Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(7): 648, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907943

RESUMO

Wetlands provide numerous ecological services and are key habitats for aquatic flora and fauna. In the Beledanga wetland, the current study was conducted for 3 years, from July 2019 to June 2021, to evaluate the seasonal influence of physicochemical parameters on phytoplankton diversity and abundance patterns. Overall 48 genera of phytoplankton were observed. Bacillariophyceae (27%) contributed the maximum to the total phytoplankton density. The total abundance of phytoplankton was found utmost during monsoon (4.081 × 103 unit l-1) and least during post-monsoon (3.316 × 103 unit l-1). One-way analysis of variance indicated significant seasonal differences (p < 0.05) for some genera. The study gave the idea about the most influencing physic-chemical parameters (dissolved oxygen, turbidity, total hardness, Ca2+, and total nitrogen) on the growth of phytoplankton with the help of different multivariate and univariate analysis (canonical correspondence analysis and Karl Pearson's correlation). The study again highlighted that climate parameters (temperature and rainfall) had some effect on the phytoplanktonic groups. Our study conceded that N:P in the studied wetland was less than the Redfield ratio (16:1) in all three seasons, while the Si:P ratio was noticed in the high range (15:1) during pre-monsoon. The value of the Shannon diversity index and Margalef's species richness index were noticed to be > 3, which signified quite rich in phytoplankton diversity. But the value of Algal Pollution Index, which describes the ecological pollution level based on the present algal genera was observed high throughout all seasons, indicating organic load. So in future the studied wetland may get adversely affected with influence of anthropogenic activities. Therefore, for sustainable biodiversity of the waterbody, the anthropogenic activities (retting and intensification of agricultural farming) and macrophytes need to be controlled and regulated.


Assuntos
Biodiversidade , Monitoramento Ambiental , Fitoplâncton , Estações do Ano , Áreas Alagadas , Nitrogênio/análise , Clima
2.
Biology (Basel) ; 12(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36671784

RESUMO

In freshwater and marine ecosystems, the phytoplankton community is based on microalgae and cyanobacteria, which include phylogenetically very diverse groups of oxygenic photoautotrophs. In the process of evolution, they developed a wide range of bio(geo)chemical adaptations that allow them to effectively use solar radiation, CO2, and nutrients, as well as major and trace elements, to form O2 and organic compounds with a high chemical bond energy. The inclusion of chemical elements in the key processes of energy and plastic metabolism in the cell is determined by redox conditions and the abundance and metabolic availability of elements in the paleoenvironment. Geochemical evolution, which proceeded simultaneously with the evolution of biosystems, contributed to an increase in the number of metals and trace elements acting as cofactors of enzymes involved in metabolism and maintaining homeostasis in the first photoautotrophs. The diversity of metal-containing enzymes and the adaptive ability to replace one element with another without losing the functional properties of enzymes ensured the high ecological plasticity of species and allowed microalgae and cyanobacteria to successfully colonize a wide variety of habitats. In this review, we consider the main aspects of the modern concepts of the biogeochemical evolution of aquatic ecosystems and the role of some metals in the main bioenergetic processes in photosynthetic prokaryotes and eukaryotes. We present generalized data on the efficiency of the assimilation of key nutrients by phytoplankton and their importance in the cycle of carbon, silicon, nitrogen, phosphorus, sulfur, and iron. This article presents modern views on the evolutionary prerequisites for the formation of elemental signatures in different systematic groups of microalgae, as well as the possibility of using the stoichiometric ratio in the study of biological and geochemical processes in aquatic ecosystems.

3.
Chemosphere ; 307(Pt 2): 135757, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35863407

RESUMO

The Brahmaputra river system (BRS) produces the largest discharge in India, supplying water to more than 62 million inhabitants. The present study aims to quantify the environmental elements that affect the spatio-temporal variation of nutrients in the Brahmaputra river system (BRS). The association of physico-chemical characteristics of floodplain sediments with the distribution pattern of P during wet and dry periods in different depths were also studied. The seasonal variation suggest that the average dissolved inorganic nitrogen and dissolve inorganic phosphorus are found higher in monsoon while the average dissolve silica were higher in post-monsoon. The spatial variation of dissolve inorganic phosphate and nitrate concentration suggests both the nutrient are higher in upstream sites. The DiS concentrations tended to be higher in downstream. In 70% of the sampled tributaries, the average molar ratio for dissolved inorganic nitrogen/dissolved inorganic phosphorous (DIN/DIP) was greater than 16:1, which indicates phosphate limited biological productivity. In contrast, an average molar ratio of dissolved inorganic silica/DIN (DSi/DIN) of 3.8 ± 3.0 favoured diatom growth in those tributaries where DSi/DIN molar ratio was lower than 1, indicating eutrophication. The BRS transported 24.7, 5.93, and 312 × 104 tons/year-1 of DIN, PO4-P and SiO2-Si, respectively. The depth-wise variation of P-fraction during monsoon suggests that the authigenic phosphorus was most abundant followed by Fe-bound, exchangeable, detrital and organic. In the post-monsoon, Fe-bound P was found at a higher concentration followed by authigenic phosphorus. High nutrient concentrations with more δ18O depleted water implied precipitation being the major source of nutrients in the BRS.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Nitratos , Nitrogênio/análise , Nutrientes , Fosfatos , Fósforo/análise , Dióxido de Silício , Água , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 846: 157388, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35850350

RESUMO

The excess input of nutrients that triggers eutrophication processes is one of the main destabilizing factors of coastal ecosystems, being coastal lagoons prone to suffer these effects and present dystrophic crises. This process is aggravated by the current trend of rising temperatures and more frequent torrential rains due to climate change. We observed that the Mar Menor lagoon had a great capacity for self-regulation of its trophic web and resistance to the eutrophication process, but after 30 years of nutrient input due to the change in the agricultural regime in its drainage basin in the 1990s, the lagoon ecosystem has suffered several of these events. In this work, we characterize the seasonal dynamic of the pelagic system during the last dystrophic crises. Phosphorus and nitrogen alternate as the limiting nutrient for phytoplankton proliferation. The entrance of phosphorus is mainly related to vacation periods, while nitrogen inputs, both superficial and sub-superficial, are more related to chronic high nitrates concentration in the water table after the agricultural activities carried out in the area changed. Our analysis reveals that the summer season is prone to suffer periodical hypoxia events when the N/P ratio decreases, and the temperature rises. In the Mar Menor, the ecological balance has been maintained in recent decades thanks to, among other mechanisms, the spatial and temporal segregation of top-down control over phytoplankton exerted by three species of jellyfish. However, the deep reduction in the abundance of the summer jellyfish species and the excessive proliferation of phytoplankton has meant the loss of this control. Moreover, we have registered a decline in the abundance of all the other zooplanktonic groups during the dystrophic crises. We suggest that management actions should address the input sources of water and nutrients, and an integrated management of the activities carried out throughout the watershed.


Assuntos
Ecossistema , Eutrofização , Nitrogênio , Nutrientes , Fósforo , Fitoplâncton/fisiologia
5.
Chemosphere ; 302: 134809, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35508262

RESUMO

In this study, the nutrient concentrations along the coastal region of the Southeastern Black Sea were evaluated based on temporal, spatial, and vertical distributions. The water samples were collected seasonally in 2013 from 432 depths covering 55 stations. The nutrient concentrations showed significant spatial and temporal variations that declined abruptly from shore to offshore. The stations near the river discharge had the highest silicate, nitrate, and total dissolved inorganic nitrogen (DIN). The highest nitrate concentrations were determined within the oxycline layer and nitrite within the suboxic layer, while phosphate, ammonium, silicate, and DIN were within the anoxic layer. The findings of this study evinced that the Southeastern Black Sea possessed lower contents of nitrate (mean ± s.d., 0.58 ± 1.17 µM), phosphate (0.12 ± 1.00 µM), than the literature values reported for the western Black Sea, but consistent to the eastern Black Sea. However, the silicate concentrations of the study area were consistent with the western Black Sea while higher than the eastern Black Sea. The Trophic Index showed that two stations located on the coast of the Samsun and Giresun were at increased risk of eutrophication due to intensive urban and industrial inputs. This study provides detailed insights on the nutrient status of the coastal Southeastern Black Sea, which should facilitate the development of long-term monitoring programs concerning environmental aspects of marine and coastal planning.


Assuntos
Monitoramento Ambiental , Nitratos , Mar Negro , Nitrogênio/análise , Nutrientes , Fosfatos
6.
Mar Pollut Bull ; 179: 113665, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35489091

RESUMO

Eutrophication is a global problem for coastal ecosystems, one that the Bohai Sea (BHS), China, is severely afflicted by due to rapid economic and social development over the last forty years. For sustainable nutrients management in the BHS, comprehensive budgets for Nitrogen (N) and Phosphorus (P) was characterized in 2017, and the relative contributions of river input, submarine fresh groundwater discharge, atmospheric deposition, sediment diffusion, and exchange with the Yellow Sea were quantified. The annual N and P fluxes into the BHS were 362 × 103 t and 10.4 × 103 t, respectively. The terrigenous N inputs occupied the highest proportion, while the largest P input was from sediment diffusion. The ratio of N:P was 77 for total external inputs, while that of the Yellow River was 680; both exceeded the Redfield ratio, indicating an imbalance in the nutrient structure and a P limitation in the BHS.


Assuntos
Nitrogênio , Fósforo , China , Ecossistema , Monitoramento Ambiental , Atividades Humanas , Humanos , Nitrogênio/análise , Nutrientes , Fósforo/análise , Rios/química
7.
Mar Pollut Bull ; 178: 113499, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35398686

RESUMO

We conducted field sampling over 19 months to investigate eelgrass population reproduction status and ecological interactions in a large seagrass meadow in a eutrophic bay in northern China. The results showed asexual growth played an important role in the maintenance of existing meadows, and sexual reproduction played a critical role in the colonization of new areas. We conclude that adult eelgrass shoots do rule the fate of seedlings in the large seagrass meadow. Additionally, nutrient resources (N and P) at this location were found to meet eelgrass growth demand. The N/P ratios of seawater and seagrass indicated N limitation relative to P in the eutrophic bay based on the seagrass Redfield ratio (25-30). Nutrient uptake by seagrass might be an important factor in reducing the probability of a red tide in the study area. The results of this study provide fundamental information for eelgrass restoration and conservation.


Assuntos
Baías , Plântula , China , Água do Mar
8.
BMC Plant Biol ; 22(1): 184, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35395710

RESUMO

BACKGROUND: Elements are the basis of life on Earth, whereby organisms are essentially evolved chemical substances that dynamically interact with each other and their environment. Determining species elemental quotas (their elementome) is a key indicator for their success across environments with different resource availabilities. Elementomes remain undescribed for functionally diverse dinoflagellates within the family Symbiodiniaceae that includes coral endosymbionts. We used dry combustion and ICP-MS to assess whether Symbiodiniaceae (ten isolates spanning five genera Breviolum, Cladocopium, Durusdinium, Effrenium, Symbiodinium) maintained under long-term nutrient replete conditions have unique elementomes (six key macronutrients and nine micronutrients) that would reflect evolutionarily conserved preferential elemental acquisition. For three isolates we assessed how elevated temperature impacted their elementomes. Further, we tested whether Symbiodiniaceae conform to common stoichiometric hypotheses (e.g., the growth rate hypothesis) documented in other marine algae. This study considers whether Symbiodiniaceae isolates possess unique elementomes reflective of their natural ecologies, evolutionary histories, and resistance to environmental change. RESULTS: Symbiodiniaceae isolates maintained under long-term luxury uptake conditions, all exhibited highly divergent elementomes from one another, driven primarily by differential content of micronutrients. All N:P and C:P ratios were below the Redfield ratio values, whereas C:N was close to the Redfield value. Elevated temperature resulted in a more homogenised elementome across isolates. The Family-level elementome was (C19.8N2.6 P1.0S18.8K0.7Ca0.1) · 1000 (Fe55.7Mn5.6Sr2.3Zn0.8Ni0.5Se0.3Cu0.2Mo0.1V0.04) mmol Phosphorous-1 versus (C25.4N3.1P1.0S23.1K0.9Ca0.4) · 1000 (Fe66.7Mn6.3Sr7.2Zn0.8Ni0.4Se0.2Cu0.2Mo0.2V0.05) mmol Phosphorous -1 at 27.4 ± 0.4 °C and 30.7 ± 0.01 °C, respectively. Symbiodiniaceae isolates tested here conformed to some, but not all, stoichiometric principles. CONCLUSIONS: Elementomes for Symbiodiniaceae diverge from those reported for other marine algae, primarily via lower C:N:P and different micronutrient expressions. Long-term maintenance of Symbiodiniaceae isolates in culture under common nutrient replete conditions suggests isolates have evolutionary conserved preferential uptake for certain elements that allows these unique elementomes to be identified. Micronutrient content (normalised to phosphorous) commonly increased in the Symbiodiniaceae isolates in response to elevated temperature, potentially indicating a common elemental signature to warming.


Assuntos
Antozoários , Dinoflagellida , Animais , Micronutrientes , Simbiose
9.
Biogeochemistry ; 159: 251-264, 2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37681215

RESUMO

Accurately estimating the elemental stoichiometry of phytoplankton is critical for understanding biogeochemical cycles. In laboratory experiments, stoichiometric ratios vary among species and with changes in environmental conditions. Field observations of total phosphorus (P) and total nitrogen (N) collected at regional and national scales can supplement and expand insights into factors influencing phytoplankton stoichiometry, but analyses applied to these data can introduce biases that affect interpretations of the observed patterns. We introduce an analytical approach for estimating the ratio between phytoplankton N and P from the particulate fraction of nutrient pools in lake samples. We use Bayesian models to represent observations of particulate P and N as the sum of contributions from nutrients bound within phytoplankton and nutrients associated with non-phytoplankton suspended sediment. Application of this approach to particulate nutrient data collected in Missouri impoundments yields estimates of the mass ratio of N:P in phytoplankton ranging from 8-10 across a variety of lakes and seasons. N:P in particulate matter ranged from 6 to 70, a variability driven by differences in nutrients bound to non-phytoplankton suspended sediment. We adapted the Bayesian models to estimate N:P using more commonly available measurements of total P and total N and applied this model to a continental-scale monitoring data set. We compared phytoplankton nutrient content estimated from the two analyses and found that when datasets lack direct measurements of particulate nutrient concentrations, the model estimate of phytoplankton nutrient content includes contributions from nutrients within phytoplankton and dissolved nutrients that are associated with changes in phytoplankton biomass.

10.
Environ Sci Pollut Res Int ; 28(35): 48681-48705, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33914249

RESUMO

The Bhagirathi-Hooghly estuary represents one of the most populated estuaries in the Indian subcontinent with dense settlements along its course. The concomitant high anthropogenic influences and enhancement of nutrient load due to uncontrolled discharges from non-point source in monsoon play important role in habitat variability and consequential changes in the water quality of the estuary. Even though such nutrient loadings are expected to cause significant changes in the ecosystem functioning, a documentation of the habitat heterogeneity has largely remained unavailable from this important yet unmonitored estuary. Thus, the present work aims at assessment of water quality and trophic status of the habitat by application of a combination of abiotic and phytoplankton-specific indices as recommended by different international and national authorities. Results suggest that water quality deteriorated during periods of seasonal precipitation due to enhanced nutrient loadings that culminated in altering the trophic status of habitat. Comparisons with regard to international standards further corroborated the influence of seasonal precipitation on water quality and trophic status of the habitat. Phytoplankton functional groups largely reflected the changing nature of the habitat well, with dominance of those taxa that are more persistent under warm, nutrient replete shallow euphotic depths of the habitat. These findings further suggest that it is essential to regularly monitor the health of this estuarine ecosystem to as to sustain the different life forms that will be essential for the livelihood of people in this area.


Assuntos
Estuários , Fitoplâncton , Ecossistema , Monitoramento Ambiental , Humanos , Estações do Ano , Qualidade da Água
11.
Environ Sci Pollut Res Int ; 28(23): 29177-29187, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33550523

RESUMO

The C/N/P stoichiometry of organic matter can provide useful information for better understanding of the effects of human activities on aquatic ecosystems. The Daya Bay is a semi-closed bay under serious anthropogenic influences in the southeastern China. This study investigated the contents and ratios of C, N, and P in suspended particulate matter (SPM) and surface sediment in Daya Bay during the spring of 2017. Average C/N/P ratios were 139/17/1 in the surface SPM, 129/16/1 in the bottom SPM, and 61/8/1 in the surface sediment. The C/N ratio of SPM was significantly lower in the western inner bay, suggesting that eutrophication can reduce this ratio. The N/P ratio of SPM was slightly higher in the inner bay, while no clearly distribution pattern was found in the C/P ratio of SPM. Compared with SPM, surface sediment showed significantly lower N/P and C/P ratios. The C/N, N/P, and C/P ratios and contents of total organic C, N, and P were higher in the surface sediment in the inner bay. Our results suggested that the distribution of C/N/P stoichiometry was uncoupled between SPM and surface sediment. The C/N/P stoichiometry of surface sediment can effectively reflect the regional variation of terrigenous input and the influence of nuclear power plant thermal effluent.


Assuntos
Baías , Poluentes Químicos da Água , China , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Material Particulado , Poluentes Químicos da Água/análise
12.
Proc Natl Acad Sci U S A ; 117(37): 22866-22872, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868433

RESUMO

Climate-driven depletion of ocean oxygen strongly impacts the global cycles of carbon and nutrients as well as the survival of many animal species. One of the main uncertainties in predicting changes to marine oxygen levels is the regulation of the biological respiration demand associated with the biological pump. Derived from the Redfield ratio, the molar ratio of oxygen to organic carbon consumed during respiration (i.e., the respiration quotient, [Formula: see text]) is consistently assumed constant but rarely, if ever, measured. Using a prognostic Earth system model, we show that a 0.1 increase in the respiration quotient from 1.0 leads to a 2.3% decline in global oxygen, a large expansion of low-oxygen zones, additional water column denitrification of 38 Tg N/y, and the loss of fixed nitrogen and carbon production in the ocean. We then present direct chemical measurements of [Formula: see text] using a Pacific Ocean meridional transect crossing all major surface biome types. The observed [Formula: see text] has a positive correlation with temperature, and regional mean values differ significantly from Redfield proportions. Finally, an independent global inverse model analysis constrained with nutrients, oxygen, and carbon concentrations supports a positive temperature dependence of [Formula: see text] in exported organic matter. We provide evidence against the common assumption of a static biological link between the respiration of organic carbon and the consumption of oxygen. Furthermore, the model simulations suggest that a changing respiration quotient will impact multiple biogeochemical cycles and that future warming can lead to more intense deoxygenation than previously anticipated.

13.
J Contam Hydrol ; 233: 103660, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32480099

RESUMO

Groundwater contributed nutrients aided with increasing population threaten the global coastal ecosystems. In this study, attempt has been made using major ions and nutrients to evaluate the significance of submarine groundwater discharge (SGD) in a semi-arid estuary of south India. Surface, seepage and groundwater chemistry altered from fresh (NaK-CaMg-NO3Cl) to mixed (NaK-NO3Cl) to saline water (NaCl) type from upstream to outlet that connects Bay of Bengal. We predicted abundant nitrate (NO3-) along upstream and towards the bay due to application of fertilizers and aquaculture activities, respectively. Elevated ammonium (NH4+) observed in the recirculated groundwater/sea water suggests contribution from sea water intrusion and higher phosphate (PO43-) noted at the outer bay suggests sources from phosphatic nodules. Decreasing Redfield ratio towards the bay suggests anoxic aquifer condition due to salinization. The SGD driven nutrient fluxes were 40.0-47.0% for NO3-, 43.0-51.0% for NH4+ and 9.0-32.0% for PO43- from the total input fluxes. The estimated nutrient fluxes showed that NO3- and PO43- discharges to the sea due to SGD and NH4+ removed from the coast due to consumption by microorganisms that creates toxic algal blooms in the study area.


Assuntos
Água Subterrânea , Rios , Baías , Ecossistema , Monitoramento Ambiental , Estuários , Índia , Nutrientes , Água do Mar
14.
Water Res ; 161: 262-273, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202113

RESUMO

The underlying physical and biogeochemical mechanisms associated with low dissolved oxygen (DO) levels below 5 mg L-1 were examined through field data analyses and water quality modeling of the lower 40 miles of the Minnesota River. Insights into flow and water quality data of nineteen years (1999-2017) at five sites demonstrate that low DO levels parallel the obvious longitudinal (upstream-to-downstream) decline in phytoplankton biomass and increase in ammonium nitrogen (NH4) and dissolved orthophosphate (PO4) in the last 22-mile river reach (i.e., navigation channel) during late summer low flow conditions. River discharge is inversely related to the magnitude of the longitudinal change in DO, phytoplankton biomass, NH4 and PO4, indicating that the late summer low flow hydrodynamics in the navigation channel with a longer residence time, deeper water and slower velocity provide an extended opportunity for the biogeochemical reactions involving phytoplankton, DO and nutrients. Moreover, the ratio of the longitudinal decline in DO versus the longitudinal increase in NH4 is particularly close to the Redfield O:N ratio, suggesting that the decline in DO and increase in nutrients most likely result from the decomposition of phytoplankton detritus under aerobic conditions. This is further proved by the water quality modeling of the lower Minnesota River. The primary reasons for impaired water quality are substantially elevated sediment oxygen consumption and nutrient release derived from the decomposition of settled phytoplankton detritus in the navigation channel. Therefore, we recommend that active prevention of abrupt phytoplankton blooms and collapses through regulation of river discharge and local hydrodynamics may assist in maintaining acceptable water quality in eutrophic rivers with a high level of phytoplankton biomass.


Assuntos
Fitoplâncton , Qualidade da Água , Clorofila , Monitoramento Ambiental , Eutrofização , Minnesota , Nitrogênio , Estações do Ano
15.
J Phycol ; 55(3): 543-551, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30893470

RESUMO

Statistical growth rate modelling can be applied in a variety of ecological and biotechnological applications. Such models are frequently based on Monod or Droop equations and, especially for the latter, require reliable determination of model input parameters such as C:N quotas. Besides growth rate modelling, a C:N quota quantification can be useful for monitoring and interpretation of physiological acclimation to abiotic and biotic disturbances (e.g., nutrient limitations). However, as high throughput C:N quota determination is difficult to perform, alternatives need to be established. Fourier-transformed infrared (FTIR) spectroscopy is used to analyze a variety of biochemical, chemical, and physiological parameters in phytoplankton. Hence, a quantification of the C:N quota should also be feasible. Therefore, using FTIR spectroscopy, six phytoplankton species from among different phylogenetic groups have been analyzed to determine the effect of nutrient limitation on C:N quota patterns. The typical species-specific response to increasing nitrogen limitation was an increase in the C:N quota. Irrespective of this species specificity, we were able to develop a reliable multi-species C:N quota prediction model based on FTIR spectroscopy using the partial least square regression (PLSR) algorithm. Our data demonstrate that the PLSR approach is more robust in C:N quota quantification (R2  = 0.93) than linear correlation of C:N quota versus growth rate (R2 ranges from 0.74 to 0.86) or biochemical information based on FTIR spectra (R2 ranges from 0.82 to 0.89). This accurate prediction of C:N values may support high throughput measurements in a broad range of future approaches.


Assuntos
Nitrogênio , Fitoplâncton , Filogenia , Especificidade da Espécie , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Sci Total Environ ; 669: 282-293, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30878935

RESUMO

Dust deposition can bring nutrients and trace elements to the upper ocean and affect phytoplankton growth and community structure. We conducted a comparative study using on-board microcosm experiments amended with varying amounts of dust (0.2, 1, and 2 mg L-1) in the East China Sea (eutrophic zone), the subtropical gyre (low-nutrient and low-chlorophyll zone, LNLC), and the Kuroshio-Oyashio transition region (high-nutrient and low-chlorophyll zone, HNLC) of the Northwest Pacific Ocean. The additions of dust supplied a considerable amount of nitrogen (N) and negligible phosphorus (P) relative to the seawater collected for incubation experiments (baseline), contributing to increases in Chlorophyll a with increasing dust additions. Significant linear correlations were observed between the net growth rates of larger cells (i.e., micro-size: >20 µm and nano-size: 2-20 µm) and available N (sum of baseline and added N) at each zone, demonstrating that phytoplankton size structure shifts towards larger cells with the increasing dust additions. In the experiments conducted in LNLC and HNLC zones, micro-sized phytoplankton (primarily consisting of diatoms) benefited most from dust additions. In the experiments conducted in eutrophic zone, however, the primary beneficiary was the nano-sized phytoplankton (primarily consisting of dinoflagellates). When a time lag of one day in relative abundance of diatoms (RAD, the abundance of diatoms divided by the sum of diatoms and dinoflagellates) relative to the N:P ratio was considered, we found the RAD increased substantially with increases in the N:P ratio until the ratio approached the Redfield ratio (N:P = 16:1), and then the RAD decreased gradually as the N:P ratio increased. This was ascribed to the lower sensitivity of dinoflagellates to nutrient shortage, relative to diatoms. Overall, our results suggested that the overwhelming input of N relative to P by dust deposition might cause significant ecological impacts by altering the N:P ratio of varying trophic seawaters.


Assuntos
Clorofila/análise , Poeira/análise , Eutrofização , Nutrientes/análise , Fitoplâncton/fisiologia , Biota/fisiologia , China , Japão , Oceano Pacífico
17.
Math Biosci Eng ; 16(2): 990-1004, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30861675

RESUMO

In the classical chemostat, the output of the system has no effect on its input. This contrasts with many ecological systems, where the output at the end of a growing season affects nutrient inputs for subsequent seasons. Here, an iterative-continuous modelling framework is introduced that retains the structure of classical ecological models within each iteration but accounts for nutrient feedbacks between iterations. As an example, the framework is applied to the classical chemostat model, where nutrient outputs affect the supply ratio at each iteration. Furthermore, the biotic parameters in the model, including organismal demands for nitrogen (N) and phosphorus (P), are linked to core biogenic processes-protein and rRNA synthesis. This biosynthesis is further deconstructed into 11 biological constants and rates, most of which are deeply shared among all organisms. By linking the fundamental macromolecular machinery to the cycling of nutrients on the ecosystem scale, the framework enables to rigorously formulate qualitative and quantitative questions about the evolution of nutrient ratios and the existence of stoichiometric attractors, such as the puzzling persistence of the Redfield N:P ratio of 16 in the ocean. While the framework presented here is theoretical, it readily permits setting up empirical experiments for testing its predictions.


Assuntos
Evolução Biológica , Biomassa , Nitrogênio/metabolismo , Algoritmos , Reatores Biológicos , Simulação por Computador , Ecologia , Ecossistema , Substâncias Macromoleculares , Modelos Teóricos , Nutrientes , Oceanos e Mares , Fósforo , Fitoplâncton , Estações do Ano , Solo , Fatores de Tempo
18.
Am Nat ; 192(1): E1-E20, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29897797

RESUMO

Nitrogen (N) and phosphorus (P) limit primary production in many aquatic ecosystems, with major implications for ecological interactions in plankton communities. Yet it remains unclear how evolution may affect the N∶P stoichiometry of phytoplankton-zooplankton interactions. Here, we address this issue by analyzing an eco-evolutionary model of phytoplankton-zooplankton interactions with explicit nitrogen and phosphorus dynamics. In our model, investment of phytoplankton in nitrogen versus phosphorus uptake is an evolving trait, and zooplankton display selectivity for phytoplankton with N∶P ratios matching their nutritional requirements. We use this model to explore implications of the contrasting N∶P requirements of copepods versus cladocerans. The model predicts that selective zooplankton strongly affect the N∶P ratio of phytoplankton, resulting in deviations from their optimum N∶P ratio. Specifically, selective grazing by nitrogen-demanding copepods favors dominance of phytoplankton with low N∶P ratios, whereas phosphorus-demanding cladocerans favor dominance of phytoplankton with high N∶P ratios. Interestingly, selective grazing by nutritionally balanced zooplankton leads to the occurrence of alternative stable states, where phytoplankton may evolve either low, optimum, or high N∶P ratios, depending on the initial conditions. These results offer a new perspective on commonly observed differences in N∶P stoichiometry between plankton of freshwater and those of marine ecosystems and indicate that selective grazing by zooplankton can have a major impact on the stoichiometric composition of phytoplankton.


Assuntos
Cadeia Alimentar , Modelos Biológicos , Nitrogênio/metabolismo , Fósforo/metabolismo , Fitoplâncton/metabolismo , Zooplâncton/metabolismo , Animais , Evolução Biológica , Cladocera/metabolismo , Copépodes/metabolismo , Nutrientes
19.
Ann Rev Mar Sci ; 10: 43-69, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28853998

RESUMO

Marine plankton elemental stoichiometric ratios can deviate from the Redfield ratio (106C:16N:1P); here, we examine physiological and biogeochemical mechanisms that lead to the observed variation across lineages, regions, and seasons. Many models of ecological stoichiometry blend together acclimative and adaptive responses to environmental conditions. These two pathways can have unique molecular mechanisms and stoichiometric outcomes, and we attempt to disentangle the two processes. We find that interactions between environmental conditions and cellular growth are key to understanding stoichiometric regulation, but the growth rates of most marine plankton populations are poorly constrained. We propose that specific physiological mechanisms have a strong impact on plankton and community stoichiometry in nutrient-rich environments, whereas biogeochemical interactions are important for the stoichiometry of the oligotrophic gyres. Finally, we outline key areas with missing information that is needed to advance understanding of the present and future ecological stoichiometry of ocean plankton.


Assuntos
Ecossistema , Plâncton/fisiologia , Biodiversidade , Modelos Químicos , Oceanos e Mares
20.
PeerJ ; 5: e3743, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28890852

RESUMO

Temperature and nutrients are key factors affecting the growth, cell size, and physiology of marine phytoplankton. In the ocean, temperature and nutrient availability often co-vary because temperature drives vertical stratification, which further controls nutrient upwelling. This makes it difficult to disentangle the effects of temperature and nutrients on phytoplankton purely from observational studies. In this study, we carried out a factorial experiment crossing two temperatures (13°and 19°C) with two growth regimes (P-limited, semi-continuous batch cultures ["-P"] and nutrient replete batch cultures in turbidostat mode ["+P"]) for three species of common marine haptophytes (Emiliania huxleyi, Chrysochromulina rotalis and Prymnesium polylepis) to address the effects of temperature and nutrient limitation on elemental content and stoichiometry (C:N:P), total RNA, cell size, and growth rate. We found that the main gradient in elemental content and RNA largely was related to nutrient regime and the resulting differences in growth rate and degree of P-limitation, and observed reduced cell volume-specific content of P and RNA (but also N and C in most cases) and higher N:P and C:P in the slow growing -P cultures compared to the fast growing +P cultures. P-limited cells also tended to be larger than nutrient replete cells. Contrary to other recent studies, we found lower N:P and C:P ratios at high temperature. Overall, elemental content and RNA increased with temperature, especially in the nutrient replete cultures. Notably, however, temperature had a weaker-and in some cases a negative-effect on elemental content and RNA under P-limitation. This interaction indicates that the effect of temperature on cellular composition may differ between nutrient replete and nutrient limited conditions, where cellular uptake and storage of excess nutrients may overshadow changes in resource allocation among the non-storage fractions of biomass (e.g. P-rich ribosomes and N-rich proteins). Cell size decreased at high temperature, which is in accordance with general observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...