Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 14(8): 4082-4095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39267687

RESUMO

RNF26 is an important E3 ubiquitin ligase that has been associated with poor prognosis in bladder cancer. However, the underlying mechanisms of RNF26 in bladder cancer tumorigenesis are not fully understood. In the present study, we found that RNF26 expression level was significantly upregulated in the bladder cancer tissues, and higher RNF26 expression is closely associated with poorer prognosis, lower immune cell infiltration, and more sensitive to immune checkpoint blockade drugs and chemotherapy drugs, including cisplatin, VEGFR-targeting drugs and MET-targeting drugs. RNF26 knockdown in UMUC3 and T24 cell lines inhibited cell growth, colony formation and migratory capacity. Meanwhile, RNF26 overexpression had the opposite effects. Mechanistically, RNF26 exerts its oncogenic function by binding to TRIM21 and promoting its ubiquitination and subsequent degradation. Moreover, we revealed ZHX3 as a downstream target of RNF26/TRIM21 pathway in bladder cancer. Taken together, we identified a novel RNF26/TRIM21/ZHX3 axis that promotes bladder cancer progression. Thus, the RNF26/TRIM21/ZHX3 axis constitutes a potential efficacy predictive marker and may serve as a therapeutic target for the treatment of bladder cancer.

2.
EMBO J ; 42(18): e111252, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37519262

RESUMO

Proteotoxic stress causes profound endoplasmic reticulum (ER) membrane remodeling into a perinuclear quality control compartment (ERQC) for the degradation of misfolded proteins. Subsequent return to homeostasis involves clearance of the ERQC by endolysosomes. However, the factors that control perinuclear ER integrity and dynamics remain unclear. Here, we identify vimentin intermediate filaments as perinuclear anchors for the ER and endolysosomes. We show that perinuclear vimentin filaments engage the ER-embedded RING finger protein 26 (RNF26) at the C-terminus of its RING domain. This restricts RNF26 to perinuclear ER subdomains and enables the corresponding spatial retention of endolysosomes through RNF26-mediated membrane contact sites (MCS). We find that both RNF26 and vimentin are required for the perinuclear coalescence of the ERQC and its juxtaposition with proteolytic compartments, which facilitates efficient recovery from ER stress via the Sec62-mediated ER-phagy pathway. Collectively, our findings reveal a scaffolding mechanism that underpins the spatiotemporal integration of organelles during cellular proteostasis.


Assuntos
Filamentos Intermediários , Estresse Proteotóxico , Filamentos Intermediários/metabolismo , Vimentina/genética , Vimentina/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Autofagia
3.
Int J Biol Sci ; 18(5): 2132-2145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342353

RESUMO

Clear cell renal cell carcinoma (ccRCC) accounts for 85% of all malignant renal tumors. Currently, the pathogenesis of ccRCC is not fully understood. Chromobox (CBX) family proteins are the major subunits of PcG complexes and are implicated in regulating mammalian development. The CBX family consists of eight members, namely, CBX1-8. Numerous studies have highlighted that each CBX protein exhibits distinct functions and prognostic roles in specific cancer types. In this study, in silico analysis indicated that CBX7 was downregulated in ccRCC and correlated with favorable prognosis in a ccRCC cohort. Subsequent studies showed that CBX7 inhibited cancer cell proliferation and invasion. Then, we showed that CBX7 downregulated ETS1 to inactivate the tumor necrosis factor (TNF) signaling pathway, which inhibited tumor proliferation and enhanced the sensitivity of ccRCC cells to tyrosine kinase inhibitors (TKIs). Moreover, we found that CBX7 was a bona fide substrate of RNF26. RNF26 promoted the degradation of CBX7 and enhanced ccRCC tumor growth. Therefore, our results revealed a novel RNF26/CBX7 axis that modulates the TNF signaling pathway in ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Renais/genética , Masculino , Mamíferos/metabolismo , Proteínas de Neoplasias/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo
4.
Cell Rep ; 34(3): 108659, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472082

RESUMO

The endolysosomal system fulfills a wide variety of cellular functions, many of which are modulated through interactions with other organelles. In particular, the ER exerts spatiotemporal constraints on the organization and motility of endosomes and lysosomes. We have recently described the ER transmembrane E3 ubiquitin ligase RNF26 as a regulator of endolysosomal perinuclear positioning and transport dynamics. Here, we report that the ubiquitin conjugating enzyme UBE2J1, also anchored in the ER membrane, partners with RNF26 in this context, and that the cellular activity of the resulting E2/E3 pair is localized in a perinuclear ER subdomain and supported by transmembrane interactions. Through modification of SQSTM1/p62 on lysine 435, the ER-embedded UBE2J1/RNF26 ubiquitylation complex recruits endosomal adaptors to immobilize their cognate vesicles in the perinuclear region of the cell. The resulting spatiotemporal compartmentalization promotes the trafficking of activated EGFR to lysosomes and facilitates the termination of EGF-induced AKT signaling.


Assuntos
Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Análise Espaço-Temporal , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Humanos
5.
Elife ; 92020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32614325

RESUMO

Ubiquitin ligases (E3s) embedded in the endoplasmic reticulum (ER) membrane regulate essential cellular activities including protein quality control, calcium flux, and sterol homeostasis. At least 25 different, transmembrane domain (TMD)-containing E3s are predicted to be ER-localised, but for most their organisation and cellular roles remain poorly defined. Using a comparative proteomic workflow, we mapped over 450 protein-protein interactions for 21 stably expressed, full-length E3s. Bioinformatic analysis linked ER-E3s and their interactors to multiple homeostatic, regulatory, and metabolic pathways. Among these were four membrane-embedded interactors of RNF26, a polytopic E3 whose abundance is auto-regulated by ubiquitin-proteasome dependent degradation. RNF26 co-assembles with TMEM43, ENDOD1, TMEM33 and TMED1 to form a complex capable of modulating innate immune signalling through the cGAS-STING pathway. This RNF26 complex represents a new modulatory axis of STING and innate immune signalling at the ER membrane. Collectively, these data reveal the broad scope of regulation and differential functionalities mediated by ER-E3s for both membrane-tethered and cytoplasmic processes.


Assuntos
Retículo Endoplasmático/metabolismo , Imunidade Inata , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Proteômica
6.
Traffic ; 19(10): 761-769, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29900632

RESUMO

Lysosomes are highly dynamic organelles that can move rapidly throughout the cell. They distribute in a rather immobile pool located around the microtubule-organizing center in a "cloud," and a highly dynamic pool in the cell periphery. Their spatiotemporal characteristics allow them to carry out multiple biological functions, such as cargo degradation, antigen presentation and plasma membrane repair. Therefore, it is not surprising that lysosomal dysfunction underlies various diseases, including cancer, neurodegenerative and autoimmune diseases. In most of these biological events, the involvement of lysosomes is dependent on their ability to move throughout the cytoplasm, to find and fuse to the correct compartments to receive and deliver substrates for further handling. These dynamics are orchestrated by motor proteins moving along cytoskeletal components. The complexity of the mechanisms responsible for controlling lysosomal transport has recently been appreciated and has yielded novel insights into interorganellar communication, as well as lipid-protein interplay. In this review, we discuss the current understanding of the mechanisms of lysosomal transport and the molecular machineries that control this mobility.


Assuntos
Movimento Celular/fisiologia , Endocitose/fisiologia , Lisossomos/fisiologia , Transporte Biológico , Dineínas/metabolismo , Membranas Intracelulares/metabolismo , Membranas Intracelulares/fisiologia , Cinesinas/metabolismo , Lisossomos/metabolismo , Modelos Biológicos , Miosinas/metabolismo , Fosfatidilinositóis/metabolismo , Análise Espaço-Temporal
7.
Cell ; 166(1): 152-66, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27368102

RESUMO

Through a network of progressively maturing vesicles, the endosomal system connects the cell's interior with extracellular space. Intriguingly, this network exhibits a bilateral architecture, comprised of a relatively immobile perinuclear vesicle "cloud" and a highly dynamic peripheral contingent. How this spatiotemporal organization is achieved and what function(s) it curates is unclear. Here, we reveal the endoplasmic reticulum (ER)-located ubiquitin ligase Ring finger protein 26 (RNF26) as the global architect of the entire endosomal system, including the trans-Golgi network (TGN). To specify perinuclear vesicle coordinates, catalytically competent RNF26 recruits and ubiquitinates the scaffold p62/sequestosome 1 (p62/SQSTM1), in turn attracting ubiquitin-binding domains (UBDs) of various vesicle adaptors. Consequently, RNF26 restrains fast transport of diverse vesicles through a common molecular mechanism operating at the ER membrane, until the deubiquitinating enzyme USP15 opposes RNF26 activity to allow vesicle release into the cell's periphery. By drawing the endosomal system's architecture, RNF26 orchestrates endosomal maturation and trafficking of cargoes, including signaling receptors, in space and time.


Assuntos
Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Neoplasias/metabolismo , Linhagem Celular Tumoral , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Proteína Sequestossoma-1/metabolismo , Vesículas Transportadoras/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...