Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 626
Filtrar
1.
BMC Complement Med Ther ; 24(1): 257, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982456

RESUMO

BACKGROUND: Neuroblastoma, a prevalent solid tumor in children, often manifests with hidden onset sites, rapid growth, and high metastatic potential. The prognosis for children with high-risk neuroblastoma remains poor, highlighting the urgent need for novel prognostic models and therapeutic avenues. In recent years, puerarin, as a kind of small molecule drug extracted from Chinese medicine Pueraria lobata, has demonstrated significant anticancer effects on various cancer cell types. In this study, through bioinformatics analysis and in vitro experiments, the potential and mechanism of puerarin in the treatment of neuroblastoma were investigated, and a prognostic model was established. METHODS: A total of 9 drug-disease related targets were observed by constructing a database of drug targets and disease genes. Besides, GO and KEGG enrichment analysis was performed to explore the potential mechanism of its therapeutic effect. To construct the prognostic model, risk regression analysis and LASSO analysis were carried out for validation. Finally, the prognostic genes were identified. Parachute test and immunofluorescence staining were performed to verify the potential mechanism of puerarin in neuroblastoma treatment. RESULTS: Three prognostic genes, i.e., BIRC5, TIMP2 and CASP9, were identified. In vitro studies verified puerarin's impact on BIRC5, TIMP2, and CASP9 expression, inhibiting proliferation in neuroblastoma SH-SY5Y cells. Puerarin disrupts the cytoskeleton, boosts gap junctional communication, curtailing invasion and migration, and induces mitochondrial damage in SH-SY5Y cells. CONCLUSIONS: Based on network pharmacology and bioinformatics analysis, combined with in vitro experimental verification, puerarin was hereby observed to enhance GJIC in neuroblastoma, destroy cytoskeleton and thus inhibit cell invasion and migration, cause mitochondrial damage of tumor cells, and inhibit cell proliferation. Overall, puerarin, as a natural medicinal compound, does hold potential as a novel therapy for neuroblastoma.


Assuntos
Biologia Computacional , Isoflavonas , Neuroblastoma , Neuroblastoma/tratamento farmacológico , Isoflavonas/farmacologia , Humanos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos
2.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 262-272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945892

RESUMO

Osteoporosis is characterized by bone loss and deterioration in bone microstructure, leading to bone fragility. It is strongly correlated with menopause in women. Previously, we reported that diets supplemented with a kudzu (Pueraria lobata) vine extract suppressed bone resorption in ovariectomized (OVX) mice, a postmenopausal model. The main isoflavone in kudzu is puerarin (daidzein-8-C-glycoside). Puerarin (daidzein-8-C-glycoside), which is main isoflavone of kudzu, probably contributes to the beneficial effect. However, the underlying mechanism is unclear. Therefore, the nutrikinetics of puerarin and the comparison with the suppressive effects of kudzu isoflavones on osteoclast differentiation was examined in this study. We demonstrated that orally administered puerarin was absorbed from the gut and entered the circulation in an intact form. In addition, puerarin accumulated in RAW264.7 pre-osteoclast cells in a time-dependent manner. Tartrate-resistant acid phosphatase activity was decreased by puerarin treatment in a concentration-dependent manner in RAW264.7 cells stimulated with the receptor activator of nuclear factor kappa-B ligand. Ovariectomy-induced elevated bone resorption was suppressed, and the fragile bone strength was improved by puerarin ingestion in the diet. These findings suggested that orally administered puerarin was localized in bone tissue and suppressed bone resorption and osteoclastogenesis in ovariectomized mice.


Assuntos
Diferenciação Celular , Fêmur , Isoflavonas , Osteoclastos , Ovariectomia , Pueraria , Animais , Isoflavonas/farmacologia , Isoflavonas/administração & dosagem , Osteoclastos/efeitos dos fármacos , Feminino , Camundongos , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Pueraria/química , Diferenciação Celular/efeitos dos fármacos , Células RAW 264.7 , Reabsorção Óssea/prevenção & controle , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Osteoporose/prevenção & controle , Osteoporose/tratamento farmacológico , Fosfatase Ácida Resistente a Tartarato/metabolismo
3.
Phytomedicine ; 132: 155813, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38905846

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a clinically common and serious renal dysfunction, characterized by inflammation and damage to tubular epithelial cells. Puerarin, an isoflavone derivative isolated from Pueraria lobata, has been proven to possess exceptional effectiveness in reducing inflammation. However, the effects and underlying mechanisms of puerarin on AKI remain uncertain. PURPOSE: This study investigated the possible therapeutic effects of puerarin on AKI and explored its underlying mechanism. STUDY DESIGN AND METHODS: The effects of puerarin on AKI and macrophage polarization were investigated in lipopolysaccharide (LPS)-induced or unilateral ureteral obstruction (UUO)-induced mouse models in vivo and LPS-treated macrophages (Raw264.7) in vitro. Additionally, the effects of puerarin on inflammation-related signaling pathways were analyzed. RESULTS: Administration of puerarin effectively alleviated kidney dysfunction and reduced inflammatory response in LPS-induced and UUO-induced AKI. In vitro, puerarin treatment inhibited the polarization of M1 macrophages and the release of inflammatory factors in Raw264.7 cells stimulated by LPS. Mechanistically, puerarin downregulated the activities of NF-κB p65 and JNK/FoxO1 signaling pathways. The application of SRT1460 to activate FoxO1 or anisomycin to activate JNK eliminated puerarin-mediated inhibition of JNK/FoxO1 signaling, leading to suppression of macrophage M1 polarization and reduction of inflammatory factors. Further studies showed that puerarin bound to Toll/interleukin-1 receptor (TIR) domain of MyD88 protein, hindering its binding with TLR4, ultimately resulting in downstream NF-κB p65 and JNK/FoxO1 signaling inactivation. CONCLUSIONS: Puerarin antagonizes NF-κB p65 and JNK/FoxO1 activation via TLR4/MyD88 pathway, thereby suppressing macrophage polarization towards M1 phenotype and alleviating renal inflammatory damage.

4.
Clin Nutr ESPEN ; 63: 2-12, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38879879

RESUMO

BACKGROUND & AIMS: Several medicinal plant extracts have demonstrated hepatoprotective effects. However, data are scarce regarding their combined effects on non-alcoholic fatty liver disease (NAFLD). This study aimed to investigate the effects of tablets containing Silybum marianum, Pueraria lobata, and Salvia miltiorrhiza (SPS) on NAFLD progression in Chinese adults. METHODS: In this randomized, triple-blind, placebo-controlled clinical trial, 121 NAFLD patients (60 female and 61 male), diagnosed via magnetic resonance imaging (MRI) and aged 18-65 years, were enrolled. Participants were randomly allocated to receive SPS tablets (n = 60; three tablets per dose, twice daily) or placebo (n = 61) for 24 weeks. Each SPS tablet contained approximately 23.0 mg of silybin, 11.4 mg of puerarin, and 10.9 mg of salvianolic acid. There were no differences in appearance, taste and odour between the SPS tablets and placebo manufactured by BYHEALTH Co., LTD (Guangzhou, China). The primary endpoints were changes in the liver fat content (LFC) and steatosis grade from baseline to 24 weeks. Secondary outcomes included changes in biomarkers/scores of liver fibrosis and steatosis, oxidative stress, inflammatory cytokines, alcohol metabolism, and glucose metabolism. RESULTS: A total of 112 participants completed the research. The intention-to-treat results showed a trend toward reduction in both absolute LFC (-0.52%) and percentage of LFC (-4.57%) in the SPS group compared to the placebo group after 24 weeks, but these changes didn't reach statistical significance (p > 0.05). The SPS intervention (vs. placebo) significantly decreased hypersensitive C-reactive protein level (-6.76%) and increased aldehyde dehydrogenase activity (+18.1%) at 24 weeks post-intervention (all p < 0.05). Per-protocol analysis further supported these effects. This trial is registered at Clinical Trials.gov (NCT05076058). CONCLUSION: SPS supplementation may have potential benefits in improving NAFLD, but further larger-scale trials are necessary to confirm these findings.

5.
Phytomedicine ; 130: 155546, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38833790

RESUMO

BACKGROUND: Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia, and its increasing prevalence is a global concern. Early diagnostic markers and therapeutic targets are essential for DM prevention and treatment. Pueraria, derived from kudzu root, is used clinically for various symptoms, and its active compound, Puerarin, shows promise in improving insulin resistance and reducing inflammation. PURPOSE: This study aims to evaluate the protective effects of metformin and Puerarin at different doses in an STZ-induced DM mouse model. The intricate metabolites within the serum of STZ-induced diabetic mice were subjected to thorough investigation, thus elucidating the intricate mechanism through which Puerarin demonstrates notable efficacy in the treatment of diabetes. METHODS: An STZ-induced DM mouse model is established. Mice are treated with metformin and puerarin at varying doses. Physiological, biochemical, and histomorphological assessments are performed. Metabolomics analysis is carried out on serum samples from control, DM, metformin, and medium-dose Puerarin groups. Western blot and qRT-PCR technologies are used to validate the mechanisms. RESULTS: The DM mouse model replicates abnormal blood glucose, insulin levels, physiological, biochemical irregularities, as well as liver and pancreas damage. Treatment with metformin and Puerarin restores these abnormalities, reduces organ injury, and modulates AMPK, PPARγ, mTOR, and NF-κB protein and mRNA expression. Puerarin activates the AMPK-mTOR and PPARγ-NF-κB signaling pathways, regulating insulin signaling, glucolipid metabolism, and mitigating inflammatory damage. CONCLUSION: This study demonstrates that Puerarin has the potential to treat diabetes by modulating key signaling pathways. The focus was on the finding that Puerarin has been shown to improve insulin signaling, glucolipid metabolism and attenuate inflammatory damage through the modulation of the AMPK-mTOR and PPARγ-NF-κB pathways. The discovery of Puerarin's favorable protective effect and extremely complex mechanism highlights its prospect in the treatment of diabetes and provides theoretical support for its comprehensive development and utilization.


Assuntos
Proteínas Quinases Ativadas por AMP , Glicemia , Diabetes Mellitus Experimental , Hipoglicemiantes , Isoflavonas , Metformina , NF-kappa B , PPAR gama , Pueraria , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Isoflavonas/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , NF-kappa B/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Metformina/farmacologia , PPAR gama/metabolismo , Pueraria/química , Camundongos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Metabolômica , Insulina/sangue , Insulina/metabolismo
6.
Des Monomers Polym ; 27(1): 21-34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38826495

RESUMO

In this paper, a novel mono-methacrylated ß-cyclodextrin (ß-CD) monomer mediated by disulfide bond was synthesized, and then thermal copolymerized with HEMA monomer in the presence of a little crosslinker to prepare redox-responsive hydrogel for regulated drug delivery. The structure of the monomer was confirmed by FTIR, 1H NMR, 13C NMR spectroscopy. The substitution degree of polymerizable methacrylated group grafted onto ß-CD was about 1 by calculating by1H NMR (0.987) and element analysis (0.937). The mono-methacrylated ß-CD monomer can well copolymerize with 2-hydroxyethyl methacrylate (HEMA) monomer with gel fraction over 80%. The hydrogel shows low cytotoxicity, and copolymerization of the mono-methacrylated ß-CD monomer in the hydrogels increases its equilibrium swelling degree (ESD) and tensile strength, while its transmittance slightly decreases. Drug loading and release rate are dependent on the ß-CD content. The hydrogel with high ß-CD content of 13.83 wt% shows 1.8 and 8.5 folds puerarin (PUE) and curcumin (CUR) loading than pure pHEMA hydrogel, respectively. The incorporation of ß-CD sustained drug release, especially CUR release was prolonged more than 24 h from 5 h of pure pHEMA hydrogel (80% release). The hydrogels are highly sensitive to reduced glutathione (GSH), and low concentration of GSH of 3 mM can significantly accelerate drug release rate. The higher of ß-CD content, the more sensitive the hydrogels to GSH, resulting in rapider drug release rate.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38709267

RESUMO

Cardiovascular diseases (CVDs) are the leading causes of death globally that seriously threaten human health. Although novel western medicines have continued to be discovered over the past few decades to inhibit the progression of CVDs, new drug research and development for treating CVDs with less side effects and adverse reactions are continuously being desired. Puerarin is a natural product found in a variety of medicinal plants belonging to the flavonoid family with potent biological and pharmacological activities. Abundant research findings in the literature have suggested that puerarin possesses a promising prospect in treating CVDs. In recent years, numerous new molecular mechanisms of puerarin have been explored in experimental and clinical studies, providing new evidence for this plant metabolite to protect against CVDs. This article systematically introduces the history of use, bioavailability, and various dosage forms of puerarin and further summarizes recently published data on the major research advances and their underlying therapeutic mechanisms in treating CVDs. It may provide references for researchers in the fields of pharmacology, natural products, and internal medicine.

8.
Nutrients ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732519

RESUMO

Metabolic syndrome (MetS) is a cluster of risk factors for cardiovascular diseases (CVDs) that has become a global public health problem. Puerarin (PUE), the principal active compound of Pueraria lobata, has the effects of regulating glucose and lipid metabolism and protecting against cardiovascular damage. This study aimed to investigate whether dietary supplementation with PUE could ameliorate MetS and its associated cardiovascular damage. Rats were randomly divided into three groups: the normal diet group (NC), the high-fat/high-sucrose diet group (HFHS), and the HFHS plus PUE diet group (HFHS-PUE). The results showed that PUE-supplemented rats exhibited enhanced glucose tolerance, improved lipid parameters, and reduced blood pressure compared to those on the HFHS diet alone. Additionally, PUE reversed the HFHS-induced elevations in the atherogenic index (AI) and the activities of serum lactate dehydrogenase (LDH) and creatine kinase (CK). Ultrasonic evaluations indicated that PUE significantly ameliorated cardiac dysfunction and arterial stiffness. Histopathological assessments further confirmed that PUE significantly mitigated cardiac remodeling, arterial remodeling, and neuronal damage in the brain. Moreover, PUE lowered systemic inflammatory indices including C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and systemic immune-inflammation index (SII). In conclusion, dietary supplementation with PUE effectively moderated metabolic disorders, attenuated systemic inflammation, and minimized cardiovascular damage in rats with MetS induced by an HFHS diet. These results provide novel insights into the potential benefits of dietary PUE supplementation for the prevention and management of MetS and its related CVDs.


Assuntos
Doenças Cardiovasculares , Dieta Hiperlipídica , Isoflavonas , Síndrome Metabólica , Animais , Síndrome Metabólica/etiologia , Síndrome Metabólica/tratamento farmacológico , Isoflavonas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Masculino , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/etiologia , Ratos , Suplementos Nutricionais , Ratos Sprague-Dawley , Pressão Sanguínea/efeitos dos fármacos , Glicemia/metabolismo , Sacarose Alimentar/efeitos adversos , Rigidez Vascular/efeitos dos fármacos , Modelos Animais de Doenças , Lipídeos/sangue , Pueraria/química
9.
J Microbiol Biotechnol ; 34(6): 1270-1275, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38754995

RESUMO

Human gut bacterium Dorea sp. MRG-IFC3 is unique in that it is capable of metabolizing puerarin, an isoflavone C-glycoside, whereas it shows broad substrate glycosidase activity for the various flavonoid O-glycosides. To address the question on the substrate specificity, as well as biochemical characteristics, cell-free biotransformation of flavonoid glycosides was performed under various conditions. The results showed that there are two different enzyme systems responsible for the metabolism of flavonoid C-glycosides and O-glycosides in the MRG-IFC3 strain. The system responsible for the conversion of puerarin was inducible and comprised of two enzymes. One enzyme oxidizes puerarin to 3"-oxo-puerarin and the other enzyme converts 3"-oxo-puearin to daidzein. The second enzyme was only active toward 3"-oxo-puerarin. The activity of puerarin conversion to daidzein was enhanced in the presence of Mn2+ and NAD+. It was concluded that the puerarin C-deglycosylation by Dorea sp. MRG-IFC3 possibly adopts the same biochemical mechanism as the strain PUE, a species of Dorea longicatena.


Assuntos
Biotransformação , Flavonoides , Glicosídeos , Isoflavonas , Isoflavonas/metabolismo , Humanos , Flavonoides/metabolismo , Flavonoides/química , Glicosídeos/metabolismo , Especificidade por Substrato , Microbioma Gastrointestinal
10.
Int J Mol Sci ; 25(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38791314

RESUMO

Obesity is associated with alterations in lipid metabolism and gut microbiota dysbiosis. This study investigated the effects of puerarin, a bioactive isoflavone, on lipid metabolism disorders and gut microbiota in high-fat diet (HFD)-induced obese mice. Supplementation with puerarin reduced plasma alanine aminotransferase, liver triglyceride, liver free fatty acid (FFA), and improved gut microbiota dysbiosis in obese mice. Puerarin's beneficial metabolic effects were attenuated when farnesoid X receptor (FXR) was antagonized, suggesting FXR-mediated mechanisms. In hepatocytes, puerarin ameliorated high FFA-induced sterol regulatory element-binding protein (SREBP) 1 signaling, inflammation, and mitochondrial dysfunction in an FXR-dependent manner. In obese mice, puerarin reduced liver damage, regulated hepatic lipogenesis, decreased inflammation, improved mitochondrial function, and modulated mitophagy and ubiquitin-proteasome pathways, but was less effective in FXR knockout mice. Puerarin upregulated hepatic expression of FXR, bile salt export pump (BSEP), and downregulated cytochrome P450 7A1 (CYP7A1) and sodium taurocholate transporter (NTCP), indicating modulation of bile acid synthesis and transport. Puerarin also restored gut microbial diversity, the Firmicutes/Bacteroidetes ratio, and the abundance of Clostridium celatum and Akkermansia muciniphila. This study demonstrates that puerarin effectively ameliorates metabolic disturbances and gut microbiota dysbiosis in obese mice, predominantly through FXR-dependent pathways. These findings underscore puerarin's potential as a therapeutic agent for managing obesity and enhancing gut health, highlighting its dual role in improving metabolic functions and modulating microbial communities.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Isoflavonas , Fígado , Obesidade , Receptores Citoplasmáticos e Nucleares , Animais , Isoflavonas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Receptores Citoplasmáticos e Nucleares/metabolismo , Camundongos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Disbiose , Camundongos Obesos , Camundongos Endogâmicos C57BL , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Colesterol 7-alfa-Hidroxilase/genética , Camundongos Knockout , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores/metabolismo , Simportadores/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Akkermansia
11.
J Cell Mol Med ; 28(10): e18239, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774996

RESUMO

The occurrence and development of diabetic vascular diseases are closely linked to inflammation-induced endothelial dysfunction. Puerarin (Pue), the primary component of Pueraria lobata, possesses potent anti-inflammatory properties. However, its vasoprotective role remains elusive. Therefore, we investigated whether Pue can effectively protect against vascular damage induced by diabetes. In the study, Pue ameliorated lipopolysaccharide-adenosine triphosphate (LPS-ATP) or HG-primed cytotoxicity and apoptosis, while inhibited reactive oxygen species (ROS)-mediated NLR family pyrin domain containing 3 (NLRP3) inflammasome in HUVECs, as evidenced by significantly decreased ROS level, NOX4, Caspase-1 activity and expression of NLRP3, GSDMD, cleaved caspase-1, IL-1ß and IL-18. Meanwhile, ROS inducer CoCI2 efficiently weakened the effects of Pue against LPS-ATP-primed pyroptosis. In addition, NLRP3 knockdown notably enhanced Pue's ability to suppress pyroptosis in LPS-ATP-primed HUVECs, whereas overexpression of NLRP3 reversed the inhibitory effects of Pue. Furthermore, Pue inhibited the expression of ROS and NLRP3 inflammasome-associated proteins on the aorta in type 2 diabetes mellitus rats. Our findings indicated that Pue might ameliorate LPS-ATP or HG-primed damage in HUVECs by inactivating the ROS-NLRP3 signalling pathway.


Assuntos
Trifosfato de Adenosina , Células Endoteliais da Veia Umbilical Humana , Inflamassomos , Isoflavonas , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio , Transdução de Sinais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Humanos , Animais , Transdução de Sinais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Ratos , Masculino , Trifosfato de Adenosina/metabolismo , Inflamassomos/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Piroptose/efeitos dos fármacos , Ratos Sprague-Dawley , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Glucose/metabolismo , Apoptose/efeitos dos fármacos
12.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791264

RESUMO

Flavonoids, a variety of plant secondary metabolites, are known for their diverse biological activities. Isoflavones are a subgroup of flavonoids that have gained attention for their potential health benefits. Puerarin is one of the bioactive isoflavones found in the Kudzu root and Pueraria genus, which is widely used in alternative Chinese medicine, and has been found to be effective in treating chronic conditions like cardiovascular diseases, liver diseases, gastric diseases, respiratory diseases, diabetes, Alzheimer's disease, and cancer. Puerarin has been extensively researched and used in both scientific and clinical studies over the past few years. The purpose of this review is to provide an up-to-date exploration of puerarin biosynthesis, the most common extraction methods, analytical techniques, and biological effects, which have the potential to provide a new perspective for medical and pharmaceutical research and development.


Assuntos
Isoflavonas , Isoflavonas/biossíntese , Isoflavonas/química , Isoflavonas/isolamento & purificação , Humanos , Pueraria/química , Flavonoides/biossíntese , Animais
13.
Artigo em Inglês | MEDLINE | ID: mdl-38783542

RESUMO

Puerarin (Pue) has significant antioxidant and anti-inflammatory properties. This work was designed to clarify and investigate the potential mechanisms of Pue in atherosclerosis (AS) progression. In vivo, acrolein (Acr) was inhaled through drinking water to construct AS model. In vitro, CCK-8 assay and lactate dehydrogenase (LDH) assay kit were used to detect cell viability. Apoptosis was detected by flow cytometry. The content of malondialdehyde (MDA) was determined by commercial kit, the level of inflammatory factors was detected by ELISA, and proteins were determined by western blot. Pue administration could effectively reduce blood lipid level in Acr-fed mice. Pue suppressed oxidative stress, the formation of atherosclerotic plaques, and the process of aortic histological changes. Pue pretreatment decreased MDA in HUVECs and maintained the activity of antioxidant enzymes. Pue upregulated SIRT1/Nrf2 cascade in HUVECs. Pue increased MYH9 and inhibited NLRP3 inflammasome-related proteins, and the inhibition of MYH9 significantly impaired Pue-induced Nrf2 activation. Moreover, HUVEC cytotoxicity and apoptosis are alleviated by Pue, in addition to NLRP3-mediated pyroptosis in HUVECs induced by Acr. MYH9 inhibitors effectively suppressed the pyroptosis induced by Acr and prevented injury to HUVECs. In addition, Pue promoted SIRT1/Nrf2 cascade activation in HUVECs. Pue may alleviate Acr-induced AS by activating the MYH9-mediated SIRT1/Nrf2 cascade to inhibit inflammasome activation.

14.
Cell Biochem Biophys ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753248

RESUMO

Puerarin (Pue), a flavonoid compound, possesses cytoprotective effects and LPS has been reported to induce renal inflammatory injury in bovine. However, whether Pue inhibits lipopolysaccharide (LPS)-induced inflammatory damage of bovine kidney cells remains unknown. Based on an in vitro model with Madin-Darby bovine kidney (MDBK) cell line, it has found that Pue attenuated LPS-induced damage of MDBK cells, as evidenced by cell viability and lactic dehydrogenase (LDH) release rescued by Pue (P < 0.05). Additionally, the real-time quantitative PCR (qPCR) and enzyme linked immunosorbent assay (ELISA) showed that LPS elevated the levels of pro-inflammatory factors interleukin (IL)-1ß, IL-8 and tumor necrosis factor (TNF)-α, which was reversed by pretreatment of Pue (P < 0.05). Besides, Pue reduced the expression of Toll like receptor 4 (TLR4) and phosphorylated nuclear factor kappa B (p-NF-κB) of LPS-exposed MDBK cells (P < 0.05). Collectively, these results showed that Pue suppresses LPS-evoked inflammatory damage of bovine kidney cells, suggesting Pue a potential compound for intervention of bovine inflammation.

15.
Curr Med Imaging ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38798226

RESUMO

OBJECTIVE: This study aimed to investigate the impact of puerarin early intervention on growth parameters and Hepatic Fat Signal Fraction (HFF) quantification in Intrauterine Growth Restricted(IUGR)rats through Proton Magnetic resonance spectroscopy (1H-MRS). METHODS: Pregnant rats were divided into three groups: control, IUGR with puerarin treatment, and IUGR without treatment. The treatment and nontreatment groups were received a low-protein diet during pregnancy, while the control group received a normal diet. After birth, pups in the treatment group received a unilateral intraperitoneal injection of 50 mg/kg/d puerarin. Male rats were evaluated at 3,8 and 12 weeks, including measurements of weight, body length and waist circumference and body mass index (BMI). Conventional magnetic resonance imaging and 1HMRS were conducted using a 3.0 T whole-body MR scanner. RESULTS: Newborn pups in the treatment and non-treatment groups showed significantly lower body weight, BMI, and body length at 3 weeks compared to the control group. However, there were no significant differences in HFF and waist circumference between the three groups at 3 weeks. At 8 and 12 weeks post-delivery, significant differences in body weight, BMI, waist circumference were observed in newborn pups of IUGR non-treatment rats compared to the control group. In contrast, there were no significant differences in body weight, BMI, waist circumference between the treatment group and the control group at 8 and 12 weeks. Moreover, the treatment group exhibited notably higher HFF compared to the control group at both time points. At 12 weeks post-birth, a significant difference in HFF was observed between the IUGR non-treatment and treatment groups, although no significant difference was found at 8 weeks. CONCLUSION: Early intervention with puerarin following birth has a significant impact on liver fat content and may potentially reduce adult obesity among IUGR rats.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38809293

RESUMO

Ovarian cancer (OC) is a common malignancies of the female genitalia. P. montana var. lobata (Willd.), a herb with anti-tumor effects, is widely used in the clinical treatment of ovarian cancer (OC), but the ingredients and molecular mechanism of action remains to be explored. In this study, we extracted the main active ingredients of P. montana var. lobata (Willd.) from the TCMSP database, and predicted its potential targets of action against OC from the DisGeNET and GeneCards databases. Protein-protein interaction (PPI) was constructed using the STRING database, while pathway enrichment analyses were performed using the DAVID database. Next, we generated an Ingredient-Target-Pathway network using Cytoscape 3.7.2, then processed the key targets of action and main active ingredients for molecular docking. The results showed that seven active ingredients of P montana var. lobata (Willd.) were associated with treating for OC, namely beta-sitosterol, coumestrol, daidzein, formononetin, genistein, puerarin and scoparone, two important targets Casp3 and Jun, and signaling pathways of P. montana var. lobata (Willd.) against the progression of OC. TUNEL staining, enzyme-linked immunosorbent assay (ELISA), and Western blot assays, the pharmacodynamic effect of puerarin in the treatment of OC and the major targets were verified. Animal experiment demonstrated that application of puerarin at different times of modeling not only upregulated expression of Casp3, Smac, and c-jun proteins, but also promoted apoptosis in tumor cells, hence inhibiting progression of OC. This study demonstrates that P. montana var. lobata (Willd.) can thereby induce apoptosis in tumor cells and inhibit malignant progression through activating expression of Casp3, smac, and c-jun proteins to regulate related apoptosis pathways, as validated by network pharmacology predictions and animal experiments, and can be verifed by large-scale clinical trials in the future. This study also provides theoretical support and new research perspectives for this disease.

17.
Mol Neurobiol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780722

RESUMO

Plants and their derived phytochemicals have a long history of treating a wide range of illnesses for several decades. They are believed to be the origin of a diverse array of medicinal compounds. One of the compounds found in kudzu root is puerarin, a isoflavone glycoside commonly used as an alternative medicine to treat various diseases. From a biological perspective, puerarin can be described as a white needle crystal with the chemical name of 7-hydroxy-3-(4-hydroxyphenyl)-1-benzopyran-4-one-8-D-glucopyranoside. Besides, puerarin is sparingly soluble in water and produces no color or light yellow solution. Multiple experimental and clinical studies have confirmed the significant therapeutic effects of puerarin. These effects span a wide range of pharmacological effects, including neuroprotection, hepatoprotection, cardioprotection, immunomodulation, anticancer properties, anti-diabetic properties, anti-osteoporosis properties, and more. Puerarin achieves these effects by interacting with various cellular and molecular pathways, such as MAPK, AMPK, NF-κB, mTOR, ß-catenin, and PKB/Akt, as well as different receptors, enzymes, and growth factors. The current review highlights the molecular mechanism of puerarin as a neuroprotective agent in the treatment of various neurodegenerative and neurological diseases. Extensive cellular, animal, and clinical research has provided valuable insights into its effectiveness in conditions such as Alzheimer's disease, Parkinson's disease, epilepsy, cerebral stroke, depression, and more.

18.
J Pharm Sci ; 113(7): 1823-1835, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38608726

RESUMO

Osteoporosis is a disease that causes low bone mass and deterioration of bone microarchitecture. Puerarin is a natural isoflavone compound that has been shown to possess anti-inflammatory, antioxidant and ameliorative effects on osteoporosis with less adverse reactions. However, its fast metabolism and low oral bioavailability limit its application. This study aimed to prepare d-α-tocopherol polyethylene glycol 1000 succinate (TPGS)- modified Puerarin Long Circulating Liposomes (TPGS-Puerarin-liposomes), in order to improve the oral bioavailability of puerarin, before evaluation of its pharmacological activity in vitro and in vivo. We employed film dispersion method to develop TPGS-Puerarin-liposomes before appropriate characterizations. Afterwards, we utilized in vivo imaging, pharmacokinetic analysis and in vitro drug release testing to further evaluate the in vivo and in vitro delivery efficiency. In addition, we established a castrated osteoporosis rat model to observe the changes in femur tissue structure and bone micromorphology via hematoxylin-eosin (HE) staining and Micro Computed Tomography (Micro CT). Besides, levels of oxidative stress and inflammatory indicators, as well as expression of wnt/ß-catenin pathway-related proteins were detected. In terms of physiochemical properties, the respective mean particle size (PS) and zeta potential (ZP) of TPGS-Puerarin-liposomes were 76.63±0.59 nm and -25.54±0.11 mV. The liposomal formulation exhibited encapsulation efficiency (EE) of 95.08±0.25% and drug loading (DL) of 7.84±0.07%, along with excellent storage stability. Compared with free drugs, the TPGS-Puerarin-liposomes demonstrated a sustained release effect and could increase blood concentration of puerarin in rats, thereby significantly improving its bioavailability. Also, in vivo studies have confirmed potential of the liposomes to promote bone tissue targeting and accumulation of puerarin, coupled with significant improvement of the osteoporotic status. Besides, the liposomes could also reduce levels of oxidative stress and inflammatory factors in serum and bone tissue. Additionally, we discovered that TPGS-Puerarin-liposomes increased Wnt, ß-catenin and T-cell factor (TCF) expressions at protein level in the wnt/ß-catenin signaling pathway. This study has demonstrated the potential of TPGS-Puerarin-liposomes for treatment of osteoporosis.


Assuntos
Isoflavonas , Lipossomos , Osteoporose , Ratos Sprague-Dawley , Vitamina E , Animais , Isoflavonas/administração & dosagem , Isoflavonas/farmacocinética , Isoflavonas/farmacologia , Isoflavonas/química , Osteoporose/tratamento farmacológico , Ratos , Vitamina E/química , Vitamina E/administração & dosagem , Masculino , Disponibilidade Biológica , Liberação Controlada de Fármacos , Estresse Oxidativo/efeitos dos fármacos , Polietilenoglicóis/química , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Antioxidantes/farmacocinética , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Administração Oral , Microtomografia por Raio-X
19.
J Agric Food Chem ; 72(15): 8817-8822, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578981

RESUMO

Radix Puerariae is a traditional Chinese medicinal material with a rich history of use in East and Southeast Asia. Puerarin, a unique component of the Pueraria genus, serves as a quality control marker for herbal medicines like Pueraria lobata and Pueraria thomsonii in China, displaying diverse pharmacological properties. This study developed puerarin colloidal gold immunoassay dipsticks utilizing an anti-puerarin monoclonal antibody, resulting in a fast and sensitive detection method with a limit of 500-1000 ng·mL-1. Evaluation using tap water-extracted P. lobata and P. thomsonii samples showed consistent results compared to LC-MS analysis. Cross-reactivity assessments of puerarin analogs revealed minimal interference, affirming the dipstick's reliability for distinguishing between the two species.


Assuntos
Isoflavonas , Plantas Medicinais , Pueraria , Reprodutibilidade dos Testes , Isoflavonas/análise , Controle de Qualidade
20.
Eur J Pharmacol ; 974: 176621, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38679118

RESUMO

BACKGROUND AND AIM: Necrosis of random-pattern flaps restricts their application in clinical practice. Puerarin has come into focus due to its promising therapeutic effects in ischemic diseases. Here, we employed Puerarin and investigated its role and potential mechanisms in flap survival. EXPERIMENTAL PROCEDURE: The effect of Puerarin on the viability of human umbilical vein endothelial cells (HUVECs) was assessed by CCK-8, EdU staining, migration, and scratch assays. Survival area measurement and laser Doppler blood flow (LDBF) were utilized to assess the viability of ischemic injury flaps. Levels of molecules related to oxidative stress, pyroptosis, autophagy, transcription factor EB (TFEB), and the AMPK-TRPML1-Calcineurin signaling pathway were detected using western blotting, immunofluorescence, dihydroethidium (DHE) staining, RT-qPCR and Elisa. KEY RESULTS: The findings demonstrated that Puerarin enhanced the survivability of ischemic flaps. Autophagy, oxidative stress, and pyroptosis were implicated in the ability of Puerarin in improving flap survival. Increased autophagic flux and augmented tolerance to oxidative stress contribute to Puerarin's suppression of pyroptosis. Additionally, Puerarin modulated the activity of TFEB through the AMPK-TRPML1-Calcineurin signaling pathway, thereby enhancing autophagic flux. CONCLUSIONS AND IMPLICATIONS: Puerarin promoted flap survival from ischemic injury through upregulation of TFEB-mediated autophagy and inhibition of oxidative stress. Our findings offered valuable support for the clinical application of Puerarin in the treatment of ischemic diseases, including random-pattern flaps.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Células Endoteliais da Veia Umbilical Humana , Isquemia , Isoflavonas , Piroptose , Espécies Reativas de Oxigênio , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Autofagia/efeitos dos fármacos , Humanos , Piroptose/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Retalhos Cirúrgicos/irrigação sanguínea , Camundongos , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/irrigação sanguínea , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...