RESUMO
The summer temperatures recorded in Poland in 2022 were among the highest in over 30 years and, combined with higher-than-expected rainfall, gave the impression of an almost tropical climate. Such climatic conditions were ideal for the transmission of vector-borne zoonotic diseases such as West Nile fever. In northeastern Poland, in the Mazowieckie region, the Polish event-based surveillance network reported increased fatalities of free-living hooded crows (Corvus corone cornix). West Nile virus (WNV) lineage 2 was identified for the first time as the etiological agent responsible for the death of the birds. WNV was detected in 17 out of the 99 (17.17%) free-living birds tested in this study. All the WNV-infected dead birds were collected in the same area and were diagnosed in September by the NVRI and confirmed by the EURL for equine diseases, ANSES, in October 2022. Unnaturally high temperatures recorded in Poland in 2022 likely favored the infection and spread of the virus in the avian population. A nationwide alert and awareness raising of blood transfusion centers and hospitals was carried out to prevent human infections by WNV.
RESUMO
Despite the widespread use of silver nanoparticles (NPs), these NPs can accumulate and have toxic effects on various organs. However, the effects of silver nanostructures (Ag-NS) with alginate coating on the male reproductive system have not been studied. Therefore, this study aimed to investigate the impacts of this NS on sperm function and testicular structure. After the synthesis and characterization of Ag-NS, the animals were divided into five groups (n = 8), including one control group, two sham groups (received 1.5 mg/kg/day alginate solution for 14 and 35 days), and two treatment groups (received Ag-NS at the same dose and time). Following injections, sperm parameters, apoptosis, and autophagy were analyzed by the TUNEL assay and measurement of the mRNA expression of Bax, Bcl-2, caspase-3, LC3, and Beclin-1. Fertilization rate was assessed by in vitro fertilization (IVF), and testicular structure was analyzed using the TUNEL assay and hematoxylin and eosin (H&E) staining. The results showed that the NS was rod-shaped, had a size of about 60 nm, and could reduce sperm function and fertility. Gene expression results demonstrated an increase in the apoptotic markers and a decrease in autophagy markers, indicating apoptotic cell death. Moreover, Ag-NS invaded testicular tissues, especially in the chronic phase (35 days), resulting in tissue alteration and epithelium disintegration. The results suggest that sperm parameters and fertility were affected. In addition, NS has negative influences on testicular tissues, causing infertility in men exposed to these NS.
RESUMO
Objective: Micro RNAs (miRNAs) are gaining acceptance as novel biomarkers for the autoimmune disorders. However, miRNA profiles have not been investigated in individuals at risk of or diagnosed with type 1 diabetes mellitus (T1DM). To study the expression pattern of miRNAs in plasma obtained from patients with T1DM and compare with matched healthy controls. Methods: Equal numbers of patients with T1DM (90) and healthy-matched control children (90) were assessed for the expression profile of plasma miRNAs including miRNA-101-5p, miRNA-146-5p, miRNA-21-5p, miRNA-375, miRNA-126, and Let7a-5p using reverse transcriptase polymerase chain reaction methodology and quantitative real-time testing. Results: Analysis showed that miRNA-101, miRNA-21 and miRNA-375 were highly expressed, whereas, miRNA-146-5p, miRNA-126, and miRNA-Let7a-5p showed significantly low levels of expression in T1DM patients compared to controls (p<0.05). In addition, miRNA-101 and miRNA-146 correlated with age at diagnosis of T1DM and disease duration, respectively. Furthermore, multivariate analysis showed that miRNA-126 and Let7a-5p had a significant negative correlation with mean hemoglobin A1c (HbA1c) values. Conclusion: Dysregulation of the six miRNAs analyzed suggested a possible role as biomarkers in T1DM. miRNA-101 was correlated with age at diagnosis while miRNA-146 correlated with disease duration. Two further miRNAs correlated with the existing biomarker, HbA1c.
Assuntos
Diabetes Mellitus Tipo 1 , Hiperglicemia , MicroRNAs , Biomarcadores , Criança , Diabetes Mellitus Tipo 1/genética , Egito , Humanos , Hiperglicemia/genética , MicroRNAs/genéticaRESUMO
Root and collar rot disease caused by Phytophthora capsici (Leonian) is one of the most serious diseases in pepper, Capsicum annuum L. Knowledge about resistant genes is limited in pepper accessions to P. capsici. In this study, a diverse collection of 37 commercial edible and ornamental genotypes, and implication of seven novel candidate DEGs genes (XLOC_ 021757, XLOC_021821, XLOC_012788, XLOC_011295, XLOC_021928, XLOC_015473 and XLOC_000341) were up-regulated on resistant and susceptible pepper cultivars, through real-time polymerase chain reaction (qPCR) at transplanting and maturing stages. All seven related defense-gene candidates were up-regulated in all inoculated accessions to P. capsici, but these genes were highly expressed in resistant ones, 19OrnP-PBI, 37ChillP-Paleo, and 23CherryP-Orsh. The transcriptional levels of the seven related candidate DEGs were 5.90, 5.64, 5.62, 5.18, 3.94, 3.69, 3.16 folds higher in the resistant pepper genotypes, than the control ones, non-inoculated genotypes respectively. The candidate genes expressed herein, will provide a basis for further gene cloning and functional verification studies, and also will aid in an understanding of the regulatory mechanism of pepper resistance to P. capsici.
Assuntos
Capsicum , Resistência à Doença/genética , Phytophthora/genética , Doenças das Plantas/genética , Capsicum/anatomia & histologia , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Fenótipo , Filogenia , Phytophthora/classificação , Phytophthora/isolamento & purificação , Phytophthora/metabolismo , Doenças das Plantas/etiologia , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Arsenic species and a possible source of methylated arsenic in a Panax Notoginseng (PN) medicinal plant were explored to further understand the change of inorganic arsenic to the less toxic methylated form to minimize the health risks associated with its medicinal use. Arsenic speciation in PN from major planting areas was determined using high-performance liquid chromatography coupled with hydride generator-atomic fluorescence (HPLC-HG-AFS). Pot experiments were performed to explore the source of methylated arsenic in PN, and the arsenite methyltransferase (arsM) gene abundance was determined using quantitative reverse transcription PCR (q-RTPCR). Methylated arsenic (monomethylarsonic acid (MMA) + dimethylarsinic acid (DMA)) accounted for 43% ± 30% of the total arsenic in PN from planting areas, while the primary species in soil was As(V) (94% ± 0.12%). In the pot experiments, methylated arsenic accounted for 37%-49% of the total arsenic in PN, and As (V) was the primary species in soil (>98%). The four detected arsenic species in PN increased as the amount of As added to soil increased. The methylated arsenic contents in the PN root were significantly positively correlated with the ArsM gene abundance in soil, suggesting that methylated arsenic in PN is likely from the planting soil.
Assuntos
Arsenicais/química , Panax notoginseng/química , Poluentes do Solo/análise , Arsenicais/análise , Arsenicais/metabolismo , Ácido Cacodílico/análise , Ácido Cacodílico/metabolismo , Contaminação de Alimentos/análise , Metiltransferases/genética , Metiltransferases/metabolismo , Panax notoginseng/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poluentes do Solo/metabolismoRESUMO
Among the many Xiphophorus interspecies hybrid tumor models are those that exhibit ultraviolet light (UVB) induced melanoma. In previous studies, assessment of UVB induced DNA damage and nucleotide excision DNA repair has been performed in parental lines and interspecies hybrids. Species and hybrid specific differences in the levels of DNA damage induced and the dark repair rates for cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine pyrimidine photoproducts (6-4PPs) have been reported. However, UVB induced DNA lesions in Xiphophorus fishes are thought to primarily be repaired via light dependent CPD and 6-4PP specific photolyases. Photolyases are of evolutionary interest since they are ancient and presumably function solely to ameliorate the deleterious effects of UVB exposure. Herein, we report results from detailed studies of CPD and 6-4PP photolyase gene expression within several Xiphophorus tissues. We determined photolyase gene expression patterns before and after exposure to fluorescent light in X. maculatus, X. couchianus, and for F1 interspecies hybrids produced from crossing these two parental lines (X. maculatus Jp 163 B×X. couchianus). We present novel results showing these two photolyase genes exhibit species, tissue, and hybrid-specific differences in basal and light induced gene expression.
Assuntos
Ciprinodontiformes/genética , Desoxirribodipirimidina Fotoliase/genética , Dímeros de Pirimidina/metabolismo , Animais , Quimera , Fluorescência , Especificidade de Órgãos , RNA Mensageiro/análise , Pele/metabolismo , Especificidade da EspécieRESUMO
In patients with inoperable advanced non-small cell lung carcinomas (NSCLCs), histological subtyping using small-mount biopsy specimens was often required to decide the indications for drug treatment. The aim of this study was to assess the utility of highly sensitive mRNA quantitation for the subtyping of advanced NSCLC using small formalin fixing and paraffin embedding (FFPE) biopsy samples. Cytokeratin (CK) 6, CK7, CK14, CK18, and thyroid transcription factor (TTF)-1 mRNA expression levels were measured using semi-nested real-time quantitative (snq) reverse-transcribed polymerase chain reaction (RT-PCR) in microdissected tumor cells collected from 52 lung biopsies. Our results using the present snqRT-PCR method showed an improvement in mRNA quantitation from small FFPE samples, and the mRNA expression level using snqRT-PCR was correlated with the immunohistochemical protein expression level. CK7, CK18, and TTF-1 mRNA were expressed at significantly higher levels (P<0.05) in adenocarcinoma (AD) than in squamous cell carcinoma (SQ), while CK6 and CK14 mRNA expression was significantly higher (P<0.05) in SQ than in AD. Each histology-specific CK, particularly CK18 in AD and CK6 in SQ, were shown to be correlated with a poor prognosis (P=0.02, 0.02, respectively). Our results demonstrated that a quantitative CK subtype mRNA analysis from lung biopsy samples can be useful for predicting the histology subtype and prognosis of advanced NSCLC.
RESUMO
Caffeine is white crystalline xanthine alkaloid that is naturally found in some plants and can be produced synthetically. It has various biological effects, especially during pregnancy and lactation. We studied the effect of caffeine on heartbeat, survival and the expression of cell damage related genes, including oxidative stress (HSP70), mitochondrial metabolism (Cyclin G1) and apoptosis (Bax and Bcl2), at early developmental stages of zebrafish embryos. We used 100 µm concentration based on the absence of locomotor effects. Neither significant mortality nor morphological changes were detected. We monitored hatching at 48 h post-fertilization (hpf) to 96 hpf. At 60 and 72 hpf, hatching decreased significantly (P < 0.05); however, the overall hatching rate at 96 hpf was 94% in control and 93% in caffeine treatment with no significant difference (P > 0.05). Heartbeats per minute were 110, 110 and 112 in control at 48, 72 and 96 hpf, respectively. Caffeine significantly increased heartbeat - 122 and 136 at 72 and 96 hpf, respectively. Quantitative RT-PCR showed significant up-regulation after caffeine exposure in HSP70 at 72 hpf; in Cyclin G1 at 24, 48 and 72 hpf; and in Bax at 48 and 72 hpf. Significant down-regulation was found in Bcl2 at 48 and 72 hpf. The Bax/Bcl2 ratio increased significantly at 48 and 72 hpf. We conclude that increasing exposure time to caffeine stimulates oxidative stress and may trigger apoptosis via a mitochondrial-dependent pathway. Also caffeine increases heartbeat from early phases of development without affecting the morphology and survival but delays hatching. Use of caffeine during pregnancy and lactation may harm the fetus by affecting the expression of cell-damage related genes.