to assess gene-expression variations at four physiological stages: pre-hibernation, hibernation (early-hibernation and late-hibernation), and post-hibernation, as well as the gene-expression patterns of infected and uninfected bats with the Pseudogymnoascus destructans (Pd). Our results showed that a greater number of differentially expressed genes between the more disparate physiological stages. Functional enrichment analysis showed that the down-regulated response pathways in hibernating bats included phosphorus metabolism and immune response, indicating metabolic suppression and decreased whole immune function. We also found up-regulated genes in post-hibernating bats that included C-type lectin receptor signalling, Toll-like receptor signalling pathway, and cell adhesion, suggesting that the immune response and skin integrity of the wing were improved after bats emerged from their hibernation and that this facilitated clearing Pd from the integument. Additionally, we found that the genes involved in cytokine or chemokine activity were up-regulated in late-hibernation compared to early-hibernation and that FOSB regulation of immune cell activation was differentially expressed in bats infected with Pd during late-hibernation, implying that the host's innate immune function was enhanced during late-hibernation so as to resist pathogenic infection. Our findings highlight the concept that maintenance of intrinsic immunity provides protection against pathogenic infections in highly resistant bats.


Assuntos
Quirópteros , Hibernação , Animais , Transcriptoma , Quirópteros/genética , Hibernação/genética , Pele
13.
Microb Ecol ; 86(1): 713-726, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35953677

RESUMO

Understanding how host-associated microbial assemblages respond to pathogen invasion has implications for host health. Until recently, most investigations have focused on understanding the taxonomic composition of these assemblages. However, recent studies have suggested that microbial assemblage taxonomic composition is decoupled from its function, with assemblages being taxonomically varied but functionally constrained. The objective of this investigation was to understand how the Tri-colored bat, Perimyotis subflavus cutaneous microbial assemblage responds to fungal pathogen invasion within a functional context. We hypothesized that at a broad scale (e.g., KEGG pathways), there will be no difference in the functional assemblages between the white nose pathogen, Pseudogymnoascus destructans, positive and negative bats; and this pattern will be driven by the functional redundancy of bacterial taxa. At finer scales (e.g., gene models), we postulate differences in function attributed to interactions between bacteria and P. destructans, resulting in the production of antifungal metabolites. To test this, we used a combination of shotgun metagenomic and amplicon sequencing to characterize the bat cutaneous microbial assemblage in the presence/absence of P. destructans. Results showed that while there was a shift in taxonomic assemblage composition between P. destructans positive and negative bats, there was little overall difference in microbial function. Functional redundancy across bacterial taxa was clear at a broad-scale; however, both redundancy and variation in bacterial capability related to defense against pathogens was evident at finer scales. While functionality of the microbial assemblage was largely conserved in relation to P. destructans, the roles of particular functional pathways in resistance to fungal pathogens require further attention.


Assuntos
Quirópteros , Animais , Quirópteros/microbiologia , Nariz/microbiologia , Antifúngicos , Pele/microbiologia , Bactérias/genética
14.
R Soc Open Sci ; 9(11): 211986, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36425515

RESUMO

Temperature is a critically important factor in many infectious disease systems, because it can regulate responses in both the host and the pathogen. White-nose syndrome (WNS) in bats is a severe infectious disease caused by the temperature-sensitive fungus, Pseudogymnoascus destructans (Pd). One feature of WNS is an increase in the frequency of arousal bouts (i.e. when bat body temperatures are elevated) in Pd-infected bats during hibernation. While several studies have proposed that increased frequency of arousals may play a role in the pathophysiology of WNS, it is unknown if the temperature fluctuations might mediate Pd growth. We hypothesized that exposure to a high frequency of elevated temperatures would reduce Pd growth due to thermal constraints on the pathogen. We simulated the thermal conditions for arousal bouts of uninfected and infected bats during hibernation (fluctuating from 8 to 25°C at two different rates) and quantified Pd growth in vitro. We found that increased exposure to high temperatures significantly reduced Pd growth. Because temperature is one of the most critical abiotic factors mediating host-pathogen interactions, resolving how Pd responds to fluctuating temperatures will provide insights for understanding WNS in bats and other fungal diseases.

15.
Ecol Evol ; 12(11): e9547, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36447592

RESUMO

White-nose syndrome has been decimating populations of several bat species since its first occurrence in the Northeastern United States in the winter 2006-2007. The spread of the disease has been monitored across the continent through the collaboration of many organizations. Inferring the rate of spread of the disease and predicting its arrival at new locations is critical when assessing the current and predicting the future status and trends of bat species. We developed a model of disease spread that simultaneously achieves high-predictive performance, computational efficiency, and interpretability. We modeled white-nose syndrome spread using Gaussian process variations to infer the spread rate of the disease front, identify areas of anomalous time of arrival, and provide future forecasts of the expected time of arrival throughout North America. Cross-validation of model predictive performance identified a stationary Gaussian process without an additional residual error process as the best-supported model. Results indicated that white-nose syndrome is likely to spread throughout the entire continental United States by 2030. These annually updatable model predictions will be useful in determining the horizon over which disease management actions must take place as well as in status and trend assessments of disease-affected bats.

16.
J Fungi (Basel) ; 8(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36294636

RESUMO

White-nose syndrome (WNS), caused by Pseudogymnoascus destructans (Pd), is a lethal fungal disease that affects hibernating bats in North America. Recently, the presence of Pd was reported in countries neighboring Korea. However, Pd has not been investigated in Korea. Therefore, this study aimed to identify the presence of Pd in Korean bats. Altogether, wings from 241 bats were collected from 13 cities and cultured. A total of 79 fungal colonies were isolated, and two isolates were identified as Pd using polymerase chain reaction. Of the nine bat species captured in 13 cities, Pd was isolated only from Myotis petax in Goryeong. Atypical, curved conidia were observed in two isolated fungal colonies. Although histological lesions were not observed by hematoxylin and eosin or periodic acid−Schiff staining, fungal invasion was observed in the tissue sections. Taken together, these results confirmed the presence of Pd in Korean bats and suggest the possibility of WNS outbreaks in Korean bats. This is the first report of the isolation and molecular analysis of Pd from Korean bats.

17.
Mycopathologia ; 187(5-6): 547-565, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35931867

RESUMO

Pseudogymnoascus destructans (= Geomyces destructans) is a psychrophilic filamentous fungus that causes White-Nose Disease (WND; the disease associated with White-Nose Syndrome, WNS) in hibernating bats. The disease has caused considerable reductions in bat populations in the USA and Canada since 2006. Identification and detection of the pathogen in pure cultures and environmental samples is routinely based on qPCR or PCR after DNA isolation and purification. Rapid and specific direct detection of the fungus in the field would strongly improve prompt surveillance, and support control measures. Based on the genes coding for ATP citrate lyase1 (acl1) and the 28S-18S ribosomal RNA intergenic spacer (IGS) in P. destructans, two independent LAMP assays were developed for the rapid and sensitive diagnosis of the fungus. Both assays could discriminate P. destructans from 159 tested species of filamentous fungi and yeasts. Sensitivity of the assays was 2.1 picogram per reaction (pg/rxn) and 21 femtogram per reaction (fg/rxn) for the acl1 and IGS based assays, respectively. Moreover, both assays also work with spores and mycelia of P. destructans that are directly added to the master mix without prior DNA extraction. For field-diagnostics, we developed and tested a field-applicable version of the IGS-based LAMP assay. Lastly, we also developed a protocol for preparation of fungal spores and mycelia from swabs and tape liftings of contaminated surfaces or infected bats. This protocol in combination with the highly sensitive IGS-based LAMP-assay enabled sensitive detection of P. destructans from various sources.


Assuntos
Ascomicetos , Quirópteros , Doenças Nasais , Animais , Ascomicetos/genética , Reação em Cadeia da Polimerase em Tempo Real , Citratos , RNA Ribossômico 28S
19.
Front Microbiol ; 13: 808788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432245

RESUMO

Host-associated skin bacteria are essential for resisting pathogen infections and maintaining health. However, we have little understanding of how chiropteran skin microbiota are distributed among bat species and their habitats, or of their putative roles in defending against Pseudogymnoascus destructans in China. In this study, we characterized the skin microbiomes of four bat species at five localities using 16S rRNA gene amplicon sequencing to understand their skin microbial composition, structure, and putative relationship with disease. The alpha- and beta-diversities of skin microbiota differed significantly among the bat species, and the differences were affected by environmental temperature, sampling sites, and host body condition. The chiropteran skin microbial communities were enriched in bacterial taxa that had low relative abundances in the environment. Most of the potential functions of skin microbiota in bat species were associated with metabolism. Focusing on their functions of defense against pathogens, we found that skin microbiota could metabolize a variety of active substances that could be potentially used to fight P. destructans. The skin microbial communities of bats in China are related to the environment and the bat host, and may be involved in the host's defense against pathogens.

20.
J Wildl Dis ; 58(3): 652-657, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35439810

RESUMO

White-nose syndrome (WNS) is an emerging fungal epizootic disease that has caused large-scale mortality in several species of North American bats. The fungus that causes WNS, Pseudogymnoascus destructans (Pd), has also been detected in bat species without diagnostic signs of WNS. Although these species could play a role in WNS spread, understanding of the spatial and temporal extents of Pd occurrence on WNS-resistant species is limited. This study evaluated the presence of Pd on 272 individuals of three species of migratory tree-roosting bats: hoary (Lasiurus cinereus), eastern red (Lasiurus borealis), and silver-haired (Lasionycteris noctivagans) bats, obtained opportunistically during summer and autumn from throughout much of their ranges in North America. We also compared tissue sampling protocols (i.e., tissue swabbing, fur swabbing, and DNA extraction of excised wing tissue). We detected Pd on three eastern red bats from Illinois and Ohio, US, one silver-haired bat from West Virginia, US, and one hoary bat from New York, US, all via DNA extracted from wing tissue of carcasses. These results document the first publicly reported detections of Pd on a hoary bat and on migratory bats during the autumn migratory period, and demonstrate the potential for using carcasses salvaged at wind-energy facilities to monitor for Pd.


Assuntos
Ascomicetos , Quirópteros , Micoses , Animais , Quirópteros/microbiologia , Micoses/epidemiologia , Micoses/veterinária , Síndrome , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...