Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
1.
Bioorg Chem ; 153: 107787, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39243738

RESUMO

(±)-Elodeoidileons A-L (1-12), 12 pairs of previously undescribed filicinic acid based meroterpenoids were isolated from Hypericum elodeoides with unique linear or angular 6/6/6 ring core. Modern spectroscopic techniques, modified Mosher's method and quantum chemical calculations were used to identify the planner structures and configurations of 1-12. Additionally, the potential biosynthetic pathways for 1-12 were anticipated. Moreover, biological activity assessments suggested that 1a, 5a, and 11b could activate Retinoid X receptor-α (RXRα) transcription and enhance the ATP-binding cassette transporter A1 (ABCA1) protein's expression. Fluorescence titration assay suggested that 1a might have a direct interaction with the RXRα-LBD protein, with an estimated Kd value of 5.85 µM. Moreover, molecular docking study confirmed the binding of 1a to RXRα and further validated by cellular thermal shift assay (CETSA). Thus, compound 1a may promote ß-amyloid (Aß) clearance by targeting RXRα and upregulating the expression of the ABCA1 protein, showing promise as anti-Alzheimer's agent.

2.
Dev Cell ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39232563

RESUMO

Intestinal stem cells (ISCs) are highly vulnerable to damage, being in a constant state of proliferation. Reserve stem cells repair the intestinal epithelium following damage-induced ablation of ISCs. Here, we report that the epigenetic regulator plant homology domain (PHD) finger protein 16 (PHF16) restores homeostasis of the intestinal epithelium after initial damage-induced repair. In Phf16-/Y mice, revival stem cells (revSCs) showed defects in exiting the regenerative state, and intestinal crypt regeneration failed even though revSCs were still induced in response to tissue damage, as observed by single-cell RNA sequencing (scRNA-seq). Analysis of Phf16-/Y intestinal organoids by RNA sequencing (RNA-seq) and ATAC sequencing identified that PHF16 restores homeostasis of the intestinal epithelium by inducing retinoic acid receptor (RAR)/retinoic X receptor (RXR) target genes through HBO1-mediated histone H3K14 acetylation, while at the same time counteracting YAP/TAZ activity by ubiquitination of CDC73. Together, our findings demonstrate the importance of timely suppression of regenerative activity by PHF16 for the restoration of gut homeostasis after acute tissue injury.

3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(8): 1518-1528, 2024 Aug 20.
Artigo em Chinês | MEDLINE | ID: mdl-39276047

RESUMO

OBJECTIVE: To elucidate the therapeutic mechanism of Qingxin Jieyu Granule (QXJYG) against atherosclerosis (AS) based on network pharmacology. METHODS: The major targets and pathways of QXJYG against AS were analyzed using network pharmacology. Rat models of AS established by high-fat feeding combined with intraperitoneal vitamin D3 injection were treated daily with normal saline, atorvastatin (13.15 mg/kg), or QXJYG at 0.99, 1.98, and 3.96 g/kg for 8 weeks (n=6). Ultrasound and HE staining were used to assess the function and pathologies of the abdominal aorta. Blood lipids and serum levels of Ang Ⅱ, ET-1, TXA2, PGI2, and ox-LDL of the rats were detected using an automatic biochemical analyzer or ELISA. The expressions of LOX-1, PPARγ, RXRα, p-P65, VCAM-1 and ICAM-1 in the abdominal aorta were detected with immunohistochemistry. RESULTS: The rat models of AS showed obvious abdominal aorta wall thickening, increased pulse wave velocity and pulse index, decreased inner diameter of the abdominal aorta, elevated levels of TC, LDL-C, Ang Ⅱ, ET-1 and TXA2, and lowered levels of HDL-C and PGI2. QXJYG and atorvastatin treatment of the rat models significantly alleviated histopathological changes of the abdominal aorta, decreased serum levels of TC, LDL-C, Ang Ⅱ, ET-1 and TXA2, and increased the levels of HDL-C and PGI2. Network pharmacology study suggested the therapeutic effect of QXJYG against AS was mediated by regulating lipid metabolism, PPAR and NF-κB pathways. Consistently, treatments with QXJYG were found to significantly decrease ox-LDL level and LOX-1, P-P65, VCAM-1 and ICAM-1 protein expressions while increasing PPARγ and RXRα expressions in the aorta of AS rats. CONCLUSION: QXJYG alleviates lipid metabolism disorder and improves histopathological changes of the abdominal aorta of AS rats possibly by lowering ox-LDL level, reducing LOX-1 expression, activating PPARγ and RXRα, and inhibiting P65 phosphorylation to reduce VCAM-1 and ICAM-1 expression in the aorta.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Metabolismo dos Lipídeos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Ratos , Metabolismo dos Lipídeos/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aorta Abdominal/metabolismo , Aorta Abdominal/efeitos dos fármacos , Farmacologia em Rede , Lipoproteínas LDL/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , PPAR gama/metabolismo , Masculino , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Molécula 1 de Adesão de Célula Vascular/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças , Lipídeos/sangue , Tromboxano A2/metabolismo , Epoprostenol/análogos & derivados , Receptores Depuradores Classe E
4.
Eur J Med Chem ; 277: 116779, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39163777

RESUMO

Acute promyelocytic leukemia (APL), a distinctive subtype of acute myeloid leukemia (AML), is characterized by the t(15; 17) translocation forming the PML-RARα fusion protein. Recent studies have revealed a crucial role of retinoid X receptor α (RXRα) in PML-RARα's tumorigenesis. This necessitates the development of dual RARα and RXRα targeting compounds for treating APL. Here, we developed a pair of brominated retinoid isomers, 5a and 5b, exhibiting RARα agonistic selectivity among the RAR subtypes and RXRα partial agonistic activities. In the treatment of APL cells, low doses (RARα activation range) of 5a and 5b degrade PML-RARα and strongly induce differentiation, while higher doses (RXRα activation range) induce G2/M arrest and apoptosis in both all-trans retinoic acid (ATRA)-sensitive and resistant cells. We replaced the bromine in 5a with chlorine or iodine to obtain compounds 7 or 8a. Interestingly, the chlorinated compound 7 tends to activate RXRα and induce G2/M arrest and apoptosis, while the iodinated compound 8a tends to activate RARα and induce differentiation. Together, our work underscores several advantages and characteristics of halogens in the rational design of RARα and RXRα ligands, offering three promising drug candidates for treating both ATRA-sensitive and resistant APL.


Assuntos
Antineoplásicos , Leucemia Promielocítica Aguda , Receptor alfa de Ácido Retinoico , Receptor X Retinoide alfa , Retinoides , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/patologia , Leucemia Promielocítica Aguda/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Retinoides/farmacologia , Retinoides/química , Retinoides/síntese química , Receptor X Retinoide alfa/metabolismo , Receptor X Retinoide alfa/antagonistas & inibidores , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Apoptose/efeitos dos fármacos , Halogenação , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral
5.
Chin Med ; 19(1): 113, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39182119

RESUMO

BACKGROUND: Studies have reported that polyphyllin I (PPI) had effective anti-tumor activity against hepatocellular carcinoma (HCC). However, the precise molecular mechanism of this action and the direct target remain unclear. The aim of this study was to discover the molecular targets and the exact mechanism of PPI in the treatment of HCC. METHODS: Various HCC cells and Zebrafish xenotransplantation models were used to examine the efficacy of PPI against HCC. A proteome microarray, surface plasmon resonance (SPR) analysis, small molecule transfection, and molecular docking were conducted to confirm the direct binding targets of PPI. Transcriptome and Western blotting were then used to determine the exact responding mechanism. Finally, the anticancer effect and its precise mechanism, as well as the safety of PPI, were verified using a mouse tumor xenograft study. RESULTS: The results demonstrated that PPI had significant anticancer activity against HCC in both in vitro studies of two cells and the zebrafish model. Notably, PPI selectively enhanced the action of the Zinc finger and BTB domain-containing 16 (ZBTB16) protein by directly binding to it. Furthermore, specific knockdown of ZBTB16 markedly attenuated PPI-dependent inhibition of HCC cell proliferation and migration caused by overexpression of the gene. The transcriptome and Western blotting also confirmed that the interaction between ZBTB16 and PPI also activated the PPARγ/RXRα pathway. Finally, the mouse experiments confirmed the efficacy and safety of PPI to treat HCC. CONCLUSIONS: Our results indicate that ZBTB16 is a promising drug target for HCC and that PPI as a potent ZBTB16 agonist has potential as a therapeutic agent against HCC by regulating the ZBTB16/PPARγ/RXRα signaling axis.

6.
Toxicol Appl Pharmacol ; 490: 117042, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067772

RESUMO

Hepatocellular carcinoma (HCC) is a primary malignant tumor of the liver. As the global obesity rate rises, non-alcoholic fatty liver disease (NAFLD) has emerged as the most rapidly increasing cause of HCC. Consequently, the regulation of lipid metabolism has become a crucial target for the prevention and treatment of HCC. Liquidambaric acid (LDA), a pentacyclic triterpenoid compound derived from various plants, exhibits diverse biological activities. We found that LDA could inhibit HCC cell proliferation by arresting cell cycle and prompting apoptosis. Additionally, LDA can augment the therapeutic efficacy of Regorafenib in HCC in vitro and vivo. Our study utilized transcriptome analysis, luciferase reporter assays, and co-immunocoprecipitation experiments to elucidate the anti-HCC mechanism of LDA. We discovered that LDA disrupts the formation of the PPARα-RXRα heterodimer, leading to the down-regulation of the ACSL4 gene and subsequently impacting the fatty acid metabolism of HCC cells, ultimately inhibiting HCC proliferation. Our research contributes to the identification of novel therapeutic agents and targets for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Coenzima A Ligases , Regulação para Baixo , Ácidos Graxos , Neoplasias Hepáticas , PPAR alfa , Receptor X Retinoide alfa , PPAR alfa/metabolismo , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Receptor X Retinoide alfa/metabolismo , Receptor X Retinoide alfa/genética , Animais , Ácidos Graxos/metabolismo , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Células Hep G2 , Camundongos Nus , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Compostos de Fenilureia/farmacologia , Masculino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Metabolismo dos Lipídeos/efeitos dos fármacos , Piridinas
7.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38982717

RESUMO

Steroidogenesis is associated with circadian clock genes. However, the regulation of steroid hormone production in sow granulosal cells by Per2, a crucial circadian regulator, remains unexplored. In this study, we have identified the presence of Per2 in ovarian granulosa cells and have observed its circadian expression pattern. Employing siRNA to interfere with Per2 expression, our investigation revealed that Per2 knockdown notably elevated progesterone (P4) levels along with increasing the expression of StAR but interference of Per2 did not alter the rhythm of clock-related gene (Bmal1, Clock, Per1, and Cry1) in granulosa cells. Subsequent mechanistic analysis showed that Per2 formed complexes with PPARγ and interference with Per2 promoted the formation of the PPARγ:RXRα heterodimer. Importantly, we uncovered that PPARγ:RXRα heterodimer could control the expression of StAR via direct peroxisome proliferator response element binding to its promoter to regulate its activity, and knockdown of Per2 promoted the transcription of StAR via increasing the binding of PPARγ:RXRα ligands. Altogether, these findings indicated a noncanonical role of Per2 in controlling PPARγ:RXRα binding to regulate transcription of StAR and progesterone synthesis, thus revealing potential avenues of pharmacological and therapeutic intervention.


The circadian clock can regulate ovarian function, and disruption of the circadian clock caused by environmental factors can seriously affect the reproductive capacity of female animals, leading to ovarian diseases. Therefore, it is necessary to investigate the relationship between clock genes and ovarian function. In this study, Per2, a key gene for the circadian clock, was expressed in ovarian granulosa cells according to a rhythmic pattern, but knocking out Per2 did not alter the circadian rhythm in granulosa cells. Interference of Per2 notably elevated progesterone (P4) levels along with increasing the expression of StAR (a key gene for P4 synthesis) in granulosa cells. Subsequent mechanistic analysis showed that knockdown of Per2 enhanced transcription of StAR by promoting the formation of the PPARγ:RXRα heterodimer. These results indicated a noncanonical role of Per2 in regulating PPARγ:RXRα binding to control transcription of StAR and P4 production.


Assuntos
Regulação da Expressão Gênica , Células da Granulosa , Proteínas Circadianas Period , Fosfoproteínas , Progesterona , Animais , Células da Granulosa/metabolismo , Feminino , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Suínos , Progesterona/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , PPAR gama/genética , PPAR gama/metabolismo
8.
Asian Pac J Cancer Prev ; 25(7): 2329-2335, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39068565

RESUMO

INTRODUCTION: Prostate cancer has emerged as a widespread health concern, with systemic inflammation believed to substantially contribute to its development and progression. The presence of systemic inflammatory responses has been established as an independent predictor of unfavorable long-term outcomes in prostate cancer patients. The goal of this study is to inhibit RXRα and RXRß receptors, which are involved in prostate cancer, with Luteolin, Formononetin, and Kaempferol, with varying success. METHODS: Retinoid X receptors (RXRs) hold crucial roles within the nuclear receptor (NR) superfamily, and compelling evidence from preclinical studies underscores the therapeutic potential of targeting RXRs for treating neurodegenerative and inflammatory conditions. Consequently, the ability to regulate and modulate RXRs using phytoestrogen ligands, Formononetin, Kaempferol, and Luteolin, assume paramount importance in treatment strategies. RESULTS: The comprehensive in silico findings of this study vividly demonstrate the remarkable efficacy of Luteolin in inhibiting and modulating RXRα and RXRß, while Formononetin emerges as a notably potent suppressor of RXRß. Kaempferol, as the third compound, also exhibits commendable inhibitory attributes, although its impact is slightly less pronounced compared to the other two. DISCUSSION: These findings highlight the notable binding and inhibition capabilities to RXRα and RXRß, offering valuable insights for potential prostate cancer treatment avenues warranting further exploration through in vitro and in vivo analyses.


Assuntos
Isoflavonas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias da Próstata , Receptor X Retinoide alfa , Receptor X Retinoide beta , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Isoflavonas/farmacologia , Receptor X Retinoide alfa/metabolismo , Receptor X Retinoide beta/metabolismo , Quempferóis/farmacologia , Luteolina/farmacologia
9.
Mol Divers ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955977

RESUMO

Alpha-fetoprotein (AFP) is a glycoprotein primarily expressed during embryogenesis, with declining levels postnatally. Elevated AFP levels correlate with pathological conditions such as liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Recent investigations underscore AFP's intracellular role in HCC progression, wherein it forms complexes with proteins like Phosphatase and tensin homolog (PTEN), Caspase 3 (CASP3), and Retinoic acid receptors and Retinoid X receptors (RAR/RXR). RAR and RXR regulate gene expression linked to cell death and tumorigenesis in normal physiology. AFP impedes RAR/RXR dimerization, nuclear translocation, and function, promoting gene expression favoring cancer progression in HCC that provoked us to target AFP as a drug candidate. Despite extensive studies, inhibitors targeting AFP to disrupt complex formation and activities remain scarce. In this study, employing protein-protein docking, amino acid residues involved in AFP-RARß interaction were identified, guiding the definition of AFP's active site for potential inhibitor screening. Currently, kinase inhibitors play a significant role in cancer treatment and, the present study explores the potential of repurposing FDA-approved protein kinase inhibitors to target AFP. Molecular docking with kinase inhibitors revealed Lapatinib as a candidate drug of the AFP-RARß complex. Molecular dynamics simulations and binding energy calculations, employing Mechanic/Poisson-Boltzmann Surface Area (MM-PBSA), confirmed Lapatinib's stability with AFP. The study suggests Lapatinib's potential in disrupting the AFP-RARß complex, providing a promising avenue for treating molecularly stratified AFP-positive HCC or its early stages.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38619160

RESUMO

Understanding and tuning epitaxial complex oxide films are crucial in controlling the behavior of devices and catalytic processes. Substrate-induced strain, doping, and layer growth are known to influence the electronic and magnetic properties of the bulk of the film. In this study, we demonstrate a clear distinction between the bulk and surface of thin films of La0.67Sr0.33MnO3 in terms of chemical composition, electronic disorder, and surface morphology. We use a combined experimental approach of X-ray-based characterization methods and scanning probe microscopy. Using X-ray diffraction and resonant X-ray reflectivity, we uncover surface nonstoichiometry in the strontium and lanthanum alongside an accumulation of oxygen vacancies. With scanning tunneling microscopy, we observed an electronic phase separation (EPS) on the surface related to this nonstoichiometry. The EPS is likely driving the temperature-dependent resistivity transition and is a cause of proposed mixed-phase ferromagnetic and paramagnetic states near room temperature in these thin films.

11.
Biomed Pharmacother ; 174: 116598, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615609

RESUMO

Angiopoietin-like 3 (ANGPTL3) acts as an inhibitor of lipoprotein lipase (LPL), impeding the breakdown of triglyceride-rich lipoproteins (TGRLs) in circulation. Targeting ANGPTL3 is considered a novel strategy for improving dyslipidemia and atherosclerotic cardiovascular diseases (ASCVD). Hops (Humulus lupulus L.) contain several bioactive prenylflavonoids, including xanthohumol (Xan), isoxanthohumol (Isoxan), 6-prenylnaringenin (6-PN), and 8-prenylnaringenin (8-PN), with the potential to manage lipid metabolism. The aim of this study was to investigate the lipid-lowering effects of Xan, the effective prenylated chalcone in attenuating ANGPTL3 transcriptional activity, both in vitro using hepatic cells and in vivo using zebrafish models, along with exploring the underlying mechanisms. Xan (10 and 20 µM) significantly reduced ANGPTL3 mRNA and protein expression in HepG2 and Huh7 cells, leading to a marked decrease in secreted ANGPTL3 proteins via hepatic cells. In animal studies, orally administered Xan significantly alleviated plasma triglyceride (TG) and cholesterol levels in zebrafish fed a high-fat diet. Furthermore, it reduced hepatic ANGPTL3 protein levels and increased LPL activity in zebrafish models, indicating its potential to modulate lipid profiles in circulation. Furthermore, molecular docking results predicted that Xan exhibits a higher binding affinity to interact with liver X receptor α (LXRα) and retinoic acid X receptor (RXR) than their respective agonists, T0901317 and 9-Cis-retinoic acid (9-Cis-RA). We observed that Xan suppressed hepatic ANGPTL3 expression by antagonizing the LXRα/RXR-mediated transcription. These findings suggest that Xan ameliorates dyslipidemia by modulating the LXRα/RXR-ANGPTL3-LPL axis. Xan represents a novel potential inhibitor of ANGPTL3 for the prevention or treatment of ASCVD.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Dieta Hiperlipídica , Flavonoides , Metabolismo dos Lipídeos , Lipase Lipoproteica , Receptores X do Fígado , Propiofenonas , Peixe-Zebra , Animais , Receptores X do Fígado/metabolismo , Propiofenonas/farmacologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Flavonoides/farmacologia , Lipase Lipoproteica/metabolismo , Receptores X de Retinoides/metabolismo , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Chalconas/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo
12.
Genes (Basel) ; 15(4)2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38674394

RESUMO

Retinoic acid-induced 1 (RAI1) is a dosage-sensitive gene that causes autistic phenotypes when deleted or duplicated. Observations from clinical cases and animal models also suggest that changes of RAI1 expression levels contribute to autism. Previously, we used a bioinformatic approach to identify several single nucleotide polymorphisms (SNPs) located within the 5'-region of RAI1 that correlate with RAI1 mRNA expression in the human brain. In particular, the SNP rs4925102 was identified as a candidate cis-acting regulatory variant, the genotype of which may affect the binding of transcription factors that influence RAI1 mRNA expression. In this study, we provide experimental evidence based on reporter gene, chromatin immunoprecipitation (ChIP), and chromatin conformation capture (3C) assays that rs4925102 regulates RAI1 mRNA expression in an allele-specific manner in human cell lines, including the neuroblastoma-derived cell line SH-SY5Y. We also describe a statistically significant association between rs4925102 genotype and autism spectrum disorder (ASD) diagnosis in a case-control study and near-statistically significant association in an Autism Genome Project (AGP) transmission disequilibrium (TDT) study using Caucasian subjects.


Assuntos
Alelos , Polimorfismo de Nucleotídeo Único , Humanos , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Estudos de Casos e Controles , Transativadores/genética , Masculino , Predisposição Genética para Doença , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica/genética , Feminino , Genótipo
13.
J Bone Miner Res ; 39(2): 139-149, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38477735

RESUMO

Hip fractures are associated with significant disability, high cost, and mortality. However, the exact biological mechanisms underlying susceptibility to hip fractures remain incompletely understood. In an exploratory search of the underlying biology as reflected through the circulating proteome, we performed a comprehensive Circulating Proteome Association Study (CPAS) meta-analysis for incident hip fractures. Analyses included 6430 subjects from two prospective cohort studies (Cardiovascular Health Study and Trøndelag Health Study) with circulating proteomics data (aptamer-based 5 K SomaScan version 4.0 assay; 4979 aptamers). Associations between circulating protein levels and incident hip fractures were estimated for each cohort using age and sex-adjusted Cox regression models. Participants experienced 643 incident hip fractures. Compared with the individual studies, inverse-variance weighted meta-analyses yielded more statistically significant associations, identifying 23 aptamers associated with incident hip fractures (conservative Bonferroni correction 0.05/4979, P < 1.0 × 10-5). The aptamers most strongly associated with hip fracture risk corresponded to two proteins of the growth hormone/insulin growth factor system (GHR and IGFBP2), as well as GDF15 and EGFR. High levels of several inflammation-related proteins (CD14, CXCL12, MMP12, ITIH3) were also associated with increased hip fracture risk. Ingenuity pathway analysis identified reduced LXR/RXR activation and increased acute phase response signaling to be overrepresented among those proteins associated with increased hip fracture risk. These analyses identified several circulating proteins and pathways consistently associated with incident hip fractures. These findings underscore the usefulness of the meta-analytic approach for comprehensive CPAS in a similar manner as has previously been observed for large-scale human genetic studies. Future studies should investigate the underlying biology of these potential novel drug targets.


Hip fractures are associated with significant disability, high cost, and mortality. However, the exact biological mechanisms underlying susceptibility to hip fractures remain incompletely understood. To increase the understanding of the underlying mechanisms, we performed a meta-analysis of the associations between 4860 circulating proteins and risk of fractures using two large cohorts, including 6430 participants with 643 incident hip fractures. We identified 23 proteins/aptamers associated with incident hip fractures. Two proteins of the growth hormone/insulin growth factor system (GHR and IGFBP2), as well as GDF15 and EGFR were most strongly associated with hip fracture risk. High levels of several inflammation-related proteins were also associated with increased hip fracture risk. Pathway analysis identified reduced LXR/RXR activation and increased acute phase response signaling to be overrepresented among those proteins associated with increased hip fracture risk. Future mechanistic studies should investigate the underlying biology of these novel protein biomarkers which may be potential drug targets.


Assuntos
Fraturas do Quadril , Proteoma , Humanos , Fraturas do Quadril/sangue , Fraturas do Quadril/epidemiologia , Proteoma/metabolismo , Feminino , Masculino , Incidência , Idoso , Proteínas Sanguíneas/metabolismo , Fatores de Risco
14.
Cancer Chemother Pharmacol ; 94(1): 67-78, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38456956

RESUMO

BACKGROUND AND OBJECTIVE: This study aims to investigate the role of Vitamin D (VD) in regulating the stemness and survival of CD133+/CD44 + breast cancer stem cells, and to explore the role of NLRP3 in this process. METHODS: Breast cancer tissues were collected for RXRα and VDR expression analysis. A triple-negative breast cancer cell line was cultured and stem-like cells (CD133 + CD44+) isolated using flow cytometry. These cells were treated with VD, analyzing their stem-like properties, apoptosis and proliferation, as well as P65 nuclear expression and NLRP3 expression. After NLRP3 inflammasome activator treatment, the parameters were reassessed. RXRα and VDR interaction was confirmed using co-immunoprecipitation (CoIP). Finally, a subcutaneous xenograft model of triple-negative breast cancer was treated with VD and subsequently analyzed for stem-like properties, proliferation, apoptosis, and NLRP3 expression levels. RESULTS: CD133+/CD44 + stem cells expressed high levels of SOX2 and OCT4. VD treatment resulted in a significant decrease in SOX2 and OCT4 expression, fewer sphere-forming colonies, lower proliferation ability, and more apoptosis. Additionally, VD treatment inhibited NF-κB signaling and reduced NLRP3 expression. The NLRP3 activator BMS-986,299 counteracted the effects of VD in vitro. In vivo, VD inhibited the growth of breast cancer stem cells, reducing both tumor volume and weight, and decreased NLRP3, SOX2, and OCT4 expression within tumor tissues. CONCLUSION: Findings elucidate that VD mediates the modulation of stemness in CD133+/CD44 + breast cancer stem cells through the regulation of NLRP3 expression. The research represents novel insights on the implications for the application of VD in cancer therapies.


Assuntos
Células-Tronco Neoplásicas , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Vitamina D , Animais , Feminino , Humanos , Camundongos , Antígeno AC133/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Vitamina D/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474284

RESUMO

N-retinylidene-N-retinylethanolamine (A2E) has been associated with age-related macular degeneration (AMD) physiopathology by inducing cell death, angiogenesis and inflammation in retinal pigmented epithelial (RPE) cells. It was previously thought that the A2E effects were solely mediated via the retinoic acid receptor (RAR)-α activation. However, this conclusion was based on experiments using the RAR "specific" antagonist RO-41-5253, which was found to also be a ligand and partial agonist of the peroxisome proliferator-activated receptor (PPAR)-γ. Moreover, we previously reported that inhibiting PPAR and retinoid X receptor (RXR) transactivation with norbixin also modulated inflammation and angiogenesis in RPE cells challenged in the presence of A2E. Here, using several RAR inhibitors, we deciphered the respective roles of RAR, PPAR and RXR transactivations in an in vitro model of AMD. We showed that BMS 195614 (a selective RAR-α antagonist) displayed photoprotective properties against toxic blue light exposure in the presence of A2E. BMS 195614 also significantly reduced the AP-1 transactivation and mRNA expression of the inflammatory interleukin (IL)-6 and vascular endothelial growth factor (VEGF) induced by A2E in RPE cells in vitro, suggesting a major role of RAR in these processes. Surprisingly, however, we showed that (1) Norbixin increased the RAR transactivation and (2) AGN 193109 (a high affinity pan-RAR antagonist) and BMS 493 (a pan-RAR inverse agonist), which are photoprotective against toxic blue light exposure in the presence of A2E, also inhibited PPARs transactivation and RXR transactivation, respectively. Therefore, in our in vitro model of AMD, several commercialized RAR inhibitors appear to be non-specific, and we propose that the phototoxicity and expression of IL-6 and VEGF induced by A2E in RPE cells operates through the activation of PPAR or RXR rather than by RAR transactivation.


Assuntos
Carotenoides , Degeneração Macular , Receptores Ativados por Proliferador de Peroxissomo , Quinolinas , para-Aminobenzoatos , Anti-Inflamatórios , Agonismo Inverso de Drogas , Inflamação , Degeneração Macular/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Receptores X de Retinoides/metabolismo , Retinoides/metabolismo , Ativação Transcricional , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Curr Med Chem ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38375846

RESUMO

Previous studies described that asthma patients who received corticosteroid therapy have been constrained by the corticosteroid resistance subsequently fostered to severe refractory asthma. In this review, we discussed the implications of TSLP, RXR, the role of STAT5-activating cytokines, and IL-33/NH-cell signaling pathways, and recent clinical evidence on TSLP blockers in steroid-resistant asthma. We have searched several public databases such as Pubmed, Scopus, and Relemed and obtained information pertinent to the TSLP, RXR, TSLP blockers, the STAT5-activating cytokines, and IL-33. We discussed the multiple cell signaling mechanisms underlying steroid resistance. Blocking the TSLP and other key signaling molecules like STAT5 can retrieve the sensitivity of natural helper-cells to corticosteroids. RXR derivatives treatment can modulate the activity of TSLP, which further modulates steroid resistance in severe asthmatic patients and in patients with refractory asthma. We discussed the steroid-resistance mediated by the Th2 cells and Th2-driven eosinophilia upon corticosteroid intake. Thus, this review will be beneficial for clinicians and molecular biologists to explore the inflammatory pathways associated with refractory asthma conditions and develop novel therapies against corticosteroid-resistant asthma.

17.
J Biomol Struct Dyn ; : 1-15, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373033

RESUMO

Alzheimer's is characterized as a progressive neurodegenerative disease due to beta-amyloid accumulation in the brain. Some previous studies reported that RXR agonists could be effective in the treatment of Alzheimer's disease. There are currently numerous attempts being made to discover a natural RXR agonist that is more potent than 9-cis-retinoic acid (9CR). One of the most efficient resources for finding high-potential compounds is natural databases. In this study, 81215 compounds from the IB screen library as natural databases were docked against the RXR-alpha binding site. The best compounds discovered interact with the RXR-alpha binding site with a lower binding energy (-11 to -13 kcal/mol) than the binding energy of -10.94 kcal/mol for 9-cis, which means that these compounds could interact stronger with RXR-alpha than 9CR. All selected compounds could pass the blood-brain barrier. Physiochemical properties assessment indicated that all compounds passed Lipinski's rule and had the potential to be oral drug candidates. The stability of protein-ligand complexes during a timescale of 100 ns by Molecular Dynamics simulation demonstrated that all compounds could effectively interact with the RXR binding site. The molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) represented that all selected hit compounds had a better binding affinity to the alpha RXR binding site compared to 9CR, which means these hit compounds had potential drug candidates for the treatment of Alzheimer's disease. However, experimental assessment is needed to validate this result.Communicated by Ramaswamy H. Sarma.

18.
Virol J ; 21(1): 35, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297280

RESUMO

BACKGROUND: Progressive hepatitis B virus (HBV) infection can result in cirrhosis, hepatocellular cancer, and chronic hepatitis. While antiviral drugs that are now on the market are efficient in controlling HBV infection, finding a functional cure is still quite difficult. Identifying host factors involved in regulating the HBV life cycle will contribute to the development of new antiviral strategies. Zinc finger proteins have a significant function in HBV replication, according to earlier studies. Zinc finger protein 148 (ZNF148), a zinc finger transcription factor, regulates the expression of various genes by specifically binding to GC-rich sequences within promoter regions. The function of ZNF148 in HBV replication was investigated in this study. METHODS: HepG2-Na+/taurocholate cotransporting polypeptide (HepG2-NTCP) cells and Huh7 cells were used to evaluate the function of ZNF148 in vitro. Northern blotting and real-time PCR were used to quantify the amount of viral RNA. Southern blotting and real-time PCR were used to quantify the amount of viral DNA. Viral protein levels were elevated, according to the Western blot results. Dual-luciferase reporter assays were used to examine the transcriptional activity of viral promoters. ZNF148's impact on HBV in vivo was investigated using an established rcccDNA mouse model. RESULTS: ZNF148 overexpression significantly decreased the levels of HBV RNAs and HBV core DNA in HBV-infected HepG2-NTCP cells and Huh7 cells expressing prcccDNA. Silencing ZNF148 exhibited the opposite effects in both cell lines. Furthermore, ZNF148 inhibited the activity of HBV ENII/Cp and the transcriptional activity of cccDNA. Mechanistic studies revealed that ZNF148 attenuated retinoid X receptor alpha (RXRα) expression by binding to the RXRα promoter sequence. RXRα binding site mutation or RXRα overexpression abolished the suppressive effect of ZNF148 on HBV replication. The inhibitory effect of ZNF148 was also observed in the rcccDNA mouse model. CONCLUSIONS: ZNF148 inhibited HBV replication by downregulating RXRα transcription. Our findings reveal that ZNF148 may be a new target for anti-HBV strategies.


Assuntos
Vírus da Hepatite B , Hepatite B , Animais , Humanos , Camundongos , DNA Viral/genética , Células Hep G2 , Vírus da Hepatite B/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Replicação Viral
19.
J Lipid Res ; 65(3): 100510, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38280459

RESUMO

The link between changes in astrocyte function and the pathological progression of Alzheimer's disease (AD) has attracted considerable attention. Interestingly, activated astrocytes in AD show abnormalities in their lipid content and metabolism. In particular, the expression of apolipoprotein E (ApoE), a lipid transporter, is decreased. Because ApoE has anti-inflammatory and amyloid ß (Aß)-metabolizing effects, the nuclear receptors, retinoid X receptor (RXR) and LXR, which are involved in ApoE expression, are considered promising therapeutic targets for AD. However, the therapeutic effects of agents targeting these receptors are limited or vary considerably among groups, indicating the involvement of an unknown pathological factor that modifies astrocyte and ApoE function. Here, we focused on the signaling lipid, sphingosine-1-phosphate (S1P), which is mainly produced by sphingosine kinase 2 (SphK2) in the brain. Using astrocyte models, we found that upregulation of SphK2/S1P signaling suppressed ApoE induction by both RXR and LXR agonists. We also found that SphK2 activation reduced RXR binding to the APOE promoter region in the nucleus, suggesting the nuclear function of SphK2/S1P. Intriguingly, suppression of SphK2 activity by RNA knockdown or specific inhibitors upregulated lipidated ApoE induction. Furthermore, the induced ApoE facilitates Aß uptake in astrocytes. Together with our previous findings that SphK2 activity is upregulated in AD brain and promotes Aß production in neurons, these results indicate that SphK2/S1P signaling is a promising multifunctional therapeutic target for AD that can modulate astrocyte function by stabilizing the effects of RXR and LXR agonists, and simultaneously regulate neuronal pathogenesis.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Apolipoproteínas E/metabolismo
20.
Environ Int ; 183: 108354, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043320

RESUMO

Sodium p-perfluorous nonenoxybenzenesulfonate (OBS) is a novel alternative to perfluorooctane sulfonate (PFOS), with environmental health risks largely unknown. The present study aims to unravel the adipogenesis effects and underlying molecular initiating events of OBS, which are crucial for understanding and predicting its adverse outcome. In undifferentiated human mesenchymal stem cells (hMSCs), exposure to 1-100 nM of OBS for 7 days stimulated reactive oxygen species production. In the subsequent multipotent differentiation, hMSCs favored adipogenesis and repressed osteogenesis. The point of departure (PoD) for cellular responses of OBS was 38.85 nM, higher than PFOS (0.39 nM). Notably, OBS/PFOS co-exposure inhibited osteogenesis and synergistically promoted adipogenesis. Consistently, the expression of adipogenic marker genes was up-regulated, while that of osteogenic marker genes was down-regulated. The decreased adiponectin and elevated tumor necrosis factor α (TNFα) secretion were observed in differentiated cells exposed to the mixture of OBS and PFOS. The co-treatment of a peroxisome proliferator-activated receptor γ (PPARγ) antagonist alleviated the adipogenic effects of PFOS and its combination with OBS. Moreover, OBS/PFOS co-exposure induced peroxisome PPARγ activation in reporter gene assays, and increased formation of PPARγ - retinoid X receptor α (RXRα) heterodimers measured by co-immunoprecipitation assays. Molecular docking showed interaction energy of OBS (-20.7 kcal/mol) with intact PPARγ-RXRα complex was lower than that of PFOS (-25.9 kcal/mol). Overall, single OBS exhibited lower potency in inducing adipogenesis but is comparable to PFOS in repressing osteogenesis, whereas OBS/PFOS co-exposure increases interaction with PPARγ-RXRα heterodimers, resulting in the synergistic activation of PPARγ, ultimately enhancing adipogenesis at the expense of osteogenic differentiation. The results indicate the potential health risks of increased obesity and decreased bone density caused by OBS and its co-exposure with PFOS, as well as other perfluorinated alkylated substances mixtures.


Assuntos
Adipogenia , PPAR gama , Humanos , PPAR gama/genética , Osteogênese , PPAR alfa , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...