Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 694
Filtrar
1.
Plants (Basel) ; 13(19)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39409572

RESUMO

The bread wheat cultivar (Triticum aestivum L. cv. Sagittario) as a parental line and its mutant, drought-tolerant lines (Mutant lines 4 and 5) were subjected to polyethylene glycol (PEG)-induced drought. Drought stress resulted in decreased chlorophyll levels and the accumulation of proline and TBARS, despite increases in activities of catalase, peroxidase, and superoxide dismutase enzymes. Transcription of the genes encoding these enzymes and delta-1-pyrroline 5-carboxylase synthetase was induced by drought. 2-DE gel electrophoresis analysis identified differentially expressed proteins (DEPs) in the mutant lines, which are distinguished by "chloroplast", "mitochondrion", "pyruvate dehydrogenase complex", and "homeostatic process" terms. The drought tolerance of the mutant lines might be attributed to improved photosynthesis, efficient ATP synthesis, and modified antioxidant capacity. In addition to proteomics data, the drought tolerance of wheat genotypes might also be assessed by chlorophyll content and TaPOX gene expression. To our knowledge, this is the first proteomic analysis of gamma-induced mutants of bread wheat. These findings are expected to be utilized in plant breeding studies.

2.
BMC Pediatr ; 24(1): 603, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342148

RESUMO

BACKGROUND: As a rare mitochondrial disorder, the pyruvate dehydrogenase complex (PDC) deficiency is a rare inborn disease characterized with glucose metabolism defects, which leads to neurological dysfunction, serum lactic acid buildup and a resultant trend of metabolic acidosis. Although the ketogenic diet (KD) is the first-line treatment for PDC deficiency, there is currently no widely accepted consensus on specific implementation of KD for this condition. Due to the combined effect of pre-existing hyperlactacidemia and KD-induced ketoacidosis that can further exacerbate metabolic disturbances, maintaining metabolic homeostasis should be prioritized during the implementation of KD. CASE PRESENTATION: Herein, the authors present a 6-year-old boy with lactic acidosis, ataxia, hypotonia and neuromotor development retardation. The KD was started after the patient was diagnosed with PDC deficiency based on genetic testing. The initiation with classic KD resulted in severe non-diabetic ketoacidosis with elevated anion gap, which was promptly alleviated by dextrose supplementation and dietary modification to a less-restrictive KD. Long-term supervision demonstrated the efficacy of a modified KD in improving both clinical course and metabolic acidosis of the patient. CONCLUSIONS: This rare case adds to the limited evidence of KD application in PDC deficiency, and provides valuable insights into the importance of reasonably lowering the ketogenic ratio of KD at the start of treatment to reduce the risk of metabolic acidosis.


Assuntos
Dieta Cetogênica , Cetose , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Humanos , Dieta Cetogênica/efeitos adversos , Doença da Deficiência do Complexo de Piruvato Desidrogenase/dietoterapia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/etiologia , Masculino , Criança , Cetose/etiologia , Acidose Láctica/etiologia , Acidose Láctica/dietoterapia
4.
Alzheimers Res Ther ; 16(1): 197, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39238036

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common form of dementia. Although drugs focusing on reducing amyloid ß slow progression, they fail to improve cognitive function. Deficits in glucose metabolism are reflected in FDG-PET and parallel the neurodegeneration and synaptic marker loss closely preceding cognitive decline, but the role of metabolic deficits as a cause or consequence of neurodegeneration is unclear. Pyruvate dehydrogenase (PDH) is lost in AD and an important enzyme connecting glycolysis and the tricarboxylic acid (TCA) cycle by converting pyruvate into acetyl-CoA. It is negatively regulated by pyruvate dehydrogenase kinase (PDHK) through phosphorylation. METHODS: In the present study, we assessed the in vitro/ in vivo pharmacological profile of the novel PDHK inhibitor that we discovered, Compound A. We also assessed the effects of Compound A on AD-related phenotypes including neuron loss and cognitive impairment using 5xFAD model mice. RESULTS: Compound A inhibited human PDHK1, 2 and 3 but had no inhibitory activity on PDHK4. In primary neurons, Compound A enhanced pyruvate and lactate utilization, but did not change glucose levels. In contrast, in primary astrocytes, Compound A enhanced pyruvate and glucose utilization and enhanced lactate production. In an efficacy study using 5xFAD mice, Compound A ameliorated the cognitive dysfunction in the novel object recognition test and Morris water maze. Moreover, Compound A prevented neuron loss in the hippocampus and cerebral cortex of 5xFAD without affecting amyloid ß deposits. CONCLUSIONS: These results suggest ameliorating metabolic deficits by activating PDH by Compound A can limit neurodegeneration and is a promising therapeutic strategy for treating AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Modelos Animais de Doenças , Camundongos Transgênicos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Humanos , Camundongos , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Masculino , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
5.
Animals (Basel) ; 14(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39199957

RESUMO

The aim of this study was to investigate the effects of hypoxia-induced phenotype, glucose metabolism, ROS levels, and the PDK1-mediated regulation of TGF-ß/Smad signaling in yellow cattles, yaks, and those overexpressing PDK1 PASMCs using growth curves, flow cytometry, scratch experiments, glucose and lactic acid assays, RT-qPCR, and Western blotting. The results showed that hypoxia significantly promoted proliferation, migration, antiapoptosis, ROS levels, glucose consumption, and lactate production in yellow cattle PASMCs (p < 0.05), and the cells were dedifferentiated from the contractile phenotype; conversely, hypoxia had no significant effect on yak PASMCs (p > 0.05). PDK1 overexpression significantly promoted proliferation, antiapoptosis, glucose consumption, and lactate production in yak PASMCs under normoxia and hypoxia (p < 0.05), decreased their migration levels under hypoxia (p < 0.05), and dedifferentiated the contractile phenotype of the cells. Overexpression of PDK1 in yak PASMCs is detrimental to their adaptation to hypoxic environments. Yak PASMCs adapted to the effects of hypoxia on lung tissue by downregulating the expression of genes related to the PDK1 and TGF-ß/Smad signaling pathways. Taken together, the regulation of PDK1-mediated TGF-ß/Smad signaling may be involved in the process of yaks' adaptation to the hypoxic environment of the plateau, reflecting the good adaptive ability of yaks. The present study provides basic information to further elucidate the mechanism of PDK1-mediated TGF-ß/Smad signaling induced by hypoxia in the lungs of yaks, as well as target genes for the treatment of plateau diseases in humans and animals.

6.
J Neurochem ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193789

RESUMO

We have previously reported a failure of recovery of synaptic function in the CA1 region of acute hippocampal slices from mice with a conditional neuronal knockout (KO) of GLT-1 (EAAT2, Slc1A2) driven by synapsin-Cre (synGLT-1 KO). The failure of recovery of synaptic function is due to excitotoxic injury. We hypothesized that changes in mitochondrial metabolism contribute to the heightened vulnerability to excitotoxicity in the synGLT-1 KO mice. We found impaired flux of carbon from 13C-glucose into the tricarboxylic acid cycle in synGLT-1 KO cortical and hippocampal slices compared with wild-type (WT) slices. In addition, we found downregulation of the neuronal glucose transporter GLUT3 in both genotypes. Flux of carbon from [1,2-13C]acetate, thought to be astrocyte-specific, was increased in the synGLT-KO hippocampal slices but not cortical slices. Glycogen stores, predominantly localized to astrocytes, are rapidly depleted in slices after cutting, and are replenished during ex vivo incubation. In the synGLT-1 KO, replenishment of glycogen stores during ex vivo incubation was compromised. These results suggest both neuronal and astrocytic metabolic perturbations in the synGLT-1 KO slices. Supplementing incubation medium during recovery with 20 mM D-glucose normalized glycogen replenishment but had no effect on recovery of synaptic function. In contrast, 20 mM non-metabolizable L-glucose substantially improved recovery of synaptic function, suggesting that D-glucose metabolism contributes to the excitotoxic injury in the synGLT-1 KO slices. L-lactate substitution for D-glucose did not promote recovery of synaptic function, implicating mitochondrial metabolism. Consistent with this hypothesis, phosphorylation of pyruvate dehydrogenase, which decreases enzyme activity, was increased in WT slices during the recovery period, but not in synGLT-1 KO slices. Since metabolism of glucose by the mitochondrial electron transport chain is associated with superoxide production, we tested the effect of drugs that scavenge and prevent superoxide production. The superoxide dismutase/catalase mimic EUK-134 conferred complete protection and full recovery of synaptic function. A site-specific inhibitor of complex III superoxide production, S3QEL-2, was also protective, but inhibitors of NADPH oxidase were not. In summary, we find that the failure of recovery of synaptic function in hippocampal slices from the synGLT-1 KO mouse, previously shown to be due to excitotoxic injury, is caused by production of superoxide by mitochondrial metabolism.

7.
Fundam Res ; 4(4): 820-828, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39161415

RESUMO

The activation of spinal astrocytes accounts for opioid-induced hyperalgesia (OIH), but the underlying mechanisms remain elusive. The presence of astrocyte-neuron lactate shuttle (ANLS) makes astrocytes necessary for some neural function and communication. The aim of this study was to explore the role of ANLS in the occurrence and maintenance of OIH. After 7 days consecutive morphine injection, a mice OIH model was established and astrocytic pyruvate dehydrogenase kinase 4 (PDK4), phosphorylated pyruvate dehydrogenase (p-PDH) and accumulation of L-lactate was elevated in the spinal dorsal horn. Intrathecally administration of inhibitors of PDK, lactate dehydrogenase 5 and monocarboxylate transporters to decrease the supply of L-lactate on neurons was observed to attenuate hypersensitivity behaviors induced by repeated morphine administration and downregulate the expression of markers of central sensitization in the spinal dorsal horns. The astrocyte line and the neuronal line were co-cultured to investigate the mechanisms in vitro. In this study, we demonstrated that morphine-induced hyperalgesia was sustained by lactate overload consequent upon aberrant function of spinal ANLS. In this process, PDK-p-PDH-lactate axis serves a pivotal role, which might therefore be a new target to improve long-term opioid treatment strategy in clinical practice.

8.
Cell Mol Life Sci ; 81(1): 340, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120696

RESUMO

Copper is a trace element essential for numerous biological activities, whereas the mitochondria serve as both major sites of intracellular copper utilization and copper reservoir. Here, we investigated the impact of mitochondrial copper overload on the tricarboxylic acid cycle, renal senescence and fibrosis. We found that copper ion levels are significantly elevated in the mitochondria in fibrotic kidney tissues, which are accompanied by reduced pyruvate dehydrogenase (PDH) activity, mitochondrial dysfunction, cellular senescence and renal fibrosis. Conversely, lowering mitochondrial copper levels effectively restore PDH enzyme activity, improve mitochondrial function, mitigate cellular senescence and renal fibrosis. Mechanically, we found that mitochondrial copper could bind directly to lipoylated dihydrolipoamide acetyltransferase (DLAT), the E2 component of the PDH complex, thereby changing the interaction between the subunits of lipoylated DLAT, inducing lipoylated DLAT protein dimerization, and ultimately inhibiting PDH enzyme activity. Collectively, our study indicates that mitochondrial copper overload could inhibit PDH activity, subsequently leading to mitochondrial dysfunction, cellular senescence and renal fibrosis. Reducing mitochondrial copper overload might therefore serve as a strategy to rescue renal fibrosis.


Assuntos
Senescência Celular , Cobre , Fibrose , Rim , Mitocôndrias , Complexo Piruvato Desidrogenase , Cobre/metabolismo , Mitocôndrias/metabolismo , Fibrose/metabolismo , Animais , Complexo Piruvato Desidrogenase/metabolismo , Rim/metabolismo , Rim/patologia , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Ciclo do Ácido Cítrico
9.
Cell Mol Life Sci ; 81(1): 324, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080028

RESUMO

Polycystic ovary syndrome (PCOS) is a complex common endocrine disorder affecting women of reproductive age. Ovulatory dysfunction is recognized as a primary infertile factor, however, even when ovulation is medically induced and restored, PCOS patients continue to experience reduced cumulative pregnancy rates and a higher spontaneous miscarriage rate. Hyperandrogenism, a hallmark feature of PCOS, affects ovarian folliculogenesis, endometrial receptivity, and the establishment and maintenance of pregnancy. Decidualization denotes the transformation that the stromal compart of the endometrium must undergo to accommodate pregnancy, driven by the rising progesterone levels and local cAMP production. However, studies on the impact of hyperandrogenism on decidualization are limited. In this study, we observed that primary endometrial stromal cells from women with PCOS exhibit abnormal responses to progesterone during in vitro decidualization. A high concentration of testosterone inhibits human endometrial stromal cells (HESCs) decidualization. RNA-Seq analysis demonstrated that pyruvate dehydrogenase kinase 4 (PDK4) expression was significantly lower in the endometrium of PCOS patients with hyperandrogenism compared to those without hyperandrogenism. We also characterized that the expression of PDK4 is elevated in the endometrium stroma at the mid-secretory phase. Artificial decidualization could enhance PDK4 expression, while downregulation of PDK4 leads to abnormal decidualization both in vivo and in vitro. Mechanistically, testosterone excess inhibits IGFBP1 and PRL expression, followed by phosphorylating of AMPK that stimulates PDK4 expression. Based on co-immunoprecipitation analysis, we observed an interaction between SIRT1 and PDK4, promoting glycolysis to facilitate decidualization. Restrain of AR activation resumes the AMPK/SIRT1/PDK4 pathway suppressed by testosterone excess, indicating that testosterone primarily acts on decidualization through AR stimulation. Androgen excess in the endometrium inhibits decidualization by disrupting the AMPK/SIRT1/PDK4 signaling pathway. These data demonstrate the critical roles of endometrial PDK4 in regulating decidualization and provide valuable information for understanding the underlying mechanism during decidualization.


Assuntos
Proteínas Quinases Ativadas por AMP , Endométrio , Síndrome do Ovário Policístico , Sirtuína 1 , Células Estromais , Humanos , Feminino , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Células Estromais/metabolismo , Células Estromais/patologia , Células Estromais/efeitos dos fármacos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Endométrio/metabolismo , Endométrio/patologia , Endométrio/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Hiperandrogenismo/metabolismo , Hiperandrogenismo/patologia , Decídua/metabolismo , Decídua/patologia , Testosterona/metabolismo , Testosterona/farmacologia , Androgênios/farmacologia , Androgênios/metabolismo , Progesterona/metabolismo , Progesterona/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Transdução de Sinais/efeitos dos fármacos
10.
Mol Genet Metab ; 143(1-2): 108540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39067348

RESUMO

The pyruvate dehydrogenase complex (PDC) is remarkable for its size and structure as well as for its physiological and pathological importance. Its canonical location is in the mitochondrial matrix, where it primes the tricarboxylic acid (TCA) cycle by decarboxylating glycolytically-derived pyruvate to acetyl-CoA. Less well appreciated is its role in helping to shape the epigenetic landscape, from early development throughout mammalian life by its ability to "moonlight" in the nucleus, with major repercussions for human healthspan and lifespan. The PDC's influence on two crucial modifiers of the epigenome, acetylation and lactylation, is the focus of this brief review.


Assuntos
Epigênese Genética , Complexo Piruvato Desidrogenase , Humanos , Complexo Piruvato Desidrogenase/metabolismo , Complexo Piruvato Desidrogenase/genética , Acetilação , Animais , Processamento de Proteína Pós-Traducional , Acetilcoenzima A/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/enzimologia , Lipoilação
11.
Neurochem Int ; 178: 105800, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964718

RESUMO

Hepatic encephalopathy (HE) is a neurological complication arising from acute liver failure with poor prognosis and high mortality; the underlying cellular mechanisms are still wanting. We previously found that neuronal death caused by mitochondrial dysfunction in rostral ventrolateral medulla (RVLM), which leads to baroreflex dysregulation, is related to high fatality in an animal model of HE. Lipocalin-2 (Lcn2) is a secreted glycoprotein mainly released by astrocytes in the brain. We noted the presence of Lcn2 receptor (Lcn2R) in RVLM neurons and a parallel increase of Lcn2 gene in astrocytes purified from RVLM during experimental HE. Therefore, our guiding hypothesis is that Lcn2 secreted by reactive astrocytes in RVLM may underpin high fatality during HE by eliciting bioenergetic failure-induced neuronal death in this neural substrate. In this study, we first established the role of astrocyte-secreted Lcn2 in a liver toxin model of HE induced by azoxymethane (100 µg/g, ip) in C57BL/6 mice, followed by mechanistic studies in primary astrocyte and neuron cultures prepared from postnatal day 1 mouse pups. In animal study, immunoneutralization of Lcn2 reduced apoptotic cell death in RVLM, reversed defunct baroreflex-mediated vasomotor tone and prolonged survival during experimental HE. In our primary cell culture experiments, Lcn2 produced by cultured astrocytes and released into the astrocyte-conditioned medium significantly reduced cell viability of cultured neurons. Recombinant Lcn2 protein reduced cell viability, mitochondrial ATP (mitoATP) production, and pyruvate dehydrogenase (PDH) activity but enhanced the expression of pyruvate dehydrogenase kinase (PDK) 1, PDK3 and phospho-PDHA1 (inactive PDH) through MAPK/ERK pathway in cultured neurons, with all cellular actions reversed by Lcn2R knockdown. Our results suggest that astrocyte-secreted Lcn2 upregulates PDKs through MAPK/ERK pathway, which leads to reduced PDH activity and mitoATP production; the reinforced neuronal death in RVLM is causally related to baroreflex dysregulation that underlies high fatality associated with HE.


Assuntos
Astrócitos , Morte Celular , Modelos Animais de Doenças , Encefalopatia Hepática , Lipocalina-2 , Camundongos Endogâmicos C57BL , Neurônios , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Lipocalina-2/metabolismo , Encefalopatia Hepática/metabolismo , Encefalopatia Hepática/patologia , Neurônios/metabolismo , Neurônios/patologia , Camundongos , Morte Celular/fisiologia , Masculino , Metabolismo Energético/fisiologia , Metabolismo Energético/efeitos dos fármacos , Células Cultivadas
12.
J Muscle Res Cell Motil ; 45(3): 155-169, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39080182

RESUMO

Pyruvate dehydrogenase kinase (PDK), which phosphorylates the pyruvate dehydrogenase complex, regulates glucose metabolism in skeletal muscle. PDK1, an isozyme whose expression is controlled by hypoxia-inducible factor-1α (HIF-1α), is thought to play a role in muscle adaptation to hypoxia. While transcriptional upregulation of PDK1 by HIF-1α is well characterised, mechanisms controlling proteolysis of PDK1 in skeletal muscle have not been thoroughly investigated. Proteasome inhibitor MG132 paradoxically reduced the abundance of PDK1 in human cancer cells and rat L6 myotubes, suggesting that MG132 might direct PDK1 towards autophagic degradation. The objectives of our current study were to determine (1) whether MG132 suppresses PDK1 levels in primary human myotubes, (2) whether chloroquine, an inhibitor of autophagy, prevents MG132-induced suppression of PDK1 in L6 myotubes, and (3) whether PYR-41, an inhibitor of ubiquitination, suppresses PDK1 in L6 myotubes. Using qPCR and/or immunoblotting, we found that despite markedly upregulating HIF-1α protein, MG132 did not alter the PDK1 expression in cultured primary human myotubes, while it suppressed both PDK1 mRNA and protein in L6 myotubes. The PDK1 levels in L6 myotubes were suppressed also during co-treatment with chloroquine and MG132. PYR-41 markedly increased the abundance of HIF-1α in primary human and L6 myotubes, while reducing the abundance of PDK1. In L6 myotubes treated with PYR-41, chloroquine increased the abundance of the epidermal growth factor receptor, but did not prevent the suppression of PDK1. Collectively, our results suggest that cultured myotubes degrade PDK1 via a pathway that cannot be inhibited by MG132, PYR-41, and/or chloroquine.


Assuntos
Fibras Musculares Esqueléticas , Piruvato Desidrogenase Quinase de Transferência de Acetil , Animais , Humanos , Ratos , Células Cultivadas , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Leupeptinas/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Ubiquitina/metabolismo
13.
Subcell Biochem ; 104: 295-381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963492

RESUMO

The present work delves into the enigmatic world of mitochondrial alpha-keto acid dehydrogenase complexes discussing their metabolic significance, enzymatic operation, moonlighting activities, and pathological relevance with links to underlying structural features. This ubiquitous family of related but diverse multienzyme complexes is involved in carbohydrate metabolism (pyruvate dehydrogenase complex), the citric acid cycle (α-ketoglutarate dehydrogenase complex), and amino acid catabolism (branched-chain α-keto acid dehydrogenase complex, α-ketoadipate dehydrogenase complex); the complexes all function at strategic points and also participate in regulation in these metabolic pathways. These systems are among the largest multienzyme complexes with at times more than 100 protein chains and weights ranging up to ~10 million Daltons. Our chapter offers a wealth of up-to-date information on these multienzyme complexes for a comprehensive understanding of their significance in health and disease.


Assuntos
Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/enzimologia , Animais , Ciclo do Ácido Cítrico/fisiologia , Complexo Cetoglutarato Desidrogenase/metabolismo , Complexo Cetoglutarato Desidrogenase/química
14.
Eur J Pharmacol ; 979: 176854, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39059568

RESUMO

Obesity-induced muscle atrophy leads to physical impairment and metabolic dysfunction, which are risky for older adults. The activity of pyruvate dehydrogenase (PDH), a critical regulator of glucose metabolism, is reduced in obesity. Additionally, PDH activator dichloroacetate (DCA) improves metabolic dysfunction. However, the effects of PDH activation on skeletal muscles in obesity remain unclear. Thus, this study aimed to evaluate the effects of PDH activation by DCA treatment on obesity-induced muscle atrophy in vitro and in vivo and elucidate the possible underlying mechanisms. Results showed that PDH activation by DCA treatment ameliorated muscle loss, decreased the cross-sectional area, and reduced grip strength in C57BL/6 mice fed a high-fat diet (HFD). Elevation of muscle atrophic factors atrogin-1 and muscle RING-finger protein-1 (MuRF-1) and autophagy factors LC3BII and p62 were abrogated by DCA treatment in palmitate-treated C2C12 myotubes and in the skeletal muscles of HFD-fed mice. Moreover, p-Akt, p-FoxO1, and p-FoxO3 protein levels were reduced and p-NF-κB p65 and p-p38 MAPK protein levels were elevated in palmitate-treated C2C12 myotubes, which were restored by DCA treatment. However, the protective effects of DCA treatment against myotube atrophy were reversed by treatment with Akt inhibitor MK2206. Taken together, our study demonstrated that PDH activation by DCA treatment can alleviate obesity-induced muscle atrophy. It may serve as a basis for developing novel strategies to prevent obesity-associated muscle loss.


Assuntos
Ácido Dicloroacético , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Atrofia Muscular , Obesidade , Animais , Ácido Dicloroacético/farmacologia , Ácido Dicloroacético/uso terapêutico , Atrofia Muscular/prevenção & controle , Atrofia Muscular/etiologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Obesidade/complicações , Obesidade/tratamento farmacológico , Camundongos , Masculino , Dieta Hiperlipídica/efeitos adversos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/metabolismo , Autofagia/efeitos dos fármacos
15.
J Neurogenet ; 38(2): 41-45, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39007626

RESUMO

Pyruvate Dehydrogenase (PDH) E2 deficiency due to Dihydrolipoamide acetyltransferase (DLAT) mutations is a very rare condition with only nine reported cases to date. We describe a 15-year-old girl with mild intellectual disability, paroxysmal dystonia and bilateral basal ganglia signal abnormalities on brain magnetic resonance imaging (MRI). Additionally, neurophysiological, imaging, metabolic and exome sequencing studies were performed. Routine metabolite testing, and GLUT1 and PRRT2 mutation analysis were negative. A repeat brain MRI revealed 'Eye-of-the-tiger-sign'. Exome sequencing identified homozygous valine to glycine alteration at amino acid position 157 in the DLAT gene. Bioinformatic and family analyses indicated that the alteration was likely pathogenic. Patient's dystonia was responsive to low-dose carbamazepine. On weaning carbamazepine, patient developed hallucinations which resolved after carbamazepine was restarted. PDH E2 deficiency due to DLAT mutation has a more benign course compared to common forms of PDH E1 deficiency due to X-linked PDHA1 mutations. All known cases of PDH E2 deficiency due to DLAT mutations share the features of episodic dystonia and intellectual disability. Our patient's dystonia and hallucinations responded well to low-dose carbamazepine.


Assuntos
Carbamazepina , Distonia , Alucinações , Humanos , Feminino , Adolescente , Distonia/genética , Distonia/tratamento farmacológico , Carbamazepina/uso terapêutico , Alucinações/genética , Alucinações/tratamento farmacológico , Mutação , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/genética , Deficiência Intelectual/genética , Deficiência Intelectual/tratamento farmacológico , Anticonvulsivantes/uso terapêutico
16.
J Proteome Res ; 23(8): 3682-3695, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39037832

RESUMO

Dental caries is a chronic oral infectious disease, and Streptococcus mutans (S. mutans) plays an important role in the formation of dental caries. Trans-cinnamaldehyde (CA) exhibits broad-spectrum antibacterial activity; however, its target and mechanism of action of CA on S. mutans needs to be further explored. In this study, it was verified that CA could inhibit the growth and biofilm formation of S. mutans. Further proteomic analysis identified 33, 55, and 78 differentially expressed proteins (DEPs) in S. mutans treated with CA for 1, 2, and 4 h, respectively. Bioinformatics analysis showed that CA interfered with carbohydrate metabolism, glycolysis, pyruvate metabolism, and the TCA cycle, as well as amino acid metabolism of S. mutans. Protein interactions suggested that pyruvate dehydrogenase (PDH) plays an important role in the antibacterial effect of CA. Moreover, the upstream and downstream pathways related to PDH were verified by various assays, and the results proved that CA not only suppressed the glucose and sucrose consumption and inhibited glucosyltransferase (GTF) and lactate dehydrogenase (LDH) activities but also decreased the ATP production. Interestingly, the protein interaction, qRT-PCR, and molecular docking analysis showed that PDH might be the target of CA to fight S. mutans. In summary, the study shows that CA interferes with the carbohydrate metabolism of bacteria by inhibiting glycolysis and the tricarboxylic acid (TCA) cycle via binding to PDH, which verifies that PDH is a potential target for the development of new drugs against S. mutans.


Assuntos
Acroleína , Metabolismo dos Carboidratos , Simulação de Acoplamento Molecular , Complexo Piruvato Desidrogenase , Streptococcus mutans , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/genética , Streptococcus mutans/enzimologia , Acroleína/farmacologia , Acroleína/análogos & derivados , Acroleína/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Complexo Piruvato Desidrogenase/metabolismo , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Antibacterianos/farmacologia , Glicólise/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteômica/métodos , Cárie Dentária/microbiologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo
17.
Mol Genet Metab Rep ; 40: 101104, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38983107

RESUMO

Several disorders of energy metabolism have been treated with exogenous ketone bodies. The benefit of this treatment is best documented in multiple acyl-CoA dehydrogenase deficiency (MADD) (MIM#231680). One might also expect ketone bodies to help in other disorders with impaired ketogenesis or in conditions that profit from a ketogenic diet. Here, we report the use of a novel preparation of dextro-ß-hydroxybutyrate (D-ßHB) salts in two cases of MADD and one case of pyruvate dehydrogenase (PDH) deficiency (MIM#312170). The two patients with MADD had previously been on a racemic mixture of D- and L­sodium hydroxybutyrate. Patient #1 found D-ßHB more palatable, and the change in formulation corrected hypernatraemia in patient #2. The patient with PDH deficiency was on a ketogenic diet but had not previously been given hydroxybutyrate. In this case, the addition of D-ßHB improved ketosis. We conclude that NHS101 is a good candidate for further clinical studies in this group of diseases of inborn errors of metabolism.

18.
Am J Cancer Res ; 14(6): 3117-3129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005672

RESUMO

Pyruvate Dehydrogenase Kinase 3 (PDK3) has emerged as a significant player in various cancer types, yet its specific impact on cancers including colon cancer remains ambiguous. Through pan-cancer analysis using TCGA data, we found that the expression of PDK3 and the composition of the immune microenvironment for different tumors were highly heterogeneous across tumors. PDK3 is highly expressed in colorectal cancer and may promote tumor proliferation by activating PI3K-AKT signaling. In addition, we found that PDK3 was able to inhibit tumor antigen presentation signals to suppress immune killing. High PDK3 expression predicts less CD8+ T cell infiltration and effector function. Moreover, inhibition of PDK3 expression bolstered CD8+ T cell-mediated cytotoxicity CD8+ T cell infiltration and activation in vivo. Notably, PDK3 was found to facilitate STAT1 activation and elevate programmed death-ligand 1 (PD-L1) expression in colon cancer cells. Importantly, PDK3 inhibition combination with PD-1 blockade significantly activates the infiltrated CD8+ T cells to suppress tumor growth and improves the survival benefit in several murine tumor models. In summary, these findings underscore PDK3's role in fueling colon cancer growth by orchestrating PI3K-AKT signaling and PD-L1 expression and dampening CD8+ T cell function.

19.
Am J Med Genet A ; : e63825, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058293

RESUMO

Pyruvate dehydrogenase complex deficiency (PDCD) is a mitochondrial disorder of carbohydrate oxidation characterized by lactic acidosis and central nervous system involvement. Knowledge of the affected metabolic pathways and clinical observations suggest that early initiation of the ketogenic diet may ameliorate the metabolic and neurologic course of the disease. We present a case in which first trimester ultrasound identified structural brain abnormalities prompting a prenatal molecular diagnosis of PDCD. Ketogenic diet, thiamine, and N-acetylcysteine were initiated in the perinatal period with good response, including sustained developmental progress. This case highlights the importance of a robust neurometabolic differential diagnosis for prenatally diagnosed structural anomalies and the use of prenatal molecular testing to facilitate rapid, genetically tailored intervention.

20.
J Hum Nutr Diet ; 37(4): 827-846, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838079

RESUMO

BACKGROUND: The ketogenic diet (KD) is a high fat, moderate protein and very low carbohydrate diet. It can be used as a medical treatment for drug-resistant epilepsy (DRE), glucose transporter 1 deficiency syndrome and pyruvate dehydrogenase deficiency. The aim of this scoping review was to map the KD literature, with a focus on epilepsy and associated metabolic conditions, to summarise the current evidence-base and identify any gaps. METHODS: This review was conducted using JBI scoping review methodological guidance and the PRISMA extension for scoping reviews reporting guidance. A comprehensive literature search was conducted in September 2021 and updated in February 2024 using MEDLINE, CINAHL, AMED, EmBASE, CAB Abstracts, Scopus and Food Science Source databases. RESULTS: The initial search yielded 2721 studies and ultimately, data were extracted from 320 studies that fulfilled inclusion criteria for the review. There were five qualitative studies, and the remainder were quantitative, including 23 randomised controlled trials (RCTs) and seven quasi-experimental studies. The USA published the highest number of KD studies followed by China, South Korea and the UK. Most studies focused on the classical KD and DRE. The studies key findings suggest that the KD is efficacious, safe and tolerable. CONCLUSIONS: There are opportunities available to expand the scope of future KD research, particularly to conduct high-quality RCTs and further qualitative research focused on the child's needs and family support to improve the effectiveness of KDs.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos , Dieta Cetogênica , Epilepsia Resistente a Medicamentos , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Humanos , Dieta Cetogênica/métodos , Doença da Deficiência do Complexo de Piruvato Desidrogenase/dietoterapia , Criança , Epilepsia Resistente a Medicamentos/dietoterapia , Erros Inatos do Metabolismo dos Carboidratos/dietoterapia , Proteínas de Transporte de Monossacarídeos/deficiência , Pré-Escolar , Masculino , Feminino , Adolescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...