RESUMO
A modified QuEChERS method was developed to determine multi-class pesticide and veterinary residues in aquatic products. Chitosan microspheres were conveniently synthesized and utilized as the cleanup adsorbent in the QuEChERS procedure, showcasing rapid filtration one-step pretreatment ability for the determination of drug multi-residues in aquatic products. Compared to conventional synthetic sorbents, chitosan microspheres not only have good purification performance, but also have renewable and degradable properties. This novel sorbent worked well in the simultaneous determination of 95 pesticides and veterinary drug residues in aquatic products after being combined with an improved one-step vortex oscillating cleanup method. We achieved recoveries ranging from 64.0% to 115.9% for target drugs in shrimp and fish matrix. The limits of detection and quantification were 0.5-1.0 and 1.0-2.0 µg kg-1, respectively. Notably, hydrocortisone was detected with considerable frequency and concentration in the tested samples, underscoring the necessity for stringent monitoring of this compound in aquatic products.
Assuntos
Quitosana , Peixes , Microesferas , Espectrometria de Massas em Tandem , Drogas Veterinárias , Animais , Quitosana/química , Cromatografia Líquida de Alta Pressão , Drogas Veterinárias/análise , Drogas Veterinárias/isolamento & purificação , Contaminação de Alimentos/análise , Resíduos de Drogas/análise , Resíduos de Drogas/isolamento & purificação , Resíduos de Drogas/química , Praguicidas/isolamento & purificação , Praguicidas/análise , Praguicidas/química , Resíduos de Praguicidas/isolamento & purificação , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Adsorção , Extração em Fase Sólida/métodos , Extração em Fase Sólida/instrumentação , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Alimentos Marinhos/análise , Frutos do Mar/análise , Espectrometria de Massa com Cromatografia LíquidaRESUMO
In this study, the magnetic biochar material derived from coconut clothing was firstly successfully synthesized by in-situ polymerization method and applied as QuEChERS adsorbents for extracting multi-pesticides. The obtained magnetic coconut-clothing biochar (MCCBC) presented alveolate structure with abundant large irregular pores. The Fe3O4 particles was obviously attached on the surface of biochar. Under the optimized conditions, the modified QuEChERS process based on MCCBC coupled with HPLC-MS/MS for simultaneously extracting and determining 12 pesticides (organophosphorus insecticides and strobilurins) from different agricultural products (tomato, cucumber, cabbage, carrot, peach, pear, grape, apple) was established. After pretreated by MCCBC, most of pesticides had weak matrix effect. This proposed method showed good linearity (2-250 ng g-1) with R2 ≥ 0.9915, and the limits of detection and the limits of quantification were in the range of 0.01-2.67 ng g-1 and 0.03-8.91 ng g-1, respectively. The acceptable recovery was between 71.1 % and 114.0 % with relative standard deviations from 0.31 % to 13.94 %. These results fully demonstrated that the developed method was efficient for simultaneously extracting and determining organophosphorus insecticides and strobilurins in complex agricultural matrix, possessing obvious advantages of higher sensitivity, easier operation and good feasibility. More importantly, this study provided a useful strategy for magnetizing biochar, and the novel biochar from coconut clothing was also introduced as potential adsorbent for other trace organic pollutants.
RESUMO
The use of pesticides has led to environmental pollution and posed a global health risk, since they remain as residues on foods. Beans one of the most widely cultivated crop in Africa, and susceptible to attack by insects both on field and during storage, leading to the application of pesticides to control pests' infestation. However, misuse of these chemicals by farmers on beans has resulted in the rejection of beans exported to European countries, due to the presence of pesticide residues at concentrations higher than the maximum residues levels (MRLs). In this study, the effectiveness of the Association Official Analytical Chemists (AOAC) Official Method and the European Committee of Standardization (CEN) Standard Method, were determined using multivariate approach for the analysis of organochlorine pesticide residues in 6 varieties of beans samples. The significance of factors (mass of sample, volume of acetonitrile, mass of magnesium sulphate, sample pH, centrifugation time and speed) affecting the efficiency of extraction was estimated using Plackett-Burman design, while central composite design was used to optimize the significant factors. The following optimum factors were subsequently used for method validation, recovery tests, and real sample analysis: 4 g of sample sludge (1:1 v/v), 10 mL of acetonitrile, 4.45 g of MgSO4, and 5 min of centrifugation at 5000 rpm. The figure of merit of analytical methodology estimated using matrix-matched internal standard calibration method gave linearity ranging from 0.25 to 500 µg/kg, with correlation coefficient (R2) greater than 0.99, the recovery ranged from 75.55 to 110.41 (RSD = 0.70-16.65), with LOD and LOQ of 0.23-1.77 µg/kg and 0.76-5.88 µg/kg, respectively.
RESUMO
The widespread use of pesticides and their consequential presence in the environment is a growing concern due to the harmful health effects associated with pesticide exposure. For clinical and toxicology laboratories, a method for simultaneously determining these compounds and their metabolic products in body fluids, such as blood and urine, is important. In the present study, a rapid, sensitive and simultaneous LC-QToF-MS method for detecting multiclass pesticides and metabolites in blood and urine samples has been developed and validated. Four sample preparation procedures, protein precipitation and three different variants of QuEChERS-based extraction were evaluated to find a suitable, simple, and effective sample pretreatment technique. The final optimized sample preparation method (acetonitrile; 400 µl, MgSO4; 40 mg and NaCl; 10 mg) was validated for accuracy, precision, matrix effect, recovery, stability, carryover, and dilution integrity. Analyte recoveries ranged from 75.40 to 113.54 % while accuracy was evaluated in the range of 71.41-108.26 % and precision (%RSD) in the range of 0.01 %-16.85 %. The limit of quantification (LOQ) for all compounds was established in the range of 0.82-7.05 ng mL-1. The developed reliable, robust, and sensitive method was successfully applied for the quantification of target pesticides and metabolites in human blood and urine samples. Evaluated samples resulted in detection of eleven analytes (seven pesticides and four metabolites).
RESUMO
Dispersive solid-phase extraction (dSPE) is a crucial step for multiresidue analysis used to remove matrix components from extracts. This purification prevents contamination of instrumental equipment and improves method selectivity, sensitivity, and reproducibility. Therefore, a clean-up step is recommended, but an over-purified extract can lead to analyte loss due to adsorption to the sorbent. This study provides a systematic comparison of the advantages and disadvantages of the well-established dSPE sorbents PSA, GCB, and C18 and the novel dSPE sorbents chitin, chitosan, multi-walled carbon nanotube (MWCNT), and Z-Sep® (zirconium-based sorbent). They were tested regarding their clean-up capacity by visual inspection, UV, and GC-MS measurements. The recovery rates of 98 analytes, including pesticides, active pharmaceutical ingredients, and emerging environmental pollutants with a broad range of physicochemical properties, were determined by GC-MS/MS. Experiments were performed with five different matrices, commonly used in food analysis (spinach, orange, avocado, salmon, and bovine liver). Overall, Z-Sep® was the best sorbent regarding clean-up capacity, reducing matrix components to the greatest extent with a median of 50% in UV and GC-MS measurements, while MWCNTs had the largest impact on analyte recovery, with 14 analytes showing recoveries below 70%. PSA showed the best performance overall.
Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Nanotubos de Carbono , Extração em Fase Sólida , Extração em Fase Sólida/métodos , Adsorção , Nanotubos de Carbono/química , Quitosana/química , Espectrometria de Massas em Tandem , Poluentes Ambientais/análise , Poluentes Ambientais/química , Poluentes Ambientais/isolamento & purificação , Animais , BovinosRESUMO
The objective of the present study is to provide reliable concentration values as assigned values for target pesticides in brown rice samples used in proficiency testing (PT) organized by the Hatano Research Institute (HRI). The test samples for PT were prepared by immersing brown rice in the pesticide solution and using a spray dryer by the HRI. Homogeneity and stability assessments were performed for PT samples, and the relative uncertainties due to inhomogeneity and instability were 0.58 %-0.78 % and 0 %-0.96 %, respectively. Quantification for the assigned values of target pesticides by the National Metrology Institute of Japan (NMIJ) was carried out using the multiple analytical methods including Japanese official analytical method, QuEChERS, and modified QuEChERS, which were combined with isotope dilution mass spectrometry, to ensure the reliability of the analytical results. The NMIJ assigned values were 0.065±0.004 mg/kg for chlorpyrifos, 0.217±0.012 mg/kg for diazinon, 0.138±0.008 mg/kg for fenitrothion, and 0.138±0.008 mg/kg for malathion.
RESUMO
Residues of plant growth regulators (PGRs) in homologous materials of medicine and food threaten public health. This study aimed to develop a rapid, sensitive, and high-throughput method for simultaneously determining 16 PGR residues in homologous materials of medicine and food. Furthermore, the established method was applied to actual samples to assess the potential exposure risk of multi-PGR residues. A modified high-throughput quick, easy, cheap, effective, rugged, and safe (QuEChERS) method coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed and validated. The extraction solvent, type of extraction method, and subsequent purification techniques were investigated to achieve a better analysis of the target. Risk assessment was based on chronic dietary risk assessment. Ultrasonic extraction with 1% formic acid-acetonitrile was employed, and MgSO4 + NaAc was selected as the clean-up sorbent. The 16 PGRs showed a good linear relationship in the range of 1 ~ 200 µg/L (r ≥ 0.9960), with detection limits ranging from 0.3 to approximately 3 µg/kg. The recovery rate ranged from 65 to 109%, with RSD from 0.01 to 10% (n = 6). The total detection rate of 16 PGRs in the samples was 87%. The risk assessment indicated that the multi-residues of PGRs in homologous materials of medicine and food would not pose a potential risk to human health. This work provides a valuable reference for the monitoring of multiple PGRs. It has also improved our understanding of the possible exposure risk of PGR residues in homologous materials of medicine and food.
Assuntos
Exposição Dietética , Contaminação de Alimentos , Reguladores de Crescimento de Plantas , Espectrometria de Massas em Tandem , Medição de Risco , Contaminação de Alimentos/análise , Reguladores de Crescimento de Plantas/análise , Cromatografia Líquida de Alta Pressão , Humanos , Monitoramento Ambiental/métodosRESUMO
Nitroimidazoles are well-known antibacterial and antiprotozoal agents, effective against various infections. However, they may also exhibit genotoxic, carcinogenic and mutagenic effects. This study aimed to develop an analytical method to quantify nitroimidazole residues and their metabolites in honey using Ultra Performance Liquid Chromatography coupled with Orbitrap High-Resolution Mass Spectrometry (UPLC-Orbitrap-HRMS) and validate it according to Commission Implementing Regulation (EU) 2021/808. The method demonstrated limits of detection (LODs) ranging from 0.01 to 0.17 µg L-1 and limits of quantification (LOQs) from 0.020 to 0.29 µg L-1. Recovery rates ranged from 79.8% to 104%, with relative standard deviations (RSDs) between 4.2% and 19.6%. Analysis of 96 honey samples revealed nitroimidazole residues in 18.8% of them. These findings could enhance more effectively the Egyptian monitoring programs for these compounds in honey as to improve food safety.
RESUMO
To develop a clean-up material suitable for high-fat food matrices for detecting mycotoxins in yak ghee, an octadecyl-bonded hectorite (Hectorite@NHCO(CH2)17CH3) was synthesized through multi-step chemical reactions. A modified QuEChERS-HPLC-MS/MS method for detecting ten mycotoxins in sesame oil in yak ghee was established using Hectorite@NHCO(CH2)17CH3 as clean-up agent. It involved extracting mycotoxin contaminants using acidified acetonitrile and employing the Hectorite@NHCO(CH2)17CH3 to remove interfering substances from the extract. The purified samples were then analyzed using HPLC-MS/MS. Within a linear range of 1.0-500 µg/kg, there was a good linear relationship between the quantification ion peak area of the target analytes and the corresponding concentrations (R2 ≥ 0.9991). The limit of detection (LOD) ranged from 0.10 µg/kg to 18.62 µg/kg and the limit of quantitation (LOQ) ranged 0.32-62.07 µg/kg. The recoveries at low, medium and high concentrations (25, 100 and 500 µg/kg) ranged from 72.2% to 113.9%, with relative standard deviations (RSD) between 3.2% and 17.5%. The intra-day and inter-day precision met experimental requirements. The proposed method was characterized by a high accuracy and precision, and it could cater to the current demand for detecting ten mycotoxins in yak ghee.
RESUMO
PURPOSE: An analytical method was developed for determining ropivacaine and its main metabolite, 3-hydroxyropivacaine in biomedical samples using gas chromatography-tandem mass spectrometry (GC-MS/MS). Then, this established method was applied to investigate the distribution of ropivacaine and its metabolite in human fluids and solid tissues obtained from an authentic case ropivacaine involved. METHODS: The fluid sample was added acetonitrile, and solid tissue was homogenized using a freezer mill and then added into acetonitrile. Then, an internal standard solution was added to the mixtures. The mixture was centrifuged at 12,000 × g for 5 min, and the upper layer of acetonitrile was transferred to magnesium sulfate and octadecyl silica (C18) gel for cleaning up the sample. After centrifugation, the upper layer was then evaporated to dryness with nitrogen, and dissolved with methanol, then injected into the GC-MS/MS system. RESULTS: The coefficients of determination (r2) of constructed calibration curves were all greater than 0.999. The limits of detection for ropivacaine and 3-hydroxyropivacaine in target samples were 15 ng/mL and 10 ng/mL, respectively. The recovery rates of ropivacaine and 3-hydroxyropivacaine ranged from 97.6% to 103% and from 96.5% to 104%, respectively. The inter-day precision values of ropivacaine and 3-hydroxyropivacaine were not greater than 6.25% and 7.98%, respectively, and the inter-day trueness values were not greater than 6.90% and 8.33%, respectively; the intra-day precision and trueness values of ropivacaine and 3-hydroxyropivacaine were not greater than 3.20%, 6.78%, 7.84% and 8.99%, respectively. CONCLUSIONS: GC-MS/MS method for simultaneous detection and quantification of ropivacaine and 3-hydroxyropivacaine in biological samples was successfully developed. The method could also be applied to samples obtained from an authentic case; their distribution among tested fluids and solid tissues were also measured. This is the first report on the distribution of ropivacaine and its major metabolite 3-hydroxyropivacaine in a human case.
RESUMO
Polycyclic aromatic hydrocarbons (PAHs) represent important toxic compounds formed in meat products during processing. This study aims to analyze 22 PAHs by QuEChERS coupled with GC-MS/MS in canned minced chicken and pork during processing. After marinating raw minced chicken and pork separately with a standard flavoring formula used for canning meat in Taiwan, they were subjected to different processing conditions including stir-frying, degassing and sterilizing at 115 °C/60 min (low-temperature-long-time, LTLT) and 125 °C/25 min (high-temperature-short-time, HTST). The quantitation of PAHs in these meat products revealed the formation of only three PAHs including acenaphthylene (AcPy), acenaphthene (AcP) and pyrene (Pyr) in canned minced chicken and pork during processing with no significant difference in total PAHs between the meat types. Analysis of PAH precursors showed the presence of benzaldehyde at the highest level, followed by 2-cyclohexene-1-one and trans,trans-2,4-decadienal in canned minced chicken and pork, suggesting PAH formation through the reaction of benzaldehyde with linoleic acid degradation products and of 2-cyclohexene-1-one with C4 compounds through the Diels-Alder reaction, as well as the reaction of trans,trans-2,4-decadienal with 2-butene. Monounsaturated and polyunsaturated fatty acids were present in the largest proportion in LTLT-sterilized chicken/pork, followed by HTST-sterilized chicken/pork and raw chicken/pork, and their levels did not show a high impact on PAH formation, probably due to an insufficient heating temperature and length of time. A two-factorial analysis suggested that PAH formation was not significantly affected by the sterilization condition or meat type. Principal component analysis corroborated the observed results implying the formation of PAHs in canned minced chicken/pork under different processing conditions with an insignificant difference (p > 0.05) between them, with the individual PAH content following the order of Pyr > AcPy > AcP.
Assuntos
Galinhas , Hidrocarbonetos Policíclicos Aromáticos , Animais , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Suínos , Cromatografia Gasosa-Espectrometria de Massas , Manipulação de Alimentos/métodos , Produtos da Carne/análise , Espectrometria de Massas em Tandem , Contaminação de Alimentos/análiseRESUMO
A QuEChERS (quick, easy, cheap, effective, rugged, and safe)-based multi-mycotoxin method was developed, analyzing 24 (17 free and 7 modified) Alternaria and Fusarium toxins in cereals via ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). A modified QuEChERS approach was optimized for sample preparation. Quantification was conducted using a combination of stable isotope dilution analysis (SIDA) for nine toxins and matrix-matched calibration for ten toxins. Quantification via a structurally similar internal standard was conducted for four analytes. Alternariol-9-sulfate (AOH-9-S) was measured qualitatively. Limits of detection (LODs) were between 0.004 µg/kg for enniatin A1 (ENN A1) and 3.16 µg/kg for nivalenol (NIV), while the limits of quantification were between 0.013 and 11.8 µg/kg, respectively. The method was successfully applied to analyze 136 cereals and cereal-based foods, including 28 cereal-based infant food products. The analyzed samples were frequently contaminated with Alternaria toxins, proving their ubiquitous occurrence. Interestingly, in many of those samples, some modified Alternaria toxins occurred, mainly alternariol-3-sulfate (AOH-3-S) and alternariol monomethyl ether-3-sulfate (AME-3-S), thus highlighting the importance of including modified mycotoxins in the routine analysis as they may significantly add to the total exposure of their parent toxins. Over 95% of the analyzed samples were contaminated with at least one toxin. Despite the general contamination, no maximum or indicative levels were exceeded.
Assuntos
Alternaria , Grão Comestível , Contaminação de Alimentos , Fusarium , Limite de Detecção , Micotoxinas , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Grão Comestível/química , Grão Comestível/microbiologia , Cromatografia Líquida de Alta Pressão/métodos , Micotoxinas/análise , Fusarium/química , Alternaria/química , Contaminação de Alimentos/análiseRESUMO
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants with bioaccumulation potential, particularly affecting aquatic ecosystems and human health also via fish consumption. There is therefore a need for reliable extraction methods and studies to accurately assess PFAS levels in fish, crucial for understanding bioaccumulation and potential toxicological effects on both fish and humans through consumption. This study investigated PFAS levels in freshwater fish from Swiss lakes, focusing on six common species: Coregonus wartmanni, Cyprinus carpio, Oncorhynchus mykiss, Perca fluviatilis, Salmo trutta, and Squalius cephalus. Utilizing an optimized QuEChERS extraction method, 15 PFAS were analyzed in 218 fish fillet samples using liquid chromatography-mass spectrometry (LC-MS/MS). The results were compared to EU regulations and EFSA guidelines for tolerable weekly intake (TWI), with a specific focus on correlations between fish size and PFAS concentration. Our findings reveal significant PFAS contamination, particularly in Perca fluviatilis with perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS) levels often exceeding EU safety limits. TWI, calculated for a person of 70 kg body weight and an intake of 200 g of fish fillet, is exceeded in 95% of Coregonus wartmanni, 100% of Squalius cephalus, and in 55%, 50%, and 36% of the specimens Oncorhynchus mykiss, Salmo trutta, and Perca fluviatilis respectively. Correlation analysis between PFAS concentration and fish size in 121 Salmo trutta specimens revealed significant positive correlations for perfluorobutane sulfonic acid (PFBS), perfluorodecanoic acid (PFDA), and perfluorohexane sulfonic acid (PFHxS), and a negative correlation for perfluoropentanoic acid (PFPeA). These results underscore the critical need for continuous monitoring and regulatory efforts to mitigate PFAS exposure risks to both ecosystems and human health.
Assuntos
Peixes , Fluorocarbonos , Lagos , Espectrometria de Massas em Tandem , Poluentes Químicos da Água , Animais , Fluorocarbonos/análise , Peixes/metabolismo , Poluentes Químicos da Água/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Suíça , Monitoramento Ambiental/métodos , Ácidos Alcanossulfônicos/análiseRESUMO
Background: Maternal fluids play a key role in the risk assessment regarding early life pesticide exposure as the chemicals can transfer to neonate through prenatal exposure and lactation.Aim: A developed UHPLC-DAD and modified QuChERS methods were validated for human serum and breast milk. Matrix effect of the biological samples were evaluated.Methods & results: Serum was extracted by unbuffered QuChERS method while breast milk was extracted by citrate buffered method with addition of hexane. Remaining lipid in breast milk extract was later removed using lipid-removal sorbent. Sample matrices caused huge impacted on low-sensitivity pesticides.Conclusion: The modified QuEChERS methods coupled with UHPLC-DAD were fully validated. Application in paired-serum and breast milk samples revealed 6 detected pesticides.
[Box: see text].
RESUMO
A novel approach was developed to simultaneously determine the contents of vitamins D2, D3, K1, and K2 in yogurt fortified with nanoencapsulated vitamins D and K. This method combines QuEChERS extraction with UPLC-APCI-MS/MS analysis. Optimization of the QuEChERS process included fine-tuning the addition of salts using response surface methodology based on the Box-Behnken design. Under the optimized conditions, the developed method exhibited an excellent linearity (R2 > 0.999) across concentrations ranging from 0.5 to 500 µg/L. The limits of detection and quantification (LOD and LOQ) were found to be 0.01-0.04 µg/L and 0.04-0.11 µg/L, respectively, with precision, accuracy, and recovery rates exceeding 94.88 %, and accompanied by acceptable relative standard deviations. Comparative analysis with traditional methodologies revealed the significant advantages of the proposed approach. Previous techniques such as liquid-liquid extraction combined with saponification are time-consuming and require high sample quantities. In addition, dispersive liquid-liquid microextraction requires a long analysis time and exhibits a poor sensitivity, particularly in terms of its LOD and LOQ values. In contrast, our method offers a straightforward, efficient, and reliable sample preparation technique suitable for detecting vitamins D2, D3, K1, and K2 in a yogurt matrix. This study not only demonstrates the feasibility of applying the QuEChERS method for stable vitamin quantification in yogurt, but it also represents an innovative contribution to enhancing the detection sensitivity and efficiency in food analysis. By emphasizing these methodological advancements and comparative benefits, this research underscores the significance of adopting advanced analytical approaches in food science.
Assuntos
Limite de Detecção , Espectrometria de Massas em Tandem , Iogurte , Iogurte/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Vitamina D/análise , Reprodutibilidade dos Testes , Alimentos Fortificados/análiseRESUMO
Supervised field trial studies were conducted to understand dissipation kinetics and harvest time residues of a combination product of fluxapyroxad and pyraclostrobin in cumin plant/leaves and seeds at different locations in India. The results showed initial accumulation of fluxapyroxad at the levels of 15.4 and 20.2 mg kg-1 and pyraclostrobin at the level of 21.2 and 33.4 mg kg-1 in cumin leaves/plant in Anand, Gujarat. Fluxapyroxad and pyraclostrobin followed zero-order and first-order dissipation kinetics in cumin plant/leaves samples respectively. The residues translocated to cumin seeds. As the hazard quotient (HQ) was <1 in all cases consumer health risk may be negligible.
Assuntos
Cuminum , Fungicidas Industriais , Estrobilurinas , Estrobilurinas/análise , Estrobilurinas/química , Fungicidas Industriais/análise , Fungicidas Industriais/química , Cinética , Cuminum/química , Medição de Risco , Resíduos de Praguicidas/análise , Índia , Pirazóis/análise , Pirazóis/química , Sementes/química , Folhas de Planta/química , Contaminação de Alimentos/análise , AmidasRESUMO
Cucumber (Cucumis sativus L.) is the world's most widely consumed salad vegetable, and it is frequently treated with pesticides to prevent pest and disease outbreaks. Pesticide residues in food commodities impede trade and pose a major health risk. Prior to residue estimation, the QuEChERS approach was validated utilising criteria such as limit of detection, limit of quantitation, linearity, accuracy, and precision. The residues of carbendazim, cypermethrin, ethion, profenofos, quinalphos, and triazophos were examined using a Gas Chromatograph equipped with an Electron Capture Detector or a Flame Photometric Detector and a high-performance liquid chromatography coupled to a photo diode array. The initial deposits of carbendazim, cypermethrin, ethion, profenofos, quinalphos, and triazophos at the prescribed dose were 1.235, 0.407, 0.817, 0.960, 0.628, and 0.985 mg/kg, respectively, with a pre-harvest interval of 5.58-11.30 days. According to the consumer risk evaluation data, the Hazard Quotient is less than one, and the Theoretical Maximum Dietary Intake is less than the Maximum Permissible Intake and Maximum Residue Limit, both of which are considered safe for human consumption at the authorised dose.
Assuntos
Cucumis sativus , Contaminação de Alimentos , Organotiofosfatos , Resíduos de Praguicidas , Cucumis sativus/química , Resíduos de Praguicidas/análise , Contaminação de Alimentos/análise , Medição de Risco , Organotiofosfatos/análise , Triazóis/análise , Carbamatos/análise , Piretrinas/análise , Praguicidas/análise , Humanos , Exposição Dietética/estatística & dados numéricos , Monitoramento Ambiental/métodos , Benzimidazóis , Compostos OrganotiofosforadosRESUMO
This study concerns the synthesis of the florfenicol (FF) metabolites florfenicol amine (FFA), florfenicol alcohol (FFOH), and monochloroflorfenicol (FFCl), for their subsequent use as reference standards in On-line solid-phase extraction-ultra high-performance liquid chromatography-tandem mass spectrometry (SPE-UHPLC-MS/MS) analysis. The metabolites were characterized using 1H and 13C NMR, as well as HRMS, and their purities were confirmed by quantitative NMR to ensure analytical reliability. Validation of the developed analytical method showed that it presented acceptable performance, with linearity >0.99 for all the target analytes, accuracies within ±10 % of nominal concentrations, and intra- and inter-day precisions within 15 %. Application of this method to fillets from fish that had been treated with florfenicol (dose of 10 mg/kg bw daily) demonstrated its effectiveness in consistently detecting FF and its metabolites throughout the treatment. The results emphasized the utility of the method for enhancing pharmacokinetic and residue depletion research. The ability to precisely monitor the drug and its metabolites in treated fish provides important insights into florfenicol metabolism, laying the groundwork for further comprehensive profiling studies of metabolites in fish tissue.
Assuntos
Extração em Fase Sólida , Espectrometria de Massas em Tandem , Tianfenicol , Tianfenicol/análogos & derivados , Tianfenicol/análise , Tianfenicol/metabolismo , Tianfenicol/farmacocinética , Tianfenicol/química , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/métodos , Reprodutibilidade dos Testes , Modelos Lineares , Limite de Detecção , Ciclídeos/metabolismo , Resíduos de Drogas/análise , Resíduos de Drogas/metabolismo , Antibacterianos/análise , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/metabolismo , Alimentos Marinhos/análiseRESUMO
Veterinary drugs play a crucial role in the treatment of various animal diseases. However, their residues, stemming from issues, such as withdrawal period lapses, overuse, or abuse, can jeopardize food safety and human health. This study addresses recent regulations in Korea concerning specific veterinary drugs (anacolin, ephedrine, menichlopholan, piperonyl butoxide, and etisazole HCl) and their ongoing discussions. This study aimed to validate two pre-developed methods for quantifying residues in livestock and fishery products using QuEChERS and liquid chromatography-tandem mass spectrometry. Both methods exhibited excellent linearity, recoveries (70.3-119%), and coefficient of variations (1.3-28%), along with low limits of detection and quantification (0.3-4 ng/g and 1-12 ng/g). This study is significant for its contribution to the detection of veterinary drugs in livestock and fishery products, given the limited research available on the methods for analyzing these substances.
Assuntos
Resíduos de Drogas , Contaminação de Alimentos , Gado , Espectrometria de Massas em Tandem , Drogas Veterinárias , Resíduos de Drogas/análise , Drogas Veterinárias/análise , República da Coreia , Animais , Espectrometria de Massas em Tandem/métodos , Contaminação de Alimentos/análise , Limite de Detecção , Cromatografia Líquida de Alta Pressão , PesqueirosRESUMO
Corn is the second most widely farmed grain for human consumption. Low corn productivity due to damage caused by pests has led to using pesticides to control pest infestations. However, the uncontrolled application of pesticides on corn harms both environmental and human health. Accordingly, field experiments followed good agricultural practices to investigate the dissipation pattern and terminal residues of chlorfenapyr and methomyl in corn and compare the values with established safety limits. Gas chromatography-tandem mass spectrometer coupled with the quick, easy, cheap, effective, rugged, and safe technique was used to analyze residues of chlorfenapyr and methomyl in corn. The average recoveries varied from 94% to 105%, with relative standard deviations (RSDs) of 8%-13% for chlorfenapyr and from 99% to 111%, with RSDs of 10-16% for methomyl. Chlorfenapyr and methomyl residues degraded in corn following a first-order kinetic model, with an estimated half-life (t1/2) of 3.9 and 2.8 days, respectively, and significant degradation (91.4%-98.1.5%, respectively) after 14 days. Although the maximum residue limits of chlorfenapyr and methomyl for corn are yet to be formulated in Egypt, the long-term dietary risk for those pesticides was acceptable, with arisk quotient < 100%, according to the national assessments. These findings are required to guide the correct and safe application of these insecticides in Egypt.