Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(19)2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39408579

RESUMO

Understanding the genetic basis of species differences in flowering time and inflorescence architecture can shed light on speciation and molecular breeding. Melastoma shows rapid speciation, with about 100 species formed in the past few million years, and, meanwhile, possesses high ornamental values. Two largely sympatric and closely related species of this genus, M. candidum and M. normale, differ markedly in flowering time and flower number per inflorescence. Here, we constructed an F2 population between M. candidum and M. normale, and used extreme bulks for flowering time and flower number per inflorescence in this population to identify genomic regions underlying the two traits. We found high differentiation on nearly the whole chromosome 7 plus a few regions on other chromosomes between the two extreme bulks for flowering time. Large chromosomal inversions on chromosome 7 between the two species, which contain flowering-related genes, can explain recombinational suppression on the chromosome. We identified 1872 genes with one or more highly differentiated SNPs between the two bulks for flowering time, including CSTF77, FY, SPA3, CDF3, AGL8, AGL15, FHY1, COL9, CIB1, FKF1 and FAR1, known to be related to flowering. We also identified 680 genes with one or more highly differentiated SNPs between the two bulks for flower number per inflorescence, including PNF, FIL and LAS, knows to play important roles in inflorescence development. These large inversions on chromosome 7 prevent us from narrowing down the genomic region(s) associated with flowering time differences between the two species. Flower number per inflorescence in Melastoma appears to be controlled by multiple genes, without any gene of major effect. Our study indicates that large chromosomal inversions can hamper the identification of the genetic basis of important traits, and the inflorescence architecture of Melastoma species may have a complex genetic basis.


Assuntos
Flores , Inflorescência , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Flores/anatomia & histologia , Melastomataceae/genética , Melastomataceae/crescimento & desenvolvimento , Melastomataceae/anatomia & histologia , Polimorfismo de Nucleotídeo Único , Genoma de Planta , Cromossomos de Plantas/genética , Locos de Características Quantitativas , Fenótipo , Mapeamento Cromossômico
2.
Breed Sci ; 74(2): 103-113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39355626

RESUMO

Sweetpotato (Ipomoea batatas) includes diverse cultivars with flesh textures ranging from dry to moist. Moist-fleshed cultivars often contain starch with a lower gelatinization temperature (GT). To elucidate the genetic determinants of flesh texture and starch GT, we conducted a QTL analysis using F1 progenies obtained from a cross between dry-fleshed and moist-fleshed cultivars, 'Benikomachi' (BK) and 'Amahazuki' (AH), by using an updated polyploid QTL-seq pipeline. Flesh texture was assessed based on the wet area ratio (WAR) observed on the cut surface of steamed tubers, as progenies with dry and moist flesh exhibited low and high WAR values, respectively, demonstrating a strong correlation. Three QTLs were found to regulate the WAR. Notably, two AH-derived alleles at 4.30 Mb on Itr_chr05 and 21.01 Mb on Itr_chr07, along with a BK-derived allele at 2.89 Mb on Itr_chr15, were associated with increased WAR. Starch GT, which displayed no correlation with either flesh texture or WAR, was distinctly influenced by two QTLs: a GT-increasing BK-derived allele at 1.74 Mb on Itr_chr05 and a GT-decreasing AH-derived allele at 30.16 Mb on Itr_chr12. Consequently, we developed DNA markers linked to WAR, offering a promising avenue for the targeted breeding of sweetpotato with the desired flesh textures.

3.
Front Plant Sci ; 15: 1424689, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39258300

RESUMO

Introduction: Owing to advances in high-throughput genome sequencing, QTL-Seq mapping of salt tolerance traits is a major platform for identifying soil-salinity tolerance QTLs to accelerate marker-assisted selection for salt-tolerant rice varieties. We performed QTL-BSA-Seq in the seedling stage of rice from a genetic cross of the extreme salt-sensitive variety, IR29, and "Jao Khao" (JK), a Thai salt-tolerant variety. Methods: A total of 462 F2 progeny grown in soil and treated with 160 mM NaCl were used as the QTL mapping population. Two high- and low-bulk sets, based on cell membrane stability (CMS) and tiller number at the recovery stage (TN), were equally sampled. The genomes of each pool were sequenced, and statistical significance of QTL was calculated using QTLseq and G prime (G') analysis, which is based on calculating the allele frequency differences or Δ(SNP index). Results: Both methods detected the overlapping interval region, wherein CMS-bulk was mapped at two loci in the 38.41-38.85 Mb region with 336 SNPs on chromosome 1 (qCMS1) and the 26.13-26.80 Mb region with 1,011 SNPs on chromosome 3 (qCMS3); the Δ(SNP index) peaks were -0.2709 and 0.3127, respectively. TN-bulk was mapped at only one locus in the overlapping 38.26-38.95 Mb region on chromosome 1 with 575 SNPs (qTN1) and a Δ(SNP index) peak of -0.3544. These identified QTLs in two different genetic backgrounds of segregating populations derived from JK were validated. The results confirmed the colocalization of the qCMS1 and qTN1 traits on chromosome 1. Based on the CMS trait, qCMS1/qTN1 stably expressed 6%-18% of the phenotypic variance in the two validation populations, while qCMS1/qTN1 accounted for 16%-20% of the phenotypic variance in one validation population based on the TN trait. Conclusion: The findings confirm that the CMS and TN traits are tightly linked to the long arm of chromosome 1 rather than to chromosome 3. The validated qCMS-TN1 QTL can be used for gene/QTL pyramiding in marker-assisted selection to expedite breeding for salt resistance in rice at the seedling stage.

4.
Plants (Basel) ; 13(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39273852

RESUMO

Peanut (Arachis hypogaea L.) is a great plant protein source for human diet since it has high protein content in the kernel. Therefore, seed protein content (SPC) is considered a major agronomic and quality trait in peanut breeding. However, few genetic loci underlying SPC have been identified in peanuts, and the underlying regulatory mechanisms remain unknown, limiting the effectiveness of breeding for high-SPC peanut varieties. In this study, a major QTL (qSPCB10.1) controlling peanut SPC was identified within a 2.3 Mb interval in chromosome B10 by QTL-seq using a recombinant inbred line population derived from parental lines with high and low SPCs, respectively. Sequence comparison, transcriptomic analysis, and annotation analysis of the qSPCB10.1 locus were performed. Six differentially expressed genes with sequence variations between two parents were identified as candidate genes underlying qSPCB10.1. Further locus interaction analysis revealed that qSPCB10.1 could not affect the seed oil accumulation unless qOCA08.1XH13 was present, a high seed oil content (SOC) allele for a major QTL underlying SOC. In summary, our study provides a basis for future investigation of the genetic basis of seed protein accumulation and facilitates marker-assisted selection for developing high-SPC peanut genotypes.

5.
Funct Integr Genomics ; 24(5): 141, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39160350

RESUMO

Rice root system plays a crucial role in plant adaptation under adverse conditions, particularly drought stress. However, the regulatory gene networks that govern rice root development during stress exposure remain largely unexplored. In this study, we applied a QTL sequencing method to identify QTL/gene controlling the crown root development under Jasmonic acid simulation using the Bulk-segregant analysis. Two rice cultivars with contrasting phenotypes from the Vietnamese traditional rice collection were used as parent pairs for crossing. The single-seed descent method was employed to generate an F2 population of progenies. This F2/3 population was further segregated based on root count under JA stress. Pooled DNA from the two extreme groups in this population was sequenced, and SNP indexes across all loci in these pools were calculated. We detected a significant genomic region on chromosome 10, spanned from 20.39-20.50 Mb, where two rice RLKs were located, OsPUB54 and OsPUB58. Receptor-like kinases (RLKs) are pivotal in regulating various aspects of root development in plants, and the U-box E3 ubiquitination ligase class was generally known for its degradation of some protein complexes. Notably, OsPUB54 was strongly induced by JA treatment, suggesting its involvement in the degradation of the Aux/IAA protein complex, thereby influencing crown root initiation. Besides, the Eukaryotic translation initiation of factor 3 subunit L (eIF3l) and the Mitogen-activated protein kinase kinase kinase 37 (MAPKKK 37) proteins identified from SNPs with high score index which suggests their significant roles in the translation initiation process and cellular signaling pathways, respectively. This information suggests several clues of how these candidates are involved in modifying the rice root system under stress conditions.


Assuntos
Ciclopentanos , Oryza , Oxilipinas , Raízes de Plantas , Locos de Características Quantitativas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Curr Issues Mol Biol ; 46(7): 6508-6521, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39057030

RESUMO

Chloroplasts are organelles responsible for photosynthesis in plants, providing energy for growth and development. However, the genetic regulatory mechanisms underlying early chloroplast development in rice remain incompletely understood. In this study, we identified a rice seedling thermosensitive chlorophyll-deficient mutant, osltsa8, and the genetic analysis of two F2 populations suggested that this trait may be controlled by more than one pair of alleles. Through reciprocal F2 populations and QTL-seq technology, OsLTSA8 was mapped to the interval of 24,280,402-25,920,942 bp on rice chromosome 8, representing a novel albino gene in rice. Within the candidate gene region of OsLTSA8, there were 258 predicted genes, among which LOC_Os08g39050, LOC_Os08g39130, and LOC_Os08g40870 encode pentatricopeptide repeat (PPR) proteins. RNA-seq identified 18 DEGs (differentially expressed genes) within the candidate interval, with LOC_Os08g39420 showing homology to the pigment biosynthesis-related genes Zm00001d017656 and Sb01g000470; LOC_Os08g39430 and LOC_Os08g39850 were implicated in chlorophyll precursor synthesis. RT-qPCR was employed to assess the expression levels of LOC_Os08g39050, LOC_Os08g39130, LOC_Os08g40870, LOC_Os08g39420, LOC_Os08g39430, and LOC_Os08g39850 in the wild-type and mutant plants. Among them, the differences in the expression levels of LOC_Os08g39050 and LOC_Os08g39430 were the most significant. This study will contribute to further elucidating the molecular mechanisms of rice chloroplast development.

7.
Plant Physiol Biochem ; 213: 108836, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38941724

RESUMO

The root system architecture is an important complex trait in rice. With changing climatic conditions and soil nutrient deficiencies, there is an immediate need to breed nutrient-use-efficient rice varieties with robust root system architectural (RSA) traits. To map the genomic regions associated with crucial component traits of RSA viz. root length and root volume, a biparental F2 mapping population was developed using TI-128, an Ethyl Methane Sulphonate (EMS) mutant of a mega variety BPT-5204 having high root length (RL) and root volume (RV) with wild type BPT-5204. Extreme bulks having high RL and RV and low RL and RV were the whole genome re-sequenced along with parents. Genetic mapping using the MutMap QTL-Seq approach elucidated two genomic intervals on Chr.12 (3.14-3.74 Mb, 18.11-20.85 Mb), and on Chr.2 (23.18-23.68 Mb) as potential regions associated with both RL and RV. The Kompetitive Allele Specific PCR (KASP) assays for SNPs with delta SNP index near 1 were associated with higher RL and RV in the panel of sixty-two genotypes varying in root length and volume. The KASP_SNPs viz. Chr12_S4 (C→T; Chr12:3243938), located in the 3' UTR region of LOC_Os12g06670 encoding a protein kinase domain-containing protein and Chr2_S6 (C→T; Chr2:23181622) present upstream in the regulator of chromosomal condensation protein LOC_Os2g38350. Validation of these genes using qRT-PCR and in-silico studies using various online tools and databases revealed higher expression in TI-128 as compared to BPT- 5204 at the seedling and panicle initiation stages implying the functional role in enhancing RL and RV.


Assuntos
Mapeamento Cromossômico , Oryza , Raízes de Plantas , Locos de Características Quantitativas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Locos de Características Quantitativas/genética , Polimorfismo de Nucleotídeo Único/genética , Cromossomos de Plantas/genética , Genótipo
8.
Bioessays ; 46(8): e2300206, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38769697

RESUMO

Gene discovery reveals new biology, expands the utility of marker-assisted selection, and enables targeted mutagenesis. Still, such discoveries can take over a decade. We present a general strategy, "Agile Genetics," that uses nested, structured populations to overcome common limits on gene resolution. Extensive simulation work on realistic genetic architectures shows that, at population sizes of >5000 samples, single gene-resolution can be achieved using bulk segregant pools. At this scale, read depth and technical replication become major drivers of resolution. Emerging enrichment methods to address coverage are on the horizon; we describe one possibility - iterative depth sequencing (ID-seq). In addition, graph-based pangenomics in experimental populations will continue to maximize accuracy and improve interpretation. Based on this merger of agronomic scale with molecular and bioinformatic innovation, we predict a new age of rapid gene discovery.


Assuntos
Biologia Computacional , Biologia Computacional/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
9.
J Exp Bot ; 75(18): 5611-5626, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-38804905

RESUMO

Complete panicle exsertion (CPE) is an economically important quantitative trait that contributes to grain yield in rice. We deployed an integrated approach for understanding the molecular mechanism of CPE using a stable ethyl methanesulfonate mutant line, CPE-109 of the Samba Mahsuri (SM) variety of rice (Oryza sativa), which exhibits CPE. Two consistent genomic regions were identified for CPE through quantitative trait locus (QTL) mapping [qCPE-4 (28.24-31.22 Mb) and qCPE-12 (2.30-3.18 Mb)] and QTL-sequencing [chr 4 (31.21-33.69 Mb) and chr 12 (0.12-3.15 Mb)]. Two non-synonymous single nucleotide polymorphisms, namely KASP 12-12 (T→C; chr12:1269983) in Os12g0126300, encoding an AP2/ERF transcription factor, and KASP 12-16 (G→A; chr12:1515198) in Os12g0131400, encoding an F-box domain-containing protein, explained 81.05% and 59.61% of the phenotypic variance, respectively, and exhibited strong co-segregation with CPE in F2 mapping populations, advanced generation lines, and CPE-exhibiting SM mutants through KASP assays. Down-regulation of these genes in CPE-109 compared with SM (wild type) was observed in transcriptome sequencing of flag leaves, which was validated through qRT-PCR. We propose that the abrogation of Os12g0126300 and Os12g0131400 in CPE-109 combinatorially influences down-regulation of ethylene biosynthetic genes, Os01g0192900 (ACC synthase) and Os05g0497300 (ethylene-responsive factor-2), and up-regulation of a gibberellic acid synthetic gene, Os06g0569900 (ent-kaurene synthase) and the two cytokinin biosynthetic genes Os07g0486700 (cytokinin-O-glucosyltransferase 2) and Os10g0479500 (similar to carboxy-lyase), which results in complete panicle exsertion.


Assuntos
Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Plant J ; 119(1): 383-403, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38625758

RESUMO

Hemp (Cannabis sativa L.) is an extraordinarily versatile crop, with applications ranging from medicinal compounds to seed oil and fibre products. Cannabis sativa is a short-day plant, and its flowering is highly controlled by photoperiod. However, substantial genetic variation exists for photoperiod sensitivity in C. sativa, and photoperiod-insensitive ("autoflower") cultivars are available. Using a bi-parental mapping population and bulked segregant analysis, we identified Autoflower2, a 0.5 Mbp locus significantly associated with photoperiod-insensitive flowering in hemp. Autoflower2 contains an ortholog of the central flowering time regulator FLOWERING LOCUS T (FT) from Arabidopsis thaliana which we termed CsFT1. We identified extensive sequence divergence between alleles of CsFT1 from photoperiod-sensitive and insensitive cultivars of C. sativa, including a duplication of CsFT1 and sequence differences, especially in introns. Furthermore, we observed higher expression of one of the CsFT1 copies found in the photoperiod-insensitive cultivar. Genotyping of several mapping populations and a diversity panel confirmed a correlation between CsFT1 alleles and photoperiod response, affirming that at least two independent loci involved in the photoperiodic control of flowering, Autoflower1 and Autoflower2, exist in the C. sativa gene pool. This study reveals the multiple independent origins of photoperiod insensitivity in C. sativa, supporting the likelihood of a complex domestication history in this species. By integrating the genetic relaxation of photoperiod sensitivity into novel C. sativa cultivars, expansion to higher latitudes will be permitted, thus allowing the full potential of this versatile crop to be reached.


Assuntos
Cannabis , Flores , Fotoperíodo , Proteínas de Plantas , Flores/genética , Flores/fisiologia , Cannabis/genética , Cannabis/fisiologia , Cannabis/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mapeamento Cromossômico
11.
Genes (Basel) ; 15(4)2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674350

RESUMO

Seed dormancy is a life adaptation trait exhibited by plants in response to environmental changes during their growth and development. The dormancy of commercial seeds is the key factor affecting seed quality. Eggplant seed dormancy is controlled by quantitative trait loci (QTLs), but reliable QTLs related to eggplant dormancy are still lacking. In this study, F2 populations obtained through the hybridization of paternally inbred lines with significant differences in dormancy were used to detect regulatory sites of dormancy in eggplant seeds. Three QTLs (dr1.1, dr2.1, and dr6.1) related to seed dormancy were detected on three chromosomes of eggplant using the QTL-Seq technique. By combining nonsynonymous sites within the candidate regions and gene functional annotation analysis, nine candidate genes were selected from three QTL candidate regions. According to the germination results on the eighth day, the male parent was not dormant, but the female parent was dormant. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of nine candidate genes, and the Smechr0201082 gene showed roughly the same trend as that in the phenotypic data. We proposed Smechr0201082 as the potential key gene involved in regulating the dormancy of eggplant seeds. The results of seed experiments with different concentrations of gibberellin A3 (GA3) showed that, within a certain range, the higher the gibberellin concentration, the earlier the emergence and the higher the germination rate. However, higher concentrations of GA3 may have potential effects on eggplant seedlings. We suggest the use of GA3 at a concentration of 200-250 mg·L-1 to treat dormant seeds. This study provides a foundation for the further exploration of genes related to the regulation of seed dormancy and the elucidation of the molecular mechanism of eggplant seed dormancy and germination.


Assuntos
Germinação , Dormência de Plantas , Locos de Características Quantitativas , Sementes , Solanum melongena , Solanum melongena/genética , Solanum melongena/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Dormência de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Germinação/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapeamento Cromossômico , Fenótipo , Genes de Plantas/genética
12.
Front Plant Sci ; 15: 1361771, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633465

RESUMO

Introduction: Fruit size is an important economic trait affecting jujube fruit quality, which has always been the focus of marker-assisted breeding of jujube traits. However, despite a large number of studies have been carried out, the mechanism and key genes regulating jujube fruit size are mostly unknown. Methods: In this study, we used a new analysis method Quantitative Trait Loci sequencing (QTL-seq) (bulked segregant analysis) to screen the parents 'Yuhong' and 'Jiaocheng 5' with significant phenotypic differences and mixed offspring group with extreme traits of large fruit and small fruit, respectively, and, then, DNA mixed pool sequencing was carried out to further shortening the QTL candidate interval for fruit size trait and excavated candidate genes for controlling fruit size. Results: The candidate intervals related to jujube fruit size were mainly located on chromosomes 1, 5, and 10, and the frequency of chromosome 1 was the highest. Based on the QTL-seq results, the annotation results of ANNOVAR were extracted from 424 SNPs (single-nucleotide polymorphisms) and 164 InDels (insertion-deletion), from which 40 candidate genes were selected, and 37 annotated candidate genes were found in the jujube genome. Four genes (LOC107428904, LOC107415626, LOC125420708, and LOC107418290) that are associated with fruit size growth and development were identified by functional annotation of the genes in NCBI (National Center for Biotechnology Information). The genes can provide a basis for further exploration and identification on genes regulating jujube fruit size. Discussion: In summary, the data obtained in this study revealed that QTL intervals and candidate genes for fruit size at the genomic level provide valuable resources for future functional studies and jujube breeding.

13.
Genomics ; 116(3): 110835, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38521201

RESUMO

Pod length (PL) is one of the major traits determining pod size and yield of peanut. Discovering the quantitative trait loci (QTL) and identifying candidate genes associated with PL are essential for breeding high-yield peanut. In this study, quantitative trait loci sequencing (QTL-seq) was performed using the F2 population constructed by a short-pod variety Tifrunner (Tif) and a long-pod line Lps, and a 0.77 Mb genomic region on chromosome 07 was identified as the candidate region for PL. Then, the candidate region was narrowed to a 265.93 kb region by traditional QTL approach. RNA-seq analysis showed that there were four differentially expressed genes (DEGs) in the candidate region, among which Arahy.PF2L6F (AhCDC48) and Arahy.P4LK2T (AhTAA1) were speculated to be PL-related candidate genes. These results were informative for the elucidation of the underlying regulatory mechanism in peanut pod length and would facilitate further identification of valuable target genes.


Assuntos
Arachis , Locos de Características Quantitativas , Arachis/genética , RNA-Seq , Genes de Plantas
14.
Front Genet ; 15: 1305681, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419784

RESUMO

Introduction: Rice (Oryza sativa L.) is one of the most extensive crops in the world. China's Heilongjiang Province is the northernmost rice-growing region in the world. However, rice cultivars suitable for growth in low-latitude regions may not mature normally due to their distinct climate and short frost-free period. It is necessary to precisely determine the frost-free period for each region to make the best use of the rice growth stage so as to ensure the maturity and yield of different rice cultivars in Heilongjiang Province. The time span of the heading stage is a key parameter for evaluating the adaptability of a rice cultivar to a specific rice-growing region. Given the above facts, it is of high importance to study the associated genes and sites controlling days to heading (DH) and plant height (PH) of rice in Heilongjiang Province. Bulked segregant analysis (BSA) combined with high-throughput sequencing can effectively exclude interferences from background genomic differences, making it suitable for analyzing the associated sites of complex agronomic traits in early generations. Methods: In this study, an F3 segregating population was obtained by crossing two main cultivars that are grown under different temperatures and day-light conditions in Heilongjiang. Two pools of extreme phenotypes were built for the DH and PH of the population. For SNP and InDel variants obtained from whole-genome resequencing in the pools, an association analysis was performed using the Euclidean distance (ED) algorithm and the SNP/InDel index algorithm. Results: The intersection of SNP and InDel regions associated with the phenotypes was considered to obtain the final associated sites. After excluding interferences from the cloned genes on chromosomes 2 and 7, a total length of 6.34 Mb on chromosomes 1, 3, and 10 and 3.16 Mb on chromosomes 1 and 10 were left associated with PH and DH, respectively. Then, we performed a gene annotation analysis for candidate genes in the remaining regions using multiple genome annotation databases. Our research provides basic data for subsequent gene mapping and cloning. Discussion: By mining more genetic loci associated with the days to heading and plant height of rice, we may provide abundant genetic resources for refined molecular breeding in Heilongjiang Province.

15.
J Plant Physiol ; 294: 154187, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422630

RESUMO

Rapeseed (Brassica napus L.) is one of the most important oil crops worldwide. However, its yield is greatly limited by salt stress, one of the primary abiotic stresses. Identification of salt-tolerance genes and breeding salt-tolerant varieties is an effective approach to address this issue. Unfortunately, little is known about the salt-tolerance quantitative trait locus (QTL) and the identification of salt tolerance genes in rapeseed. In this study, high-throughput quantitative trait locus sequencing (QTL-seq) was applied to identifying salt-tolerant major QTLs based on two DNA pools from an F2:3 population of a cross between rapeseed line 2205 (salt tolerant) and 1423 (salt sensitive). A total of twelve major QTLs related to the salt tolerance rating (STR) were detected on chromosomes A03, A08, C02, C03, C04, C06, C07 and C09. To further enhance our understanding, we integrated QTL-seq data with transcriptome analysis of the two parental rapeseed plants subjected to salt stress, through which ten candidate genes for salt tolerance were identified within the major QTLs by gene differential expression, variation and annotated functions analysis. The marker SNP820 linked to salt tolerance was successfully validated and would be useful as a diagnostic marker in marker-assisted breeding. These findings provide valuable insights for future breeding programs aimed at developing rapeseed cultivars resistant to salt stresses.


Assuntos
Brassica napus , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Brassica napus/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala
16.
Plant Biotechnol J ; 22(6): 1636-1648, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38308663

RESUMO

Branch angle (BA) is a critical morphological trait that significantly influences planting density, light interception and ultimately yield in plants. Despite its importance, the regulatory mechanism governing BA in rapeseed remains poorly understood. In this study, we generated 109 transcriptome data sets for 37 rapeseed accessions with divergent BA phenotypes. Relative to adaxial branch segments, abaxial segments accumulated higher levels of auxin and exhibited lower expression of six TCP1 homologues and one GA20ox3. A co-expression network analysis identified two modules highly correlated with BA. The modules contained homologues to known BA control genes, such as FUL, YUCCA6, TCP1 and SGR3. Notably, a homoeologous exchange (HE), occurring at the telomeres of A09, was prevalent in large BA accessions, while an A02-C02 HE was common in small BA accessions. In their corresponding regions, these HEs explained the formation of hub gene hotspots in the two modules. QTL-seq analysis confirmed that the presence of a large A07-C06 HE (~8.1 Mb) was also associated with a small BA phenotype, and BnaA07.WRKY40.b within it was predicted as candidate gene. Overexpressing BnaA07.WRKY40.b in rapeseed increased BA by up to 20°, while RNAi- and CRISPR-mediated mutants (BnaA07.WRKY40.b and BnaC06.WRKY40.b) exhibited decreased BA by up to 11.4°. BnaA07.WRKY40.b was exclusively localized to the nucleus and exhibited strong expression correlations with many genes related to gravitropism and plant architecture. Taken together, our study highlights the influence of HEs on rapeseed plant architecture and confirms the role of WRKY40 homologues as novel regulators of BA.


Assuntos
Locos de Características Quantitativas , Transcriptoma , Transcriptoma/genética , Locos de Características Quantitativas/genética , Brassica rapa/genética , Regulação da Expressão Gênica de Plantas , Brassica napus/genética , Brassica napus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Fenótipo , Genes de Plantas/genética
17.
Mol Breed ; 43(12): 88, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045561

RESUMO

The tassel competes with the ear for nutrients and shields the upper leaves, thereby reducing the yield of grain. The tassel branch number (TBN) is a pivotal determinant of tassel size, wherein the reduced TBN has the potential to enhance the transmission of light and reduce the consumption of nutrients, which should ultimately result in increased yield. Consequently, the TBN has emerged as a vital target trait in contemporary breeding programs that focus on compact maize varieties. In this study, QTL-seq technology and advanced population mapping were used to rapidly identify and dissect the major effects of the TBN on QTL. Advanced mapping populations (BC4F2 and BC4F3) were derived from the inbred lines 18-599 (8-11 TBN) and 3237 (0-1 TBN) through phenotypic recurrent selection. First, 13 genomic regions associated with the TBN were detected using quantitative trait locus (QTL)-seq and were located on chromosomes 2 and 5. Subsequently, validated loci within these regions were identified by QTL-seq. Three QTLs for TBN were identified in the BC4F2 populations by traditional QTL mapping, with each QTL explaining the phenotypic variation of 6.13-18.17%. In addition, for the major QTL (qTBN2-2 and qTBN5-1), residual heterozygous lines (RHLs) were developed from the BC4F2 population. These two major QTLs were verified in the RHLs by QTL mapping, with the phenotypic variation explained (PVE) of 21.57% and 30.75%, respectively. Near-isogenic lines (NILs) of qTBN2-2 and qTBN5-1 were constructed. There were significant differences between the NILs in TBN. These results will enhance our understanding of the genetic basis of TBN and provide a solid foundation for the fine-mapping of TBN. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01431-y.

18.
Front Plant Sci ; 14: 1281755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046614

RESUMO

Phytophthora fruit rot (PFR) caused by the soilborne oomycete pathogen, Phytophthora capsici, can cause severe yield loss in cucumber. With no resistant variety available, genetic resources are needed to develop resistant varieties. The goal of this work was to identify quantitative trait loci (QTL) associated with resistance to PFR using multiple genomic approaches and populations. Two types of resistances have been identified: age-related resistance (ARR) and young fruit resistance. ARR occurs at 12-16 days post pollination (dpp), coinciding with the end of exponential fruit growth. A major QTL for ARR was discovered on chromosome 3 and a candidate gene identified based on comparative transcriptomic analysis. Young fruit resistance, which is observed during the state of rapid fruit growth prior to commercial harvest, is a quantitative trait for which multiple QTL were identified. The largest effect QTL, qPFR5.1, located on chromosome 5 was fine mapped to a 1-Mb region. Genome-wide association studies (GWAS) and extreme-phenotype genome-wide association study (XP-GWAS) for young fruit resistance were also performed on a cucumber core collection representing > 96% of the genetic diversity of the USDA cucumber germplasm. Several SNPs overlapped with the QTL identified from QTL-seq analysis on biparental populations. In addition, novel SNPs associated with the resistance were identified from the germplasm. The resistant alleles were found mostly in accessions from India and South Asia, the center of diversity for cucumber. The results from this work can be applied to future disease resistance studies and marker-assisted selection in breeding programs.

19.
Front Genet ; 14: 1289793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148976

RESUMO

Sesame (Sesamum indicum L.), an oilseed crop, is gaining worldwide recognition for its healthy functional ingredients as consumption increases. The content of lignans, known for their antioxidant and anti-inflammatory effects, is a key agronomic trait that determines the industrialization of sesame. However, the study of the genetics and physiology of lignans in sesame is challenging, as they are influenced by multiple genes and environmental factors, therefore, the understanding of gene function and synthetic pathways related to lignan in sesame is still limited. To address these knowledge gaps, we conducted genetic analyses using F7 recombinant inbred line (RIL) populations derived from Goenbaek and Gomazou as low and high lignin content variants, respectively. Using the QTL-seq approach, we identified three loci, qLignan1-1, qLignan6-1, and qLignan11-1, that control lignan content, specifically sesamin and sesamolin. The allelic effect between loci was evaluated using the RIL population. qLignan6-1 had an additive effect that increased lignan content when combined with the other two loci, suggesting that it could be an important factor in gene pyramiding for the development of high-lignan varieties. This study not only highlights the value of sesame lignan, but also provides valuable insights for the development of high-lignan varieties through the use of DNA markers in breeding strategies. Overall, this research contributes to our understanding of the importance of sesame oil and facilitates progress in sesame breeding for improved lignan content.

20.
Front Plant Sci ; 14: 1233285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583595

RESUMO

White mold (WM) is a major disease in common bean (Phaseolus vulgaris L.), and its complex quantitative genetic control limits the development of WM resistant cultivars. WM2.2, one of the nine meta-QTL with a major effect on WM tolerance, explains up to 35% of the phenotypic variation and was previously mapped to a large genomic interval on Pv02. Our objective was to narrow the interval of this QTL using combined approach of classic QTL mapping and QTL-based bulk segregant analysis (BSA), and confirming those results with Khufu de novo QTL-seq. The phenotypic and genotypic data from two RIL populations, 'Raven'/I9365-31 (R31) and 'AN-37'/PS02-029C-20 (Z0726-9), were used to select resistant and susceptible lines to generate subpopulations for bulk DNA sequencing. The QTL physical interval was determined by considering overlapping interval of the identified QTL or peak region in both populations by three independent QTL mapping analyses. Our findings revealed that meta-QTL WM2.2 consists of three regions, WM2.2a (4.27-5.76 Mb; euchromatic), WM 2.2b (12.19 to 17.61 Mb; heterochromatic), and WM2.2c (23.01-25.74 Mb; heterochromatic) found in both populations. Gene models encoding for gibberellin 2-oxidase 8, pentatricopeptide repeat, and heat-shock proteins are the likely candidate genes associated with WM2.2a resistance. A TIR-NBS-LRR class of disease resistance protein (Phvul.002G09200) and LRR domain containing family proteins are potential candidate genes associated with WM2.2b resistance. Nine gene models encoding disease resistance protein [pathogenesis-related thaumatin superfamily protein and disease resistance-responsive (dirigent-like protein) family protein etc] found within the WM2.2c QTL interval are putative candidate genes. WM2.2a region is most likely associated with avoidance mechanisms while WM2.2b and WM2.2c regions trigger physiological resistance based on putative candidate genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...