Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.037
Filtrar
1.
mBio ; : e0120624, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360836

RESUMO

Iron-sulfur [Fe-S] clusters are essential protein cofactors allowing bacteria to perceive environmental redox modification and to adapt to iron limitation. Escherichia coli, which served as a bacterial model, contains two [Fe-S] cluster biogenesis systems, ISC and SUF, which ensure [Fe-S] cluster synthesis under balanced and stress conditions, respectively. However, our recent phylogenomic analyses revealed that most bacteria possess only one [Fe-S] cluster biogenesis system, most often SUF. The opportunist human pathogen Pseudomonas aeruginosa is atypical as it harbors only ISC. Here, we confirmed the essentiality of ISC in P. aeruginosa under both normal and stress conditions. Moreover, P. aeruginosa ISC restored viability, under balanced growth conditions, to an E. coli strain lacking both ISC and SUF. Reciprocally, the E. coli SUF system sustained growth and [Fe-S] cluster-dependent enzyme activities of ISC-deficient P. aeruginosa. Surprisingly, an ISC-deficient P. aeruginosa strain expressing E. coli SUF showed defects in resistance to H2O2 stress and paraquat, a superoxide generator. Similarly, the P. aeruginosa ISC system did not confer stress resistance to a SUF-deficient E. coli mutant. A survey of 120 Pseudomonadales genomes confirmed that all but five species have selected ISC over SUF. While highlighting the great versatility of bacterial [Fe-S] cluster biogenesis systems, this study emphasizes that their contribution to cellular homeostasis must be assessed in the context of each species and its own repertoire of stress adaptation functions. As a matter of fact, despite having only one ISC system, P. aeruginosa shows higher fitness in the face of ROS and iron limitation than E. coli. IMPORTANCE: ISC and SUF molecular systems build and transfer Fe-S cluster to cellular apo protein clients. The model Escherichia coli has both ISC and SUF and study of the interplay between the two systems established that the ISC system is the house-keeping one and SUF the stress-responding one. Unexpectedly, our recent phylogenomic analysis revealed that in contrast to E. coli (and related enterobacteria such as Salmonella), most bacteria have only one system, and, in most cases, it is SUF. Pseudomonas aeruginosa fits the general rule of having only one system but stands against the rule by having ISC. This study aims at engineering P. aeruginosa harboring E. coli systems and vice versa. Comparison of the recombinants allowed to assess the functional versatility of each system while appreciating their contribution to cellular homeostasis in different species context.

2.
Front Microbiol ; 15: 1440090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351305

RESUMO

This study aimed to investigate the effects of the cell-free supernatant of Lactiplantibacillus plantarum ATCC® 10241TM on the biofilm-forming capacity of Pseudomonas aeruginosa strains isolated from cystic fibrosis (CF) patients. In addition, the study evaluated the in vivo potential of the cell-free supernatant to modulate inflammation and reduce lung damage in mice infected with P. aeruginosa strains or co-challenged with P. aeruginosa and the Streptococcus milleri group (SMG). The results showed that CF-derived P. aeruginosa strains can infect the respiratory tract of adult mice, inducing local inflammation and lung damage. The severity of these infections was exacerbated when P. aeruginosa was co-administered with SMG. Notably, nebulization with the cell-free supernatant of L. plantarum produced beneficial effects, reducing respiratory infection severity and inflammatory responses induced by P. aeruginosa, both alone or in combination with SMG. Reduced bacterial loads and lung damage were observed in supernatant-treated mice compared to controls. Although further mechanistic studies are necessary, the results show that the cell-free supernatant of L. plantarum ATCC® 10241TM is an interesting adjuvant alternative to treat P. aeruginosa respiratory infections and superinfections in CF patients.

3.
Chem Biodivers ; : e202401344, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353850

RESUMO

Alpinia officinarum Hance, is an aromatic and medicinal herb with a very interesting history and prominent chemical and biological prospects. We aimed to investigate the antibacterial activity of Alpinia officinarum essential oil and the preferred molecular targets of its constituents together with their pharmacokinetic properties and toxicity profile. According to GC-MS analysis, eucalyptol was the main compound (27.52%) identified in Alpinia officinarum essential oil, followed by α-terpineol, and ß-sesquiphellandrene. As opposed to the weak antiradical activity estimated by DPPH and ABTS tests, the essential oil caused inhibition of all the bacteria following well-diffusion and microdilution methods, especially the gram-negative Pseudomonas aeruginosa and Escherichia coli. It displayed exceptionally remarkable activity against Pseudomonas aeruginosa by totally inhibiting its growth on the agar plate exceeding the effect of chloramphenicol standard. This bactericidal effect was confirmed by very low MIC and MBC values of 0.82 and 6.562 µg/mL, respectively. The molecular docking showed interesting binding affinity between the major compounds and various drug targets in Pseudomonas aeruginosa, also good pharmacokinetic and toxicity behavior. These encouraging findings are particularly relevant in light of the increasingly pressing challenge to find alternative substances with antibacterial aptitude to address the issue of antibiotic resistance among infectious bacteria.

4.
Sci Rep ; 14(1): 22813, 2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353969

RESUMO

The primary cause of anemia worldwide is due to poor diet and iron deficiency. Iron (Fe) enriched yeast can be the most effective way to manage anemia because of the capability for biotransformation of mineral to organic and bioavailable iron. To overcome the low richness of yeast, the use of siderophore as cellular iron carriers is a new approach. In this research, for the first time the potential of siderophore in increasing the Fe enrichment of Saccharomyces boulardii (S. boulardii), which is important because of its probiotic properties and resistance to different stresses, has been investigated to produce of potential iron supplements. For this purpose, siderophore was produced by Pseudomonas aeruginosa (P. aeruginosa). Siderophore impact, along with ten other independent process variables, has been studied on the efficiency of iron biotransformation by the Plackett-Burman design (PBD). The results showed that the highest biotransformation yield was 17.77 mg Fe/g dry cell weight (DCW) in the highest biomass weight of 9 g/l. Iron concentration is the most important variable, with contributions of 46% and 70.79% for biomass weight and biotransformation, respectively, followed by fermentation time, agitation speed, and KH2PO4 concentration. But increasing the level of siderophore and zinc led to a significant negative effect. siderophore inefficiency may be attributed to the absence of membrane receptors for pyoverdine (Pvd) and pyochelin (Pch) siderophores. Also, the steric hindrance of the cell wall mannan, the stickiness and sediment ability of the yeast, can create limitations in the absorption of elements. Such yeast can be used as a potential source of iron even for vegetarians and vegans in the form of medicinal and fortified food products to improve the treatment of anemia. It is recommended that further research be focused on increasing the iron enrichment of yeast by overcoming the structural barrier of the cell wall, investigating factors affecting membrane permeability and iron transport potential of other types of siderophores.


Assuntos
Ferro , Saccharomyces boulardii , Sideróforos , Sideróforos/metabolismo , Ferro/metabolismo , Saccharomyces boulardii/metabolismo , Pseudomonas aeruginosa/metabolismo , Biomassa , Fermentação , Biotransformação
5.
AMB Express ; 14(1): 110, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354164

RESUMO

PA1895-1897 is a quorum sensing (QS) operon regulated by the anti-activator LuxR homologue QscR in Pseudomonas aeruginosa. We aimed to investigate its impact on bacterial metabolism, and whether it contributes to the delayed QS activation. We performed liquid chromatograph-mass spectrometer-based metabolomics using wildtype PAO1, PA1895-1897-knockout mutant, and mutant with pJN105.PA1895-1897 overexpression vector. The impact of metabolites on QS signaling molecule (3OC12-HSL and C4-HSL) concentrations, pyocyanin production, and QS gene (lasR, lasI, rhlR, and rhlI) expression was examined. Metabolomics analysis found that fatty acid biosynthesis had the highest fold enrichment among all metabolic pathways in PA1895-1897-overexpressed mutants. Among these enriched fatty acids, palmitoleic acid and acetic acid were the predominantly abundant ones that significantly affected by PA1895-1897 operon. When different doses of exogenous palmitoleic acid or acetic acid were added to the cultures of PA1895-1897 knockout mutants, their levels of 3OC12-HSL, C4-HSL, and pyocyanin were decreased in a dose-dependent manner. High doses of palmitoleic acid and acetic acid suppressed the mRNA expression of lasR, rhlR, and rhlI. Inhibition of fatty acid biosynthesis increased the production of 3OC12-HSL, C4-HSL, and pyocyanin in PA1895-1897-overexpressed cultures. Our data suggest that fatty acid synthesis is promoted by PA1895-1897 operon, and contributes the delayed expression of QS phenotypes, furthering the understanding about the regulation of bacterial QS activation.

6.
BMC Microbiol ; 24(1): 379, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354360

RESUMO

The emergence of Multidrug-resistant (MDR) bacteria are becoming a major worldwide health concern, encouraging the development effective alternatives to conventional antibiotics. The study identified P. aeruginosa and assessed its antimicrobial sensitivity using the Vitek-2 system. Carbapenem-resistant genes were detected through Polymerase chain reaction (PCR). MDR- P. aeruginosa isolates were used to biosynthesize titanium dioxide nanoparticles (TiO2NPs) and characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM). A study involving 78 P. aeruginosa isolates revealed that 85.8% were MDR, with meropenem and amikacin showing effectiveness against 70% of the isolates. The most prevalent carbapenemase gene was blaOXA-48, present in 83% of the isolates. Majority of the isolates formed biofilms, and biosynthesized TiO2NPs were able to reduce biofilm formation by 94%. TiO2NPs exhibited potent antibacterial action against MDR-Gram-negative bacilli pathogens and showed synergistic activity with antibiotics, particularly piperacillin, with a significant fold increase in areas (283%). A new local strain of P. aeruginosa, identified as ON678251 in the World GenBank, was found capable of producing TiO2NPs. Our findings demonstrate the potential of biosynthesized TiO2NPs to manage antibiotic resistance and regulate the formation of biofilms. This presents a promising direction for the creation of novel antimicrobial agents or substitutes for use in clinical settings, particularly in the management of isolates capable of resisting multiple drugs.


Assuntos
Antibacterianos , Biofilmes , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Titânio , Titânio/química , Titânio/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Nanopartículas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Nanopartículas Metálicas/química , Sinergismo Farmacológico , Humanos , Difração de Raios X
7.
JNMA J Nepal Med Assoc ; 62(271): 202-206, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-39356784

RESUMO

INTRODUCTION: Pseudomonas aeruginosa isolates producing metallo-ß-lactamase have caused nosocomial outbreaks, severe infections, and ineffective carbapenem therapy worldwide since 1991. Due to their prevalence, hospital infection control techniques are difficult. This study aimed to find out the prevalence of metallo-ß-lactamase among P. aeruginosa isolates from two tertiary care hospitals in Kathmandu. METHODS: A descriptive cross-sectional study was conducted at the Department of Microbiology and Department of Pathology of two tertiary care centres in Kathmandu from 7 December 2021 to 6 April 2023, after receiving ethical approval from the Ethical Review Board. Isolated strains were identified and tested for antibiotic susceptibility by modified Kirby-Bauer Methods. Metallo-ß-lactamase presence was confirmed using an imipenem-imipenem/ ethylenediaminetetraacetic acid disc. A convenience sampling method was used. The point estimate was calculated at 95% Confidence Interval. RESULTS: Among 255, Pseudomanas aeruginosa isolates, the distribution of metallo-ß-lactamase-producing Pseudomanas aeruginosa was 103 (40.39%) (34.32-46.69 at 95% Confidence Interval). Multidrug resistance categories included multidrug resistance 74 (71.80%), extensively drug resistance 32 (31.10%), P. aeruginosa difficult-to-treat 16 (15.53%) and carbapenem-resistant P. aeruginosa was determined to be 82 (79.60%). CONCLUSIONS: The study found a high prevalence of metallo-ß-lactamase-producing Pseudomanas aeruginosa isolates, requiring early identification, infection control measures, and an all-inclusive antimicrobial therapy protocol to reduce their spread in medical settings.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Centros de Atenção Terciária , beta-Lactamases , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/efeitos dos fármacos , Nepal/epidemiologia , beta-Lactamases/metabolismo , Estudos Transversais , Humanos , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla , Prevalência
8.
Front Microbiol ; 15: 1456847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39386368

RESUMO

Introduction: Fusarium wilt of banana, also recognized as Panama disease, is caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (FOC TR4). In recent years, strategies utilizing biocontrol agents, comprising antifungal microorganisms and their associated bioactive compounds from various environments, have been implemented to control this destructive disease. Our previous study showed that Pseudomonas aeruginosa Gxun-2 had significant antifungal effects against FOC TR4. However, there has been little scientific investigation of the antibacterial or antifungal activity. The aim of this study was to isolate, identify and evaluate the inhibition strength of active compounds in P. aeruginosa Gxun-2, so as to explain the mechanism of the strain inhibition on FOC TR4 from the perspective of compounds. Methods: The main antibacterial compounds of strain Gxun-2 were isolated, purified and identified using by fermentation extraction, silica gel column chromatography, thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and nuclear magnetic resonance (NMR) techniques. The effect of the compounds on the mycelial growth, morphology and spore germination of strain FOC TR4 was observed by 96-well plate method and AGAR diffusion method. Results: Among the metabolites produced by the strain, four antifungal compounds which were identified phenazine (C12H8N2), phenazine-1-carboxylic acid (PCA) (C13H8N2O2), 2-acetamidophenol (C8H9NO2) and aeruginaldehyde (C10H7NO2S) were identified through HPLC and NMR. Of these compounds, phenazine and PCA exhibited the most pronounced inhibitory effects on the spore germination and mycelial growth of FOC TR4. Phenazine demonstrated potent antifungal activity against FOC TR4 with a minimum inhibitory concentration (MIC) of 6.25 mg/L. The half-maximal effective concentration (EC50) was calculated to be 26.24 mg/L using the toxicity regression equation. PCA exhibited antifungal activity against FOC TR4 with an MIC of 25 mg/L and an EC50 of 89.63 mg/L. Furthermore, phenazine and PCA triggered substantial morphological transformations in the mycelia of FOC TR4, encompassing folding, bending, fracturing, and diminished spore formation. Discussion: These findings indicate that strain Gxun-2 plays a crucial role in controlling FOC TR4 pathogenesis, predominantly through producing the antifungal compounds phenazine and PCA, and possesses potential as a cost-efficient and sustainable biocontrol agent against Fusarium wilt of banana in forthcoming times.

9.
Cureus ; 16(9): e68717, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39376882

RESUMO

A 63-year-old male with high myopia developed sudden visual loss, eyelid swelling, eye pain, discharge, and tearing in his left eye while wearing soft contact lenses (CLs) during the day and orthokeratology lenses at night. At the initial visit, his corrected visual acuity in the left eye was 20/1000, with a ring-shaped ulcer in the central cornea, corneal infiltration across the entire cornea, and conjunctival hyperemia. Pseudomonas aeruginosa was detected from corneal scrapings, and after antibiotic treatment, the ulcer healed with corneal opacity remaining. On the 60th day, corrected visual acuity of 20/20 was achieved with rigid gas-permeable CLs. To prevent CL-related ocular complications, eye care professionals must carefully evaluate the suitability of all CLs, including orthokeratology.

10.
Mol Pharm ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39378315

RESUMO

This study aims to develop an innovative microencapsulation method for coated Polymyxin B, utilizing various polysaccharides such as hydroxypropyl ß-cyclodextrin, alginate, and chitosan, implemented through a three-fluid nozzle (3FN) spray drying process. High-performance liquid chromatography (HPLC) analysis revealed that formulations with a high ratio of sugar cage, hydroxypropyl ß-cyclodextrin (HPßCD), and sodium alginate (coded as ALGHCDHPLPM) resulted in a notable 16-fold increase in Polymyxin B recovery compared to chitosan microparticles. Morphological assessments using fluorescence labeling confirmed successful microparticle formation with core/shell structures. Alginate-based formulations exhibited distinct layers, while chitosan formulations showed uniform fluorescence throughout the microparticles. Focused beam reflectance and histograms from fluorescence microscopic measurements provided insights into physical size analysis, indicating consistent sizes of 6.8 ± 1.2 µm. Fourier-transform infrared (FTIR) spectra unveiled hydrogen bonding between Polymyxin B and other components within the microparticle structures. The drug release study showed sodium alginate's sustained release capability, reaching 26 ± 3% compared to 94 ± 3% from the free solution at the 24 h time point. Furthermore, the antimicrobial properties of the prepared microparticles against two Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, were investigated. The influence of various key excipients on the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values was evaluated. Results demonstrated effective bactericidal effects of ALGHCDHPLPM against both E. coli and P. aeruginosa. Additionally, the antibiofilm assay highlighted the potential efficacy of ALGHCDHPLPM against the biofilm viability of E. coli and P. aeruginosa, with concentrations ranging from 3.9 to 500 µg/m. This signifies a significant advancement in antimicrobial drug delivery systems, promising improved precision and efficacy in combating bacterial infections.

11.
Crit Rev Microbiol ; : 1-36, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39381985

RESUMO

Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.

12.
Tuberc Respir Dis (Seoul) ; 87(4): 505-513, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39362831

RESUMO

BACKGROUND: Clinical data for bacterial coinfection of the lower respiratory tract in patients with nontuberculous mycobacterial pulmonary disease (NTM-PD) are scarce. This study aims to assess the prevalence of bacterial coinfection and clinical features in NTM-PD patients. METHODS: This retrospective study screened 248 patients with NTM-PD who underwent bronchoscopy between July 2020 and July 2022, from whom newly diagnosed NTM-PD patients were analyzed. Bacterial culture using bronchial washing fluid was performed at the time of NTM-PD diagnosis. RESULTS: In the 180 patients (median age 65 years; 68% female), Mycobacterium avium complex (86%) was the most frequent NTM isolated. Bacterial coinfections were detected in 80 (44%) patients. Among them, the most common bacterium was Klebsiella pneumoniae (n=25/80, 31.3%), followed by Pseudomonas aeruginosa (n=20/80, 25%) and Staphylococcus aureus (n=20/80, 25%). Compared with NTM-PD patients without bacterial coinfections, patients with bacterial coinfections showed more frequent extensive lung involvement (33% vs. 1%, p<0.001). Additionally, compared with NTM-PD patients without P. aeruginosa infection, those with P. aeruginosa infection were older (74 years vs. 64 years, p=0.001), had more frequent respiratory symptoms (cough/excessive mucus production 70% vs. 38%, p=0.008; dyspnea 30% vs. 13%, p=0.047), and had extensive lung involvement (60% vs. 9%, p<0.001). CONCLUSION: Less than half of patients with newly diagnosed NTM-PD had bacterial coinfections, linked to extensive lung involvement. Specifically, P. aeruginosa coinfection was significantly associated with older age, more frequent respiratory symptoms, and extensive lung involvement.

13.
Microbiome ; 12(1): 196, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39385282

RESUMO

BACKGROUND: Progression of chronic lung disease may lead to the requirement for lung transplant (LTx). Despite improvements in short-term survival after LTx, chronic lung allograft dysfunction (CLAD) remains a critical challenge for long-term survival. This study investigates the molecular and microbial relationships between underlying lung disease and the development of CLAD in bronchoalveolar lavage fluid (BALF) from subjects post-LTx, which is crucial for tailoring treatment strategies specific to allograft dysfunctions. METHODS: Paired 16S rRNA gene amplicon sequencing and untargeted LC-MS/MS metabolomics were performed on 856 BALF samples collected over 10 years from LTx recipients (n = 195) with alpha-1-antitrypsin disease (AATD, n = 23), cystic fibrosis (CF, n = 47), chronic obstructive pulmonary disease (COPD, n = 78), or pulmonary fibrosis (PF, n = 47). Data were analyzed using random forest (RF) machine learning and multivariate statistics for associations with underlying disease and CLAD development. RESULTS: The BALF microbiome and metabolome after LTx differed significantly according to the underlying disease state (PERMANOVA, p = 0.001), with CF and AATD demonstrating distinct microbiome and metabolome profiles, respectively. Uniqueness in CF was mainly driven by Pseudomonas abundance and its metabolites, whereas AATD had elevated levels of phenylalanine and a lack of shared metabolites with the other underlying diseases. BALF microbiome and metabolome composition were also distinct between those who did or did not develop CLAD during the sample collection period (PERMANOVA, p = 0.001). An increase in the average abundance of Veillonella (AATD, COPD) and Streptococcus (CF, PF) was associated with CLAD development, and decreases in the abundance of phenylalanine-derivative alkaloids (CF, COPD) and glycerophosphorylcholines (CF, COPD, PF) were signatures of the CLAD metabolome. Although the relative abundance of Pseudomonas was not associated with CLAD, the abundance of its virulence metabolites, including siderophores, quorum-sensing quinolones, and phenazines, were elevated in those with CF who developed CLAD. There was a positive correlation between the abundance of these molecules and the abundance of Pseudomonas in the microbiome, but there was no correlation between their abundance and the time in which BALF samples were collected post-LTx. CONCLUSIONS: The BALF microbiome and metabolome after LTx are particularly distinct in those with underlying CF and AATD. These data reflect those who developed CLAD, with increased virulence metabolite production from Pseudomonas, an aspect of CF CLAD cases. These findings shed light on disease-specific microbial and metabolic signatures in LTx recipients, offering valuable insights into the underlying causes of allograft rejection. Video Abstract.


Assuntos
Líquido da Lavagem Broncoalveolar , Transplante de Pulmão , Metaboloma , Microbiota , Humanos , Transplante de Pulmão/efeitos adversos , Líquido da Lavagem Broncoalveolar/microbiologia , Líquido da Lavagem Broncoalveolar/química , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , RNA Ribossômico 16S/genética , Aloenxertos/microbiologia , Idoso , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bactérias/genética , Pulmão/microbiologia , Pulmão/metabolismo , Metabolômica , Pneumopatias/microbiologia , Pneumopatias/cirurgia , Pneumopatias/metabolismo , Fibrose Cística/microbiologia , Fibrose Cística/cirurgia , Fibrose Cística/metabolismo , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo
14.
Front Oncol ; 14: 1444172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39364315

RESUMO

The treatment of brain abscess induced by carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a clinical challenge around the world. Apart from novel ß-lactam/ß-lactamase inhibitors and polymyxins, there are few sufficiently powerful antibiotics that are effective against CRPA-induced infections. Considering the blood-brain barrier factor, there are even fewer drugs that can be used to treat intracranial CRPA-induced infections. In this article, we reported a case of CRPA-induced brain abscess that was successfully treated with intravenous ceftazidime/avibactam and intrathecal colistimethate sodium in a child after intracranial tumor resection.

15.
Folia Med (Plovdiv) ; 66(3): 361-369, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39365622

RESUMO

AIMS: Pseudomonasaeruginosa plays an important role in hospital infections caused by several virulence factors, such as elastase and proteases. This study aimed to evaluate the prevalence of LasA, LasB, and PIV genes, encoding these enzymes, in clinical isolates of P.aeruginosa.


Assuntos
Proteínas de Bactérias , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Humanos , Irã (Geográfico)/epidemiologia , Proteínas de Bactérias/genética , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/epidemiologia , Fatores de Virulência/genética , Metaloendopeptidases/genética , Masculino , Feminino
16.
Biosens Bioelectron ; 267: 116849, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39406071

RESUMO

The lateral flow immunoassay (LFIA) is predominant in rapid diagnostic tests owing to its cost-effectiveness and operational simplicity. However, the conventional LFIA exhibits limited sensitivity and is susceptible to human variance for the result readout, impacting result interpretation. In this study, we introduced a novel one-step copper deposition-induced signal amplification lateral flow immunoassay (osa-LFIA) that markedly enhances the detection sensitivity for Staphylococcus aureus (protein A) and Pseudomonas aeruginosa (exotoxin A). Utilizing gold nanoparticles (AuNPs) as a catalyst, this approach employs ascorbic acid to reduce Cu2+ to Cu0, depositing on AuNPs at the test line and amplifying the signal. A user-friendly design features a three-dimensional paper structure incorporating pre-dried reagents, enabling a streamlined, efficient testing process. The osa-LFIA significantly lowers detection limits to 3 ng mL-1 for protein A and 10 ng mL-1 for exotoxin A, offering a tenfold improvement over conventional LFIA. Additionally, we developed a portable grayscale detection device, achieving less than 10% error in quantitative analysis compared to the data acquired and analyzed in the lab. This entire process, from detection to signal amplification, is completed in just 20 min. For the clinical trial, we utilized the osa-LFIA to test synovial fluid samples infected with Staphylococcus aureus. We also successfully detected different concentrations of the exotoxin A in parallel, with a recovery value of 96%-110%. Our findings demonstrate the osa-LFIA's potential as a rapid, highly sensitive, and simple-to-use diagnostic tool for detecting various pathogens, significantly advancing the field of rapid diagnostic testing.

17.
BMC Microbiol ; 24(1): 409, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39407114

RESUMO

Bacterial biofilms, often forming on medical devices, can lead to treatment failure due to their increased antimicrobial resistance. Cefepime-avibactam (CFP-AVI) exhibits potent activities against Pseudomonas aeruginosa (P. aeruginosa) and Klebsiella pneumoniae (K. pneumoniae) when used with polymyxin B (PMB). However, its efficacy in biofilm-related infections is unknown. The present study aimed to evaluate the activity of PMB combined with CFP-AVI against the biofilms of PMB-resistant Gram-negative bacteria. Five K. pneumoniae strains and three P. aeruginosa strains known to be PMB-resistant and prone to biofilm formation were selected and evaluated. Antimicrobial susceptibility assays demonstrated that the minimal biofilm inhibitory and eradication concentrations of PMB and CFP-AVI for biofilms formed by the eight strains were significantly higher than the minimal inhibitory concentrations of the antibiotics for planktonic cells. The biofilm formation inhibition and eradication assays showed that PMB combined with CFP-AVI cannot only suppress the formation of biofilm but also effectively eradicate the preformed mature biofilms. In a modified in vitro pharmacokinetic/pharmacodynamic biofilm model, CFP-AVI monotherapy exhibited a bacteriostatic or effective activity against the biofilms of seven strains, whereas PMB monotherapy did not have any activity at 72 h. However, PMB combined with CFP-AVI demonstrated bactericidal activity against the biofilms of all strains at 72 h. In an in vivo Galleria mellonella infection model, the 7-day survival rates of larvae infected with biofilm implants of K. pneumoniae or P. aeruginosa were 0-6.7%, 40.0-63.3%, and 46.7-90.0%, respectively, for PMB alone, CFP-AVI alone, and PMB combined with CFP-AVI; the combination therapy increased the rate by 6.7-33.3% (P < 0.05, n = 6), compared to CFP-AVI monotherapy. It is concluded that PMB combined with CFP-AVI exhibits effective anti-biofilm activities against PMB-resistant K. pneumoniae and P. aeruginosa both in vitro and in vivo, and thus may be a promising therapeutic strategy to treat biofilm-related infections.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Biofilmes , Cefepima , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Polimixina B , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Polimixina B/farmacologia , Cefepima/farmacologia , Compostos Azabicíclicos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Combinação de Medicamentos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Farmacorresistência Bacteriana , Modelos Animais de Doenças , Mariposas/microbiologia
18.
Front Microbiol ; 15: 1464719, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39380683

RESUMO

The emergence of multidrug-resistant Pseudomonas aeruginosa isolates is a growing concern for public health, necessitating new therapeutic strategies. Gallium nitrate [Ga(NO3)3], a medication for cancer-related hypercalcemia, has attracted great attention due to its ability to inhibit P. aeruginosa growth and biofilm formation by disrupting iron metabolism. However, the antibacterial efficacy of Ga(NO3)3 is not always satisfactory. It is imperative to investigate the factors that affect the bactericidal effects of Ga(NO3)3 and to identify new ways to enhance its efficacy. This study focused on the impact of pH on P. aeruginosa resistance to Ga(NO3)3, along with the underlying mechanism. The results indicate that acidic conditions could increase the effectiveness of Ga(NO3)3 against P. aeruginosa by promoting the production of pyochelin and gallium uptake. Subsequently, using glutamic acid, a clinically compatible acidic amino acid, the pH was significantly lowered and enhanced the bactericidal and inhibitory efficacy of Ga(NO3)3 against biofilm formation by P. aeruginosa, including a reference strain PA14 and several multidrug-resistant clinical isolates. Furthermore, we used an abscess mouse model to evaluate this combination in vivo; the results show that the combination of glutamic acid and Ga(NO3)3 significantly improved P. aeruginosa clearance. Overall, the present study demonstrates that acidic conditions can increase the sensitivity of P. aeruginosa to Ga(NO3)3. Combining glutamic acid and Ga(NO3)3 is a potential strategy for the treatment of P. aeruginosa infections.

19.
Heliyon ; 10(19): e38395, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39398045

RESUMO

The global challenge to human health is significantly heightened by the resistance of harmful bacteria to antimicrobial treatments. Given the limited advancement in developing new antimicrobial medications, exploring innovative strategies is imperative to tackle the challenge of resistance to multiple drugs. Furthermore, there is a growing emphasis on the environmentally friendly synthesis of nanoparticles with potent medicinal attributes, specifically those targeting virulence, to combat the rise of multidrug resistance. Focusing on the inhibition of virulence factors and biofilms influenced by quorum sensing has become a promising and novel strategy in the development of anti-infective drugs. An aqueous extract of Zataria multiflora leaves was used to create green-synthesized silver nanoparticles, or AgNPs. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and UV-visible absorption spectroscopy were used to characterize the AgNPs. The impact of AgNPs on the virulence factors and biofilms of Pseudomonas aeruginosa PAO1, mediated by quorum sensing, was assessed at concentrations below the minimum inhibitory concentration (sub-MIC). Sub-MIC concentrations of Green-synthesized AgNPs inhibited various P. aeruginosa virulence factors, including bacterial motility (89 % inhibition), pyocyanin production (81.48 % inhibition), pyoverdin production (55.80 % inhibition), elastase activity (87.43 % inhibition), exoprotease activity (75.60 % inhibition), and rhamnolipid production (71.28 % inhibition). Additionally, these AgNPs demonstrated 80 % inhibition of P. aeruginosa biofilms. The in vitro efficacy of green-synthesized AgNPs against P. aeruginosa can be utilized for the creation of alternative therapeutic agents for managing bacterial infections, particularly for topical application in cases such as wound infections. Additionally, they can be used for surface coating to inhibit the attachment of bacteria to medical devices.

20.
Cureus ; 16(9): e69166, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39398730

RESUMO

INTRODUCTION: The rise of antibiotic resistance poses a critical challenge to public health, particularly in managing infections caused by non-fermenting bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii. This study aimed to determine the prevalent multi-drug resistance among non-fermentative Gram-negative bacteria isolated from hospitalized patients in a tertiary care center. MATERIAL AND METHODS: A retrospective analysis was undertaken using one year of data from 2022 to 2023 to evaluate the antimicrobial resistance (AMR) profiles of P. aeruginosa and A. baumannii. The study assessed antibiotic resistance patterns, including piperacillin/tazobactam, carbapenems (imipenem, meropenem), ciprofloxacin, and colistin. RESULTS: The analysis revealed resistance of P. aeruginosa to various antibiotics shows that piperacillin/tazobactam exhibited the highest resistance rate at 32% (181/565), while colistin exhibits the lowest at 5.6% (32/565). For A. baumannii, the resistance varies significantly among antibiotics, with piperacillin/tazobactam and ciprofloxacin showing the highest resistance rates at 56.8% (128/225) and 68% (153/225), respectively. In contrast, colistin is highly effective, with only 0.8% (2/225) resistance, and amikacin also demonstrates low resistance at 9.7% (22/225). CONCLUSION: The growing trend of multi-drug and extensive drug resistance among non-fermenters such as P. aeruginosa and A. baumannii necessitates urgent action. Establishing strict antibiotic policies, continuous monitoring of resistance patterns, and investment in antimicrobial research are imperative to combat the limited treatment options and manage these pathogens effectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...