Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(8)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39205208

RESUMO

Recombinant adeno-associated viruses (rAAVs) play a pivotal role in the treatment of genetic diseases. However, current production and purification processes yield AAV-based preparations that often contain unwanted empty, partially filled or damaged viral particles and impurities, including residual host cell DNA and proteins, plasmid DNA, and viral aggregates. To precisely understand the composition of AAV preparations, we systematically compared four different single-stranded AAV (ssAAV) and self-complementary (scAAV) fractions extracted from the CsCl ultracentrifugation gradient using established methods (transduction efficiency, analytical ultracentrifugation (AUC), quantitative and digital droplet PCR (qPCR and ddPCR), transmission electron microscopy (TEM) and enzyme-linked immunosorbent assay (ELISA)) alongside newer techniques (multiplex ddPCR, multi-angle light-scattering coupled to size-exclusion chromatography (SEC-MALS), multi-angle dynamic light scattering (MADLS), and high-throughput sequencing (HTS)). Suboptimal particle separation within the fractions resulted in unexpectedly similar infectivity levels. No single technique could simultaneously provide comprehensive insights in the presence of both bioactive particles and contaminants. Notably, multiplex ddPCR revealed distinct vector genome fragmentation patterns, differing between ssAAV and scAAV. This highlights the urgent need for innovative analytical and production approaches to optimize AAV vector production and enhance therapeutic outcomes.


Assuntos
Dependovirus , Ultracentrifugação , Vírion , Dependovirus/genética , Dependovirus/isolamento & purificação , Humanos , Vírion/isolamento & purificação , Vírion/genética , Vetores Genéticos/genética , Células HEK293 , Césio/química , Centrifugação com Gradiente de Concentração/métodos , Transdução Genética , Cloretos
2.
Food Res Int ; 186: 114380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729734

RESUMO

Pea albumins are found in the side stream during the isolation of pea proteins. They are soluble at acidic pH and have functional properties which differ from their globulin counterparts. In this study, we have investigated the aggregation and structural changes occurring to pea albumins under different environmental conditions, using a combination of size-exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALS) and small-angle X-ray scattering (SAXS). Albumins were extracted from a dry fractionated pea protein concentrate by precipitating the globulin fraction at acidic pH. The albumins were then studied at different pH (3, 4, 4.5, 7, 7.5, and 8) values. The effect of heating at 90 °C for 1, 3, and 5 min on their structural changes was investigated using SAXS. In addition, size exclusion of the albumins showed 4 distinct populations, depending on pH and heating conditions, with two large aggregates peaks (∼250 kDa): a dimer peak (∼24 kDa) containing predominantly pea albumin 2 (PA2), and a monomer peak of a molar mass of about 12 kDa (PA1). X-ray scattering intensities as a function of q were modeled as polydisperse spheres, and their aggregation was followed as a function of heating time. Albumins was most stable at pH 3, showing no aggregation during heat treatment. While albumins at pH 7.5 and 8 showed aggregation after heating, solutions at pH 4, 4.5, and 7 already contained aggregates even before heating. This work provides new knowledge on the overall structural development of albumins under different environmental conditions, improving our ability to employ these as future ingredients in foods.


Assuntos
Temperatura Alta , Proteínas de Ervilha , Pisum sativum , Espalhamento a Baixo Ângulo , Difração de Raios X , Concentração de Íons de Hidrogênio , Pisum sativum/química , Proteínas de Ervilha/química , Albuminas/química , Cromatografia em Gel
3.
Chembiochem ; 25(11): e202400108, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567504

RESUMO

Detailed insights into protein structure/function relationships require robust characterization methodologies. Free-solution capillary electrophoresis (CE) is a unique separation technique which is sensitive to the conformation and/or composition of proteins, and therefore provides information on the heterogeneity of these properties. Three unrelated, conformationally/compositionally-altered proteins were separated by CE. An electrophoretic mobility distribution was determined for each protein along with its conformational and/or compositional heterogeneity. The CE results were compared with molar mass distributions obtained from size-exclusion chromatography coupled to light scattering (SEC-MALS). Bovine serum albumin multimers and two monomeric species were separated, highlighting variations in conformational/compositional heterogeneity among the multimers. Analysis of yeast alcohol dehydrogenase resolved two monomeric conformers and various tetrameric species, illustrating the impact of zinc ion removal and disulfide bond reduction on the protein's heterogeneity. The apo (calcium-free) and holo forms of bovine α-lactalbumin were separated and differences in the species' heterogeneity were measured; by contrast, the SEC-MALS profiles were identical. Comparative analysis of these structurally unrelated proteins provided novel insights into the interplay between molar mass and conformational/compositional heterogeneity. Overall, this study expands the utility of CE by demonstrating its capacity to discern protein species and their heterogeneity, properties which are not readily accessible by other analytical techniques.


Assuntos
Eletroforese Capilar , Conformação Proteica , Bovinos , Animais , Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , Soroalbumina Bovina/química , Lactalbumina/química
4.
Int J Biol Macromol ; 264(Pt 1): 130424, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428772

RESUMO

The fishing and aquaculture industries generate a huge amount of waste during processing and preservation operations, especially those of tuna. Recovering these by-products is a major economic and environmental challenge for manufacturers seeking to produce new active biomolecules of interest. A new hyaluronic acid was extracted from bluefin tuna's vitreous humour to assess its antioxidant and pharmacological activities. The characterization by infrared spectroscopy (FT-IR), nuclear magnetic resonance ((1D1H) and 2D (1H COSY, 1H/13C HSQC)) and size exclusion chromatography (SEC/MALS/DRI/VD) revealed that the extracted polysaccharide was a hyaluronic acid with high uronic acid content (55.8 %) and a weight average molecular weight of 888 kDa. This polymer possesses significant anti-radical activity and ferrous chelating capacity. In addition, pharmacological evaluation of its anti-inflammatory and analgesic potential, using preclinical models, in comparison with reference drugs (Dexamethasone, diclofenac, and acetylsalicylate of lysine), revealed promising anti-inflammatory activity as well as interesting peripheral and central antinociceptive activity. Therefore, our new hyaluronic acid compound may therefore serve as a potential drug candidate for the treatment of pain sensation and inflammation of various pathological origins.


Assuntos
Ácido Hialurônico , Atum , Animais , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
5.
Int J Biol Macromol ; 254(Pt 2): 127874, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939760

RESUMO

The Orange Carotenoid Protein (OCP) is a unique photoreceptor crucial for cyanobacterial photoprotection. Best studied Synechocystis sp. PCC 6803 OCP belongs to the large OCP1 family. Downregulated by the Fluorescence Recovery Protein (FRP) in low-light, high-light-activated OCP1 binds to the phycobilisomes and performs non-photochemical quenching. Recently discovered families OCP2 and OCP3 remain structurally and functionally underexplored, and no systematic comparative studies have ever been conducted. Here we present two first crystal structures of OCP2 from morphoecophysiologically different cyanobacteria and provide their comprehensive structural, spectroscopic and functional comparison with OCP1, the recently described OCP3 and all-OCP ancestor. Structures enable correlation of spectroscopic signatures with the effective number of hydrogen and discovered here chalcogen bonds anchoring the ketocarotenoid in OCP, as well as with the rotation of the echinenone's ß-ionone ring in the CTD. Structural data also helped rationalize the observed differences in OCP/FRP and OCP/phycobilisome functional interactions. These data are expected to foster OCP research and applications in optogenetics, targeted carotenoid delivery and cyanobacterial biomass engineering.


Assuntos
Proteínas de Bactérias , Synechocystis , Proteínas de Bactérias/química , Synechocystis/metabolismo , Análise Espectral , Carotenoides/química , Ficobilissomas/química
6.
Mol Ther Methods Clin Dev ; 30: 288-302, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37583716

RESUMO

Recombinant adeno-associated viruses (rAAVs) deliver DNA to numerous cell types. However, packaging of partial genomes into the rAAV capsid is of concern. Although empty rAAV capsids are studied, there is little information regarding the impact of partial DNA content on rAAV performance in controlled studies. To address this, we tested vectors containing varying levels of partial, self-complementary EGFP genomes. Density gradient cesium chloride ultracentrifugation was used to isolate three distinct rAAV populations: (1) a lighter fraction, (2) a moderate fraction, and (3) a heavy fraction. Alkaline gels, Illumina Mi-Seq, size exclusion chromatography with multi-angle light scattering (SEC-MALS), and charge detection mass spectrometry (CD-MS) were used to characterize the genome of each population and ddPCR to quantify residual DNA molecules. Live-cell imaging and EGFP ELISA assays demonstrated reduced expression following transduction with the light fraction compared with the moderate and heavy fractions. However, PCR-based assays showed that the light density delivered EGFP DNA to cells as efficiently as the moderate and heavy fractions. Mi-Seq data revealed an underrepresentation of the promoter region for EGFP, suggesting that expression of EGFP was reduced because of lack of regulatory control. This work demonstrates that rAAVs containing partial genomes contribute to the DNA signal but have reduced vector performance.

7.
J Pharm Biomed Anal ; 234: 115562, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37441888

RESUMO

After more than two decades of research and development, adeno-associated virus (AAV) has become one of the dominant delivery vectors in gene therapy. Despite the focused research, the cell entry pathway for AAV is still not fully understood. Universal AAV receptor (AAVR) has been identified to be involved in cellular entry of different AAV serotypes. With the unveiling of the high-resolution AAV-AAVR complex structure by cryogenic electron microscopy, the atomic level interaction between AAV and AAVR has become the focus of study in recent years. However, the serotype dependence of this binding interaction and the effect of pH have not been studied. Here, orthogonal approaches including bio-layer interferometry (BLI), size-exclusion chromatography coupled to multi-angle laser scattering (SEC-MALS) and sedimentation velocity analytical ultracentrifugation (SV-AUC) were utilized to study the interaction between selected AAV serotypes and AAVR under different pH conditions. A robust BLI method was developed and the equilibrium dissociation binding constants (KD) between different AAV serotypes (AAV1, AAV5 and AAV8) and AAVR was measured. The binding constants measured by BLI together with orthogonal methods (SEC-MALS and SV-AUC) all confirmed that AAV5 has the strongest binding affinity followed by AAV1 while AAV8 binds the weakest. It was also observed that lower pH promotes the binding between AAV and AAVR and neutral or slightly basic conditions lead to very weak binding. These data indicate that for certain serotypes, AAVR may play a prominent role in trafficking AAV to the Golgi rather than acting as a host cell receptor. Information obtained from these combinatorial biophysical methods can be used to engineer future generations of AAVs to have better transduction efficiency.


Assuntos
Dependovirus , Dependovirus/genética , Dependovirus/química , Concentração de Íons de Hidrogênio , Ligação Proteica , Sorogrupo
8.
Carbohydr Res ; 531: 108878, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37390792

RESUMO

Polysaccharide (Ps) activation evaluation is an imperative quality attribute in a conjugate vaccine. Pneumococcal polysaccharide (PnPs) serotypes 5, 6B, 14, 19A and 23F were cyanylated for 3 and 8 min. The cyanylated and non-cyanylated polysaccharides were methanolysed and derivatized to assess the activation of each sugar by GC-MS. The activation of 22 and 27% serotype 6B and 11 and 36% in serotype 23 F Ps at 3 and 8 min respectively showed controlled conjugation kinetics with CRM197 carrier protein estimated by SEC-HPLC and optimal absolute molar mass by SEC-MALS. The Glc and Gal are the most commonly activated sugars of all PnPs serotypes while N-acetyl sugars PneuNAc, GalNAc and Rha in serotypes 5, 14 and 19A respectively showed >50% activation which contributes to conjugate aggregate formation at 8 min compared to 3 min cyanylation. The GC-MS analysis of structural modifications at functional groups entails important information to characterize the activated polysaccharide for consistent conjugate vaccine manufacturing.


Assuntos
Vacinas Pneumocócicas , Streptococcus pneumoniae , Vacinas Conjugadas/química , Cromatografia Gasosa-Espectrometria de Massas , Vacinas Pneumocócicas/química , Polissacarídeos , Anticorpos Antibacterianos
9.
Methods Mol Biol ; 2671: 3-48, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37308636

RESUMO

Coiled-coil protein origami (CCPO) is a rationally designed de novo protein fold, constructed by concatenating coiled-coil forming segments into a polypeptide chain, that folds into polyhedral nano-cages. To date, nanocages in the shape of a tetrahedron, square pyramid, trigonal prism, and trigonal bipyramid have been successfully designed and extensively characterized following the design principles of CCPO. These designed protein scaffolds and their favorable biophysical properties are suitable for functionalization and other various biotechnological applications. To further facilitate the development, we are presenting a detailed guide to the world of CCPO, starting from design (CoCoPOD, an integrated platform for designing CCPO strictures) and cloning (modified Golden-gate assembly) to fermentation and isolation (NiNTA, Strep-trap, IEX, and SEC) concluding with standard characterization techniques (CD, SEC-MALS, and SAXS).


Assuntos
Biotecnologia , Ligante de CD40 , Espalhamento a Baixo Ângulo , Difração de Raios X , Biofísica
10.
Hum Gene Ther ; 34(7-8): 325-338, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36927085

RESUMO

To provide safe recombinant adeno-associated viruses (rAAV) to patients, scalable manufacturing processes are required. However, these processes may introduce impurities that impact the performance and quality of the final drug product. Empty rAAV capsids are product-related impurities. Regulatory guidance requires that accurate analytical methods be implemented early in product development to measure the level of empty capsids. A process confirmation vector, produced from 200 L production, was used to develop and optimize a size exclusion chromatography with UV and multiangle light scattering (SEC-MALS) method. Vector produced from a 500 L production was used to assess the full-to-empty ratio using the following analytical methods: sedimentation velocity analytical ultracentrifugation (SV-AUC), droplet digital PCR (ddPCR) with capsid enzyme-linked immunosorbent assay (ELISA), bulk absorbance at 260/280 nm, cryogenic electron microscopy, and SEC-MALS. This test article was used for a 30-day, non-Good Laboratory Practices animal study that assessed biodistribution of the product (STRX-330). SEC-MALS outperformed the other methods and correlated well with SV-AUC values of full-to-empty particles. In addition, SEC-MALS agreed with ddPCR and ELISA measurements for vector genomes/mL and capsid particles/mL, respectively. SEC-MALS was linear, accurate, and precise while achieving chromatography quality control (QC) recommendations. Compared to other stability-indicating assays, SEC-MALS performed similarly to ddPCR, capsid ELISA, and infectivity assays in accelerated stress studies. In response to alkaline, but not acidic stress, SEC-MALS indicated distinct changes in the DNA content of the monomer Adeno-associated viruses (AAV) peak for STRX-330, which was supported by ddPCR data. Conversely, acidic treatment resulted in more aggregated vector, but did not impact the DNA content. This work indicates that SEC-MALS is a valuable analytical tool in the analytical development and QC testing of AAV. In addition, this work suggests that SEC-MALS can provide fundamental understanding of AAV in response to environmental stress. This may impact steps of the manufacturing process to minimize conditions that reduce performance.


Assuntos
DNA , Terapia Genética , Distribuição Tecidual , Cromatografia em Gel , Reação em Cadeia da Polimerase , Dependovirus/genética
11.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770629

RESUMO

Five different chitosan samples (CHI-1 to CHI-5) from crustacean shells with high deacetylation degrees (>93%) have been deeply characterized from a chemical and physicochemical point of view in order to better understand the impact of some parameters on the bioactivity against two pathogens frequently encountered in vineyards, Plasmopara viticola and Botrytis cinerea. All the samples were analyzed by SEC-MALS, 1H-NMR, elemental analysis, XPS, FTIR, mass spectrometry, pyrolysis, and TGA and their antioxidant activities were measured (DPPH method). Molecular weights were in the order: CHI-4 and CHI-5 (MW >50 kDa) > CHI-3 > CHI-2 and CHI-1 (MW < 20 kDa). CHI-1, CHI-2 and CHI-3 are under their hydrochloride form, CHI-4 and CHI-5 are under their NH2 form, and CHI-3 contains a high amount of a chitosan calcium complex. CHI-2 and CHI-3 showed higher scavenging activity than others. The bioactivity against B. cinerea was molecular weight dependent with an IC50 for CHI-1 = CHI-2 (13 mg/L) ≤ CHI-3 (17 mg/L) < CHI-4 (75 mg/L) < CHI-5 (152 mg/L). The bioactivity on P. viticola zoospores was important, even at a very low concentration for all chitosans (no moving spores between 1 and 0.01 g/L). These results show that even at low concentrations and under hydrochloride form, chitosan could be a good alternative to pesticides.


Assuntos
Quitosana , Oomicetos , Antifúngicos/farmacologia , Antifúngicos/química , Quitosana/farmacologia , Quitosana/química , Antioxidantes/farmacologia , Antioxidantes/química , Peso Molecular
12.
J Biol Chem ; 299(2): 102869, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621627

RESUMO

The CTLH (C-terminal to lissencephaly-1 homology motif) complex is a multisubunit RING E3 ligase with poorly defined substrate specificity and flexible subunit composition. Two key subunits, muskelin and Wdr26, specify two alternative CTLH complexes that differ in quaternary structure, thereby allowing the E3 ligase to presumably target different substrates. With the aid of different biophysical and biochemical techniques, we characterized CTLH complex assembly pathways, focusing not only on Wdr26 and muskelin but also on RanBP9, Twa1, and Armc8ß subunits, which are critical to establish the scaffold of this E3 ligase. We demonstrate that the ability of muskelin to tetramerize and the assembly of Wdr26 into dimers define mutually exclusive oligomerization modules that compete with nanomolar affinity for RanBP9 binding. The remaining scaffolding subunits, Armc8ß and Twa1, strongly interact with each other and with RanBP9, again with nanomolar affinity. Our data demonstrate that RanBP9 organizes subunit assembly and prevents higher order oligomerization of dimeric Wdr26 and the Armc8ß-Twa1 heterodimer through its tight binding. Combined, our studies define alternative assembly pathways of the CTLH complex and elucidate the role of RanBP9 in governing differential oligomeric assemblies, thereby advancing our mechanistic understanding of CTLH complex architectures.


Assuntos
Multimerização Proteica , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Multimerização Proteica/genética , Estrutura Quaternária de Proteína , Polimerização , Ligação Proteica
13.
Int J Biol Macromol ; 222(Pt A): 167-180, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165868

RESUMO

Cyanobacteria are photosynthesizing prokaryotes responsible for the Great Oxygenation Event on Earth ~2.5 Ga years ago. They use a specific photoprotective mechanism based on the 35-kDa photoactive Orange Carotenoid Protein (OCP), a promising target for developing novel optogenetic tools and for biomass engineering. The two-domain OCP presumably stems from domain fusion, yet the primitive thylakoid-less cyanobacteria Gloeobacter encodes a complete OCP. Its photosynthesis regulation lacks the so-called Fluorescence Recovery Protein (FRP), which in Synechocystis inhibits OCP-mediated phycobilisome fluorescence quenching, and Gloeobacter OCP belongs to the recently defined, heterogeneous clade OCPX (GlOCPX), the least characterized compared to OCP2 and especially OCP1 clades. Here, we describe the first crystal structure of OCPX, which explains unique functional adaptations of Gloeobacter OCPX compared to OCP1 from Synechocystis. We show that monomeric GlOCPX exploits a remarkable intramolecular locking mechanism stabilizing its dark-adapted state and exhibits drastically accelerated, less temperature-dependent recovery after photoactivation. While GlOCPX quenches Synechocystis phycobilisomes similar to Synechocystis OCP1, it evades interaction with and regulation by FRP from other species and likely uses alternative mechanisms for fluorescence recovery. This analysis of a primordial OCPX sheds light on its evolution, rationalizing renaming and subdivision of the OCPX clade into subclades - OCP3a, OCP3b, OCP3c.


Assuntos
Proteínas de Bactérias , Synechocystis , Proteínas de Bactérias/química , Ficobilissomas/química , Synechocystis/metabolismo , Carotenoides/química , Fluorescência
14.
Methods Mol Biol ; 2473: 259-284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35819771

RESUMO

Light scattering methods permit the determination of molar mass and hydrodynamic radius for a protein from first principles. They are, therefore, particularly useful for the biophysical characterization of any protein. Molar mass and hydrodynamic radius determinations may be used to demonstrate that the protein of interest multimerizes. In the endomembrane system, reversible and regulated assembly and multimerization of proteins is critical for building coats required for vesicle budding, for the function of membrane remodeling machines, for fission and fusion and for assembling and disassembling trafficking intermediates. Light scattering methods have therefore significantly contributed to the understanding of the underlying trafficking processes. Herein, we describe methods to express and purify the recombinant fungal SNX-BAR Mvp1, a membrane remodeling protein required for retrograde trafficking at the endosome. Using Mvp1 as an example, we provide protocols for determining its molar mass and hydrodynamic radius by multiangle static light scattering and dynamic light scattering, respectively. These methods can be applied directly to the study of other membrane trafficking proteins, yielding a wealth of biophysical and biochemical information.


Assuntos
Hidrodinâmica , Proteínas , Endossomos , Membranas , Peso Molecular
15.
J Biochem ; 172(4): 217-224, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35818339

RESUMO

The aspartate:alanine exchanger family of membrane transporters includes industrially important transporters such as succinate exporter and glutamate exporter. No high-resolution structure is available from this family so far, and the transport mechanism of these transporters also remains unclear. In the present study, we focus on the oligomeric status of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus, which is the prototype of this family. To investigate the oligomeric structure of AspT, we established a system that produces high yields of highly purified AspT and determined the oligomeric structure of AspT by analysis with size exclusion chromatography coupled with multi-angle light scattering and blue native PAGE and by comparison of the wild-type AspT with a single-cysteine mutant that forms spontaneous inter-molecular thiol crosslinking. All the results consistently support the notion that AspT is a homodimer in solutions and in membranes.


Assuntos
Alanina , Ácido Aspártico , Alanina/química , Antiporters/química , Ácido Aspártico/química , Cisteína , Enterococcaceae , Glutamatos , Proteínas de Membrana Transportadoras , Succinatos
16.
Pharmaceutics ; 14(6)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35745826

RESUMO

The success of biotherapeutics is often challenged by the undesirable events of immunogenicity in patients, characterized by the formation of anti-drug antibodies (ADA). Under specific conditions, the ADAs recognizing the biotherapeutic can trigger the formation of immune complexes (ICs), followed by cascades of subsequent effects on various cell types. Hereby, the connection between the characteristics of ICs and their downstream impact is still not well understood. Factors governing the formation of ICs and the characteristics of these IC species were assessed systematically in vitro. Classic analytical methodologies such as SEC-MALS and SV-AUC, and the state-of-the-art technology mass photometry were applied for the characterization. The study demonstrates a clear interplay between (1) the absolute concentration of the involved components, (2) their molar ratios, (3) structural features of the biologic, (4) and of its endogenous target. This surrogate study design and the associated analytical tool-box is readily applicable to most biotherapeutics and provides valuable insights into mechanisms of IC formation prior to FIH studies. The applicability is versatile-from the detection of candidates with immunogenicity risks during developability assessment to evaluation of the impact of degraded or post-translationally modified biotherapeutics on the formation of ICs.

17.
Electrophoresis ; 43(11): 1223-1232, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35285541

RESUMO

Biotherapeutics, such as mAbs and fusion proteins, are a major and rapidly growing class of pharmaceuticals. Majority of the biopharmaceuticals are glycoproteins, wherein about 1 to 30% of their molecular weight (MW) are contributed by the glycans. Determination of MW of heavily glycosylated proteins, such as Fc-fusion proteins, is seriously hampered by the physicochemical characteristics and heterogeneity of the attached carbohydrates. Glycosylation influences the expected size of the glycoprotein, which leads to disproportionate MW estimation, in size-dependent methods. Hence, in this study, we have demonstrated the advantages and limitations of four widely used MW estimation techniques for three proteins having varying levels of glycosylation. It was proven that glycosylation had least impact on MW determination by SEC-MALS and SV-AUC. However, MW estimation by LC-MS and SDS-PAGE was extensively hampered by the degree of glycosylation. It is, thus, essential to consider the structural characteristics of proteins while selecting a technique for determining their MW.


Assuntos
Glicoproteínas , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Glicoproteínas/química , Glicosilação , Peso Molecular
18.
Biomolecules ; 12(2)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35204772

RESUMO

Size Exclusion Chromatography coupled with Multi-Angle Light Scattering (SEC-MALS) is a technique that determines the absolute molar mass (molecular weight) of macromolecules in solution, such as proteins or polymers, by detecting their light scattering intensity. Because SEC-MALS does not rely on the assumption of the globular state of the analyte and the calibration of standards, the molar mass can be obtained for proteins of any shape, as well as for intrinsically disordered proteins and aggregates. Yet, corrections need to be made for samples that absorb light at the wavelength of the MALS laser, such as iron-sulfur [Fe-S] cluster-containing proteins. We analyze several examples of [2Fe-2S] and [4Fe-4S] cluster-containing proteins, for which various corrections were applied to determine the absolute molar mass of both the apo- and holo-forms. Importantly, the determination of the absolute molar mass of the [2Fe-2S]-containing holo-NEET proteins allowed us to ascertain a change in the oligomerization state upon cluster binding and, thus, to highlight one essential function of the cluster.


Assuntos
Luz , Proteínas , Cromatografia em Gel , Peso Molecular , Proteínas/química , Espalhamento de Radiação
19.
J Food Biochem ; 46(2): e14080, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35023168

RESUMO

This study aimed to investigate the effect of pre-swelling at 55°C for 1 hr followed by freezing-thawing cycles (PFTCs), and freezing-thawing cycles (FTCs) in the starch granules to improve the freeze-thaw stability and evaluate its impact on the molecular, morphological, and functional properties of potato starch (PS). FTCs at 1 cycle and 7 cycles were applied for both treated PS. Microscopical structure, thermal, molecular, and functional properties (i.e., swelling power, solubility, shear viscosity, and gel strength) were comprehensively analyzed. In terms of granule structures, treated PS by FTC showed a slightly affected on the surface of starch granules, while treating PS by PFTC showed an affected in the form of small cracks and holes in the outer surface of starch granules. The gelatinization enthalpy (∆Hgel ) values decreased in the treated PS compared with the native. Thus, decreasing was systemically increased with the number of applied cycles from 1- to 7-cycle. The viscosity of treated PS decreased systematically with molecular degradation or the physical modification, with remarkable reduction, particularly at a higher shear rate (150°C). Treated PS by FTC showed a clear difference (p ≤ .05) in gel values compared with the native at disintegration temperature 115°C. Finally, the degradation of the molecular properties showed significant differences between the native and treated PS either by the FTC or PFTC in molecular weight of starch and amylose without debranching and after debranching by pullulanase enzyme. PRACTICAL APPLICATIONS: Freezing is one of the standard preservation methods used for ready-to-eat products. When this type of food's exposed to more freeze-thaw cycles, the phase separation will be increased due to the increase in retrogradation of amylopectin. To avoid such changes during frozen storage, native potato starch (PS) was modified using both pre-swelling followed by freezing-thawing cycles (PFTCs) and freezing-thawing cycles (FTCs) at 1- and 7-cycle to enhance starch properties, such as swelling power, solubility, shear viscosity, and gel strength. The findings of this study might add to the theoretical understanding of modified PS and act as a guideline for modified starch manufacturing.


Assuntos
Solanum tuberosum , Amilose , Congelamento , Solanum tuberosum/metabolismo , Amido/metabolismo , Viscosidade
20.
FEBS J ; 289(4): 999-1022, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34582628

RESUMO

Carotenoids are lipophilic substances with many biological functions, from coloration to photoprotection. Being potent antioxidants, carotenoids have multiple biomedical applications, including the treatment of neurodegenerative disorders and retina degeneration. Nevertheless, the delivery of carotenoids is substantially limited by their poor solubility in the aqueous phase. Natural water-soluble carotenoproteins can facilitate this task, necessitating studies on their ability to uptake and deliver carotenoids. One such promising carotenoprotein, AstaP (astaxanthin-binding protein), was recently identified in eukaryotic microalgae, but its structure and functional properties remained largely uncharacterized. By using a correctly folded recombinant protein, here we show that AstaP is an efficient carotenoid solubilizer that can stably bind not only astaxanthin but also zeaxanthin, canthaxanthin, and, to a lesser extent, ß-carotene, that is, carotenoids especially valuable to human health. AstaP accepts carotenoids provided as acetone solutions or embedded in membranes, forming carotenoid-protein complexes with an apparent stoichiometry of 1:1. We successfully produced AstaP holoproteins in specific carotenoid-producing strains of Escherichia coli, proving it is amenable to cost-efficient biotechnology processes. Regardless of the carotenoid type, AstaP remains monomeric in both apo- and holoform, while its rather minimalistic mass (~ 20 kDa) makes it an especially attractive antioxidant delivery module. In vitro, AstaP transfers different carotenoids to liposomes and to unrelated proteins from cyanobacteria, which can modulate their photoactivity and/or oligomerization. These findings expand the toolkit of the characterized carotenoid binding proteins and outline the perspective of the use of AstaP as a unique monomeric antioxidant nanocarrier with an extensive carotenoid binding repertoire.


Assuntos
Proteínas de Algas/metabolismo , Carotenoides/metabolismo , Chlamydomonas reinhardtii/química , Proteínas de Algas/química , Sítios de Ligação , Carotenoides/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...