Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Immun Inflamm Dis ; 12(8): e1341, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092715

RESUMO

BACKGROUND: Sirtuin 7 (SIRT7) is pivotal in diverse diseases progression. Importantly, SIRT7 is associated with melanin production. However, whether SIRT7 regulates vitiligo is unclear. Therefore, we aimed to investigate the effects of SIRT7 on pigmentation and the modification of glucose 6-phosphate dehydrogenase (G6PD). METHODS: After knockdown SIRT7 and G6PD, pigmentation of melanocytes was evaluated using commercial kits, immunofluorescence, and Western blot analysis. The succinylation of G6PD mediated by SIRT7 was analyzed using co-immunoprecipitation, immunofluorescence, Western blot analysis, and cycloheximide-chase experiment. RESULTS: We found that SIRT7 was highly expressed in vitiligo skin lesions. Knockdown of SIRT7 increased tyrosinase activity, melanin content, and the levels of α-melanocyte-stimulating hormone, MITF, TYR, TRP1, and TRP2. Additionally, SIRT7 directly interacted with G6PD. Silenced SIRT7 promoted the succinylation of G6PD and enhanced its protein stability. G6PD knockdown reversed the effect of reduced SIRT7 expression on melanin production. CONCLSUION: Silencing of SIRT7 promotes pigmentation of melanocytes by succinylating G6PD, suggesting that SIRT7-mediated G6PD desuccinylation may promote vitiligo progression.


Assuntos
Progressão da Doença , Glucosefosfato Desidrogenase , Melaninas , Melanócitos , Sirtuínas , Vitiligo , Vitiligo/metabolismo , Vitiligo/patologia , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Sirtuínas/metabolismo , Sirtuínas/genética , Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/genética , Melaninas/metabolismo , Melaninas/biossíntese
2.
Cancer Lett ; 598: 217109, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39002692

RESUMO

Gemcitabine serves as a first-line chemotherapeutic treatment for pancreatic cancer (PC), but it is prone to rapid drug resistance. Increasing the sensitivity of PC to gemcitabine has long been a focus of research. Fasting interventions may augment the effects of chemotherapy and present new options. SIRT7 is known to link metabolism with various cellular processes through post-translational modifications. We found upregulation of SIRT7 in PC cells is associated with poor prognosis and gemcitabine resistance. Cross-analysis of RNA-seq and ATAC-seq data suggested that GLUT3 might be a downstream target gene of SIRT7. Subsequent investigations demonstrated that SIRT7 directly interacts with the enhancer region of GLUT3 to desuccinylate H3K122. Our group's another study revealed that GLUT3 can transport gemcitabine in breast cancer cells. Here, we found GLUT3 KD reduces the sensitivity of PC cells to gemcitabine, and SIRT7 KD-associated gemcitabine-sensitizing could be reversed by GLUT3 KD. While fasting mimicking induced upregulation of SIRT7 expression in PC cells, knocking down SIRT7 enhanced sensitivity to gemcitabine through upregulating GLUT3 expression. We further confirmed the effect of SIRT7 deficiency on the sensitivity of gemcitabine under fasting conditions using a mouse xenograft model. In summary, our study demonstrates that SIRT7 can regulate GLUT3 expression by binding to its enhancer and altering H3K122 succinylation levels, thus affecting gemcitabine sensitivity in PC cells. Additionally, combining SIRT7 knockdown with fasting may improve the efficacy of gemcitabine. This unveils a novel mechanism by which SIRT7 influences gemcitabine sensitivity in PC and offer innovative strategies for clinical combination therapy with gemcitabine.


Assuntos
Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 3 , Neoplasias Pancreáticas , Sirtuínas , Regulação para Cima , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Humanos , Sirtuínas/genética , Sirtuínas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Camundongos , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Antimetabólitos Antineoplásicos/farmacologia , Técnicas de Silenciamento de Genes , Camundongos Nus , Feminino
3.
BMC Cancer ; 24(1): 848, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020302

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) play vital regulatory functions in non-small cell lung cancer (NSCLC). Cisplatin (DDP) resistance has significantly decreased the effectiveness of DDP-based chemotherapy in NSCLC patients. This study aimed to investigate the effects of SH3PXD2A antisense RNA 1 (SH3PXD2A-AS1) on DDP resistance in NSCLC. METHODS: Proliferation and apoptosis of DDP-resistant NSCLC cells were detected using cell counting kit-8 and flow cytometry assays. The interaction between SH3PXD2A-AS1 and sirtuin 7 (SIRT7) was assessed using co-immunoprecipitation (Co-IP), RNA pull-down, RNA immunoprecipitation (RIP), RNA fluorescence in situ hybridization, and immunofluorescence assays, while succinylation (SUCC) of Forkhead Box M1 (FOXM1) was analyzed by IP and Western blot assays. The role of SH3PXD2A-AS1 in vivo was explored using a xenografted tumor model. RESULTS: Expression of SH3PXD2A-AS1 was found elevated in DDP-resistant NSCLC cells, while it's knocking down translated into suppression of cell viability and promotion of apoptosis. Moreover, silencing of SH3PXD2A-AS1 resulted in decreased FOXM1 protein level and enhanced FOXM1-SUCC protein level. The SIRT7 was found to interact with FOXM1, translating into inhibition of FOXM1 SUCC at the K259 site in human embryonic kidney (HEK)-293T cells. Overexpressing of SIRT7 reversed the increase of FOXM1-SUCC protein level and apoptosis, and the decrease of cell viability induced by silencing of SH3PXD2A-AS1. In tumor-bearing mice, SH3PXD2A-AS1 inhibition suppressed tumor growth and the protein levels of Ki67, SIRT7, and FOXM1. CONCLUSION: SH3PXD2A-AS1 promoted DDP resistance in NSCLC cells by regulating FOXM1 SUCC via SIRT7, offering a promising therapeutic approach for NSCLC.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box M1 , Neoplasias Pulmonares , RNA Longo não Codificante , Sirtuínas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Camundongos , Sirtuínas/metabolismo , Sirtuínas/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
4.
Mol Cell Oncol ; 11(1): 2381287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036727

RESUMO

The nucleolar enzyme sirtuin 7 (SIRT7) promotes cancer progression in certain malignancies, likely in part by controlling ribosome biosynthesis. Recently, we discovered that SIRT7 destabilizes the cyclin dependent kinase inhibitor 2A (CDKN2A, known as ARF) within the nucleolus, aiding cancer progression. We propose that targeting nucleolar SIRT7 offers promise for new anti-cancer therapies.

5.
Free Radic Biol Med ; 223: 30-41, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053861

RESUMO

Vascular calcification is frequently seen in patients with chronic kidney disease (CKD), and significantly increases cardiovascular mortality and morbidity. Sirt7, a NAD+-dependent histone deacetylases, plays a crucial role in cardiovascular disease. However, the role of Sirt7 in vascular calcification remains largely unknown. Using in vitro and in vivo models of vascular calcification, this study showed that Sirt7 expression was significantly reduced in calcified arteries from mice administered with high dose of vitamin D3 (vD3). We found that knockdown or inhibition of Sirt7 promoted vascular smooth muscle cell (VSMC), aortic ring and vascular calcification in mice, whereas overexpression of Sirt7 had opposite effects. Intriguingly, this protective effect of Sirt7 on vascular calcification is dependent on its deacetylase activity. Unexpectedly, Sirt7 did not alter the osteogenic transition of VSMCs. However, our RNA-seq and subsequent studies demonstrated that knockdown of Sirt7 in VSMCs resulted in increased intracellular reactive oxygen species (ROS) accumulation, and induced an Nrf-2 mediated oxidative stress response. Treatment with the ROS inhibitor N-acetylcysteine (NAC) significantly attenuated the inhibitory effect of Sirt7 on VSMC calcification. Furthermore, we found that knockdown of Sirt7 delayed cell cycle progression and accelerated cellular senescence of VSMCs. Taken together, our results indicate that Sirt7 regulates vascular calcification at least in part through modulation of ROS and cellular senescence of VSMCs. Sirt7 may be a potential therapeutic target for vascular calcification.

6.
Clin Cosmet Investig Dermatol ; 17: 1495-1504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933605

RESUMO

Background: Vitiligo is an autoimmune disease characterized by loss of skin pigmentation and currently has no effective treatment. This study aimed to investigate the function of SIRT7, being an important desuccinylase mediating multiple disease progression, and its mechanism in vitiligo progression. Methods: Normal human melanocytes (NHM) PIG1 and vitiligo human melanocytes (VHM) PIG3V were utilized in this research. The role of sirtuin 7 (SIRT7) and Ezrin (EZR) on melanin synthesis was investigated by detecting tyrosinase activity, melanin content, α-MSH levels, and the protein levels of melanin-related markers. The function of EZR was identified via rescue experiments, while the underlying mechanism was investigated via bioinformatic analysis, co-immunoprecipitation (co-IP), immunoprecipitation (IP), and Western blot techniques. Results: Results showed that only SIRT7 was highly expressed in vitiligo human melanocytes, where knockingdown SIRT7 translated into increased melanin synthesis in melanocytes. Mechanistically, SIRT7 knockdown promoted the succinylation of EZR at the Lys (K)60 site. Moreover, overexpressing EZR induced higher melanin synthesis in melanocytes, while its knocking down exerted the opposite effect by inhibiting SIRT7 knockdown-induced melanin synthesis. Conclusion: SIRT7 inhibited melanin synthesis in melanocytes by suppressing the succinylation of EZR. These findings are envisaged to provide a novel theoretical basis for vitiligo treatment.

7.
Int J Gen Med ; 17: 2655-2671, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859909

RESUMO

Purpose: This study contributes to the evolving understanding of the pivotal involvement of Sirtuins (SIRTs) in various human cancers, with a particular focus on elucidating their expression patterns and clinical relevance within the context of hepatocellular carcinoma (HCC). The investigation involves a comprehensive analysis of mRNA expression and prognostic implications associated with distinct SIRTs in HCC. Patients and Methods: Initial data pertaining to SIRT expression in HCC patients were collated from publicly accessible databases. Subsequently, the expression levels of select members of the SIRT family were validated using clinicopathological specimens from HCC patients. Additionally, HCC tissue microarray was employed to scrutinize the correlation between SIRT7 expression and HCC prognosis. Results: The findings indicated a substantial upregulation of SIRT2, SIRT3, SIRT4, SIRT6, and SIRT7 in HCC tissues. Survival analysis underscored a pronounced association between elevated mRNA levels of SIRT3, SIRT6, and SIRT7 and an adverse prognosis for HCC patients. Particularly, SIRT7 emerged as a potential independent risk factor for poor prognosis in HCC patients. Examination of the HCC tissue microarray revealed heightened expression of SIRT7 in 68 cases (54.8%) of HCC tissues. Multivariate analysis established high SIRT7 expression as an independent risk factor for diminished Disease-Free Survival (DFS) and Overall Survival (OS) in HCC patients. Conclusion: The aberrant expression of SIRT7 presents itself may be as a novel biomarker for predicting the prognosis of HCC patients.

8.
Cells ; 13(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38920652

RESUMO

Mesenchymal stem cells (MSCs) of placental origin hold great promise in tissue engineering and regenerative medicine for diseases affecting cartilage and bone. However, their utility has been limited by their tendency to undergo premature senescence and phenotypic drift into adipocytes. This study aimed to explore the potential involvement of a specific subset of aging and antiaging genes by measuring their expression prior to and following in vitro-induced differentiation of placental MSCs into chondrocytes and osteoblasts as opposed to adipocytes. The targeted genes of interest included the various LMNA/C transcript variants (lamin A, lamin C, and lamin A∆10), sirtuin 7 (SIRT7), and SM22α, along with the classic aging markers plasminogen activator inhibitor 1 (PAI-1), p53, and p16INK4a. MSCs were isolated from the decidua basalis of human term placentas, expanded, and then analyzed for phenotypic properties by flow cytometry and evaluated for colony-forming efficiency. The cells were then induced to differentiate in vitro into chondrocytes, osteocytes, and adipocytes following established protocols. The mRNA expression of the targeted genes was measured by RT-qPCR in the undifferentiated cells and those fully differentiated into the three cellular lineages. Compared to undifferentiated cells, the differentiated chondrocytes demonstrated decreased expression of SIRT7, along with decreased PAI-1, lamin A, and SM22α expression, but the expression of p16INK4a and p53 increased, suggesting their tendency to undergo premature senescence. Interestingly, the cells maintained the expression of lamin C, which indicates that it is the primary lamin variant influencing the mechanoelastic properties of the differentiated cells. Notably, the expression of all targeted genes did not differ from the undifferentiated cells following osteogenic differentiation. On the other hand, the differentiation of the cells into adipocytes was associated with decreased expression of lamin A and PAI-1. The distinct patterns of expression of aging and antiaging genes following in vitro-induced differentiation of MSCs into chondrocytes, osteocytes, and adipocytes potentially reflect specific roles for these genes during and following differentiation in the fully functional cells. Understanding these roles and the network of signaling molecules involved can open opportunities to improve the handling and utility of MSCs as cellular precursors for the treatment of cartilage and bone diseases.


Assuntos
Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais , Osteogênese , Placenta , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Feminino , Placenta/metabolismo , Placenta/citologia , Diferenciação Celular/genética , Condrogênese/genética , Gravidez , Osteogênese/genética , Biomarcadores/metabolismo , Senescência Celular/genética , Condrócitos/metabolismo , Condrócitos/citologia , Envelhecimento , Lamina Tipo A/metabolismo , Lamina Tipo A/genética
9.
Proc Natl Acad Sci U S A ; 121(25): e2409269121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38870055

RESUMO

Sirtuin 7 (SIRT7) is a member of the mammalian family of nicotinamide adenine dinucleotide (NAD+)-dependent histone/protein deacetylases, known as sirtuins. It acts as a potent oncogene in numerous malignancies, but the molecular mechanisms employed by SIRT7 to sustain lung cancer progression remain largely uncharacterized. We demonstrate that SIRT7 exerts oncogenic functions in lung cancer cells by destabilizing the tumor suppressor alternative reading frame (ARF). SIRT7 directly interacts with ARF and prevents binding of ARF to nucleophosmin, thereby promoting proteasomal-dependent degradation of ARF. We show that SIRT7-mediated degradation of ARF increases expression of protumorigenic genes and stimulates proliferation of non-small-cell lung cancer (NSCLC) cells both in vitro and in vivo in a mouse xenograft model. Bioinformatics analysis of transcriptome data from human lung adenocarcinomas revealed a correlation between SIRT7 expression and increased activity of genes normally repressed by ARF. We propose that disruption of SIRT7-ARF signaling stabilizes ARF and thus attenuates cancer cell proliferation, offering a strategy to mitigate NSCLC progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Progressão da Doença , Neoplasias Pulmonares , Sirtuínas , Humanos , Sirtuínas/metabolismo , Sirtuínas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
10.
Front Mol Biosci ; 11: 1423594, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894712

RESUMO

p53 deficiency plays a crucial role in chemotherapy resistance through various biological events, including posttranslational modifications (PTMs). Recently, lysine crotonylation (Kcr) has been shown to play a vital role in cancer progression. However, the global p53-regulated crotonylome and the function of these altered Kcr proteins after p53 deficiency remain unclear. In this study, we used a SILAC-based quantitative crotonylome to identify 3,520 Kcr in 1924 crotonylated proteins in response to p53 knockout. We found that increased crotonylation of RRM2 at K283 (RRM2K283Cr) in the presence of p53 deficiency promoted HCT116 cell resistance to cisplatin. We discovered that SIRT7 could be the decrotonylase of RRM2 and was downregulated after p53 knockout, resulting in increased RRM2K283Cr. Mechanistically, p53 deficiency inhibited cell apoptosis by upregulating RRM2 protein expression and RRM2K283Cr-mediated cleaved-PARP1 and cleaved-caspase3 expression, and SIRT7 was downregulated to upregulate crotonylation of RRM2 upon p53 deficiency. In conclusion, our results indicated that p53 deficiency plays a malignant role in colon cancer resistance to cisplatin therapy by regulating RRM2 protein and RRM2K283Cr expression. Our findings provide a novel therapeutic target against p53-deficient cancer.

11.
Biochem Biophys Res Commun ; 722: 150161, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38797153

RESUMO

Melanoma, arising from the malignant transformation of melanocytes, stands as the most lethal type of skin cancer. While significant strides have been made in targeted therapy and immunotherapy, substantially enhancing therapeutic efficacy, the prognosis for melanoma patients remains unoptimistic. SIRT7, a nuclear-localized deacetylase, plays a pivotal role in maintaining cellular homeostasis and adapting to external stressors in melanoma, with its activity closely tied to intracellular nicotinamide adenine dinucleotide (NAD+). However, its involvement in adaptive resistance to targeted therapy remains unclear. Herein, we unveil that up-regulated SIRT7 promotes mitochondrial biogenesis to render the adaptive resistance to MAPK inhibition in melanoma. Initially, we observed a significant increase of SIRT7 expression in publicly available datasets following targeted therapy within a short duration. In consistent, we found elevated SIRT7 expression in melanoma cells subjected to BRAF or MEK inhibitors in vitro. The up-regulation of SIRT7 expression was also confirmed in xenograft tumors in mice after targeted therapy in vivo. Furthermore, we proved that SIRT7 deficiency led to decreased cell viability upon prolonged exposure to BRAF or MEK inhibitors, accompanied by an increase in cell apoptosis. Mechanistically, SIRT7 deficiency restrained the upregulation of genes associated with mitochondrial biogenesis and intracellular ATP levels in response to targeted therapy treatment in melanoma cells. Ultimately, we proved that SIRT7 deficieny could sensitize BRAF-mutant melanoma cells to MAPK inhibition targeted therapy in vivo. In conclusion, our findings underscore the role of SIRT7 in fostering adaptive resistance to targeted therapy through the facilitation of mitochondrial biogenesis. Targeting SIRT7 emerges as a promising strategy to overcome MAPK inhibitor adaptive resistance in melanoma.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Melanoma , Biogênese de Organelas , Inibidores de Proteínas Quinases , Sirtuínas , Melanoma/metabolismo , Melanoma/patologia , Melanoma/genética , Melanoma/tratamento farmacológico , Humanos , Sirtuínas/metabolismo , Sirtuínas/genética , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/tratamento farmacológico , Camundongos Nus , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores
12.
Am J Physiol Renal Physiol ; 327(1): F184-F197, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38779758

RESUMO

Zn2+ levels are reported to be correlated with kidney function. We explored the significance of Zn2+ in sepsis-induced acute kidney injury (SI-AKI) through the regulation of sirtuin 7 (SIRT7) activity. The sepsis rat model was established by cecal ligation and perforation (CLP) and intraperitoneally injected with ZnSO4 or SIRT7 inhibitor 97491 (SIRT7i), with renal tubular injury assessed by hematoxylin and eosin staining. In vitro, human renal tubular epithelial cells (HK-2) were induced with lipopolysaccharide to obtain a renal injury cell model, followed by ZnSO4 or SIRT7i and autophagy inhibitor (3-methyladenine) treatment. Interleukin (IL)-1ß, IL-18, reactive oxygen species (ROS), Parkin acetylation level, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) expression levels were determined. The renal tubule injury, inflammation condition, and pyroptosis-related and autophagy-related protein levels were assessed. The pyroptosis in kidney tissues and autophagosome formation were observed by transmission electron microscopy. Zn2+ alleviated renal injury in CLP rats and inhibited pyroptosis and its related protein levels by inhibiting SIRT7 activity in septic rat renal tissues. In vitro, Zn2+ increased HK-2 cell viability and reduced KIM-1, NGAL, IL-1ß, IL-18, NLRP3 inflammasome, cleaved caspase-1, gasdermin D-N levels, and pyroptotic cell number. Zn2+ increased autophagosome number and LC3BII/LC3BI ratio and decreased TOM20, TIM23, P62, and mitochondrial ROS levels. Zn2+ increased Parkin acetylation by repressing SIRT7 activity. Inhibiting mitophagy partially averted Zn2+-inhibited NLRP3 inflammasome activation and apoptosis in HK-2 cells. Zn2+ upregulated Parkin acetylation by repressing SIRT7 activity to promote mitophagy and inhibit NLRP3 inflammasome activation and pyroptosis, thus improving SI-AKI.NEW & NOTEWORTHY Zn2+ upregulated Parkin acetylation by repressing sirtuin 7 activity to promote mitophagy and inhibit NLRP3 inflammasome activation and pyroptosis, thus improving sepsis-induced acute kidney injury.


Assuntos
Injúria Renal Aguda , Ratos Sprague-Dawley , Sepse , Sirtuínas , Ubiquitina-Proteína Ligases , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Animais , Sepse/complicações , Sepse/metabolismo , Acetilação , Sirtuínas/metabolismo , Humanos , Masculino , Ubiquitina-Proteína Ligases/metabolismo , Zinco/metabolismo , Zinco/farmacologia , Ratos , Modelos Animais de Doenças , Linhagem Celular , Piroptose/efeitos dos fármacos , Regulação para Cima , Autofagia/efeitos dos fármacos , Inflamassomos/metabolismo , Rim/patologia , Rim/metabolismo , Transdução de Sinais
13.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791128

RESUMO

In endothelial cells, miR-148a-3p is involved in several pathological pathways, including chronic inflammatory conditions. However, the molecular mechanism of miR-148a-3p in endothelial inflammatory states is, to date, not fully elucidated. To this end, we investigated the involvement of miR-148a-3p in mitochondrial dysfunction and cell death pathways in human aortic endothelial cells (teloHAECs) treated with interleukin-6 (IL-6), a major driver of vascular dysfunction. The results showed that during IL6-activated inflammatory pathways, including increased protein levels of sirtuin 7 (SIRT7) (p < 0.01), mitochondrial stress (p < 0.001), and apoptosis (p < 0.01), a decreased expression of miR-148a-3p was observed (p < 0.01). The employment of a miR-148a mimic counteracted the IL-6-induced cytokine release (p < 0.01) and apoptotic cell death (p < 0.01), and ameliorated mitochondria redox homeostasis and respiration (p < 0.01). The targeted relationship between miR-148a-3p and SIRT7 was predicted by a bioinformatics database analysis and validated via the dual-luciferase reporter assay. Mechanistically, miR-148a-3p targets the 3' untranslated regions of SIRT7 mRNA, downregulating its expression (p < 0.01). Herein, these in vitro results support the role of the miR-148a-3p/SIRT7 axis in counteracting mitochondrial damage and apoptosis during endothelial inflammation, unveiling a novel target for future strategies to prevent endothelial dysfunction.


Assuntos
Apoptose , Células Endoteliais , Inflamação , MicroRNAs , Humanos , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Interleucina-6/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Sirtuínas/metabolismo , Sirtuínas/genética
14.
J Cell Mol Med ; 28(9): e18336, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38686489

RESUMO

Diabetic kidney disease (DKD), a primary microvascular complication arising from diabetes, may result in end-stage renal disease. Epigenetic regulation of endothelial mesenchymal transition (EndMT) has been recently reported to exert function in metabolic memory and DKD. Here, we investigated the mechanism which Sirt7 modulated EndMT in human glomerular endothelial cells (HGECs) in the occurrence of metabolic memory in DKD. Lower levels of SDC1 and Sirt7 were noted in the glomeruli of both DKD patients and diabetes-induced renal injury rats, as well as in human glomerular endothelial cells (HGECs) with high blood sugar. Endothelial-to-mesenchymal transition (EndMT) was sustained despite the normalization of glycaemic control. We also found that Sirt7 overexpression associated with glucose normalization promoted the SDC1 expression and reversed EndMT in HGECs. Furthermore, the sh-Sirt7-mediated EndMT could be reversed by SDC1 overexpression. The ChIP assay revealed enrichment of Sirt7 and H3K18ac in the SDC1 promoter region. Furthermore, hypermethylated in cancer 1 (HIC1) was found to be associated with Sirt7. Overexpression of HIC1 with normoglycaemia reversed high glucose-mediated EndMT in HGECs. The knockdown of HIC1-mediated EndMT was reversed by SDC1 upregulation. In addition, the enrichment of HIC1 and Sirt7 was observed in the same promoter region of SDC1. The overexpressed Sirt7 reversed EndMT and improved renal function in insulin-treated diabetic models. This study demonstrated that the hyperglycaemia-mediated interaction between Sirt7 and HIC1 exerts a role in the metabolic memory in DKD by inactivating SDC1 transcription and mediating EndMT despite glucose normalization in HGECs.


Assuntos
Nefropatias Diabéticas , Células Endoteliais , Hiperglicemia , Fatores de Transcrição Kruppel-Like , Sirtuínas , Sindecana-1 , Sindecana-1/metabolismo , Sindecana-1/genética , Humanos , Animais , Hiperglicemia/metabolismo , Hiperglicemia/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Ratos , Masculino , Células Endoteliais/metabolismo , Sirtuínas/metabolismo , Sirtuínas/genética , Transição Epitelial-Mesenquimal/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/complicações , Ratos Sprague-Dawley , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Epigênese Genética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Transição Endotélio-Mesênquima
15.
Pathol Res Pract ; 256: 155233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452583

RESUMO

Gallbladder cancer (GBC) is a highly aggressive malignancy with limited treatment options and poor prognosis. In this study, we aimed to investigate the role of SIRT7, a member of the sirtuin family, in GBC and its potential as a prognostic marker and therapeutic target. Through immunohistochemistry analysis of GBC tissue samples, we observed elevated levels of SIRT7, which were correlated with worse clinicopathological parameters and shorter overall survival in GBC patients. Additionally, through cellular and animal experiments, we have discovered that interfering with SIRT7 can effectively suppress the proliferation, migration, and invasive capabilities of GBC cells. Conversely, overexpressing SIRT7 yields the opposite outcome. Furthermore, interference with SIRT7 triggers cell cycle arrest and enhances apoptosis in GBC cells. Mechanistically, we found that SIRT7 inhibition led to reduced activation of the NF-κB signaling pathway, suggesting its involvement in modulating GBC cell behavior. Our findings shed light on the oncogenic role of SIRT7 in GBC and highlight its potential as a promising prognostic marker and therapeutic target. Further research is warranted to explore the therapeutic implications of targeting SIRT7 in GBC treatment.


Assuntos
Neoplasias da Vesícula Biliar , Sirtuínas , Animais , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias da Vesícula Biliar/genética , Prognóstico , Transdução de Sinais , Sirtuínas/metabolismo
16.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 586-596, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38449390

RESUMO

Diabetic nephropathy (DN) is the main cause of end-stage renal disease worldwide. It is reported that the endothelial-to-mesenchymal transition (EndMT) in glomerular endothelial cells plays an important role in DN. As a specific form of epithelial-to-mesenchymal transition, EndMT may involve common regulators of epithelial-to-mesenchymal transition. Fascin has been shown to mediate epithelial-to-mesenchymal transition. In addition, SirT7 has been confir med to contribute to inflammation in hyperglycemic endothelial cells via the modulation of gene transcription. In this study, we speculate that SirT7 modulates fascin transcription and is thus involved in EndMT in hyperglycemic glomerular endothelial cells. Our data indicate that α-smooth muscle actin (α-SMA) and fascin levels are increased, while CD31 levels are decreased in the kidneys of DN rats. Consistently, our cellular experiments reveal that high glucose treatment elevates fascin levels and induces EndMT in human glomerular endothelial cells (HGECs). Moreover, silencing of fascin inhibits EndMT in hyperglycaemic HGECs. In addition, SirT7 is found to be decreased in hyperglycemic cells and in the kidneys of DN mice. Moreover, the inhibition of SirT7 increases fascin level and mediates EndMT. An increase in SirtT7 expression decreases fascin expression, inhibits EndMT, and improves renal function in hyperglycemic cells and DN mice. SirT7 is found to bind to the promoter region of fascin. In summary, the present study indicates that SirT7 transcribes fascin to contribute to hyperglycemia-induced EndMT in DN patients.


Assuntos
Proteínas de Transporte , Nefropatias Diabéticas , Proteínas dos Microfilamentos , Animais , Humanos , Camundongos , Ratos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Transição Endotélio-Mesênquima , Transição Epitelial-Mesenquimal , Rim/metabolismo
17.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396635

RESUMO

Sirtuins (SIRTs) belong to the family of nicotine adenine dinucleotide (NAD+)-dependent class III histone deacetylases, which come into play in the regulation of epigenetic processes through the deacetylation of histones and other substrates. The human genome encodes for seven homologs (SIRT1-7), which are localized into the nucleus, cytoplasm, and mitochondria, with different enzymatic activities and regulatory mechanisms. Indeed, SIRTs are involved in different physio-pathological processes responsible for the onset of several human illnesses, such as cardiovascular and neurodegenerative diseases, obesity and diabetes, age-related disorders, and cancer. Nowadays, it is well-known that Citrus fruits, typical of the Mediterranean diet, are an important source of bioactive compounds, such as polyphenols. Among these, flavonoids are recognized as potential agents endowed with a wide range of beneficial properties, including antioxidant, anti-inflammatory, hypolipidemic, and antitumoral ones. On these bases, we offer a comprehensive overview on biological effects exerted by Citrus flavonoids via targeting SIRTs, which acted as modulator of several signaling pathways. According to the reported studies, Citrus flavonoids appear to be promising SIRT modulators in many different pathologies, a role which might be potentially evaluated in future therapies, along with encouraging the study of those SIRT members which still lack proper evidence on their support.


Assuntos
Flavonoides , Sirtuínas , Humanos , Flavonoides/farmacologia , Histonas/metabolismo , Antioxidantes , Sirtuínas/metabolismo , Transdução de Sinais
18.
J Pathol ; 263(1): 74-88, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411274

RESUMO

Fascin actin-bundling protein 1 (Fascin) is highly expressed in a variety of cancers, including esophageal squamous cell carcinoma (ESCC), working as an important oncogenic protein and promoting the migration and invasion of cancer cells by bundling F-actin to facilitate the formation of filopodia and invadopodia. However, it is not clear how exactly the function of Fascin is regulated by acetylation in cancer cells. Here, in ESCC cells, the histone acetyltransferase KAT8 catalyzed Fascin lysine 41 (K41) acetylation, to inhibit Fascin-mediated F-actin bundling and the formation of filopodia and invadopodia. Furthermore, NAD-dependent protein deacetylase sirtuin (SIRT) 7-mediated deacetylation of Fascin-K41 enhances the formation of filopodia and invadopodia, which promotes the migration and invasion of ESCC cells. Clinically, the analysis of cancer and adjacent tissue samples from patients with ESCC showed that Fascin-K41 acetylation was lower in the cancer tissue of patients with lymph node metastasis than in that of patients without lymph node metastasis, and low levels of Fascin-K41 acetylation were associated with a poorer prognosis in patients with ESCC. Importantly, K41 acetylation significantly blocked NP-G2-044, one of the Fascin inhibitors currently being clinically evaluated, suggesting that NP-G2-044 may be more suitable for patients with low levels of Fascin-K41 acetylation, but not suitable for patients with high levels of Fascin-K41 acetylation. © 2024 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proteínas de Transporte , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteínas dos Microfilamentos , Sirtuínas , Humanos , Acetilação , Actinas/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Histona Acetiltransferases/metabolismo , Metástase Linfática , Sirtuínas/metabolismo
19.
BMC Cancer ; 24(1): 210, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360598

RESUMO

OBJECTIVE: This study was designed to investigate the regulatory effects of kinesin family member (KIF) 23 on anaplastic thyroid cancer (ATC) cell viability and migration and the underlying mechanism. METHODS: Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to analyze the levels of KIF23 in ATC cells. Besides, the effects of KIF23 and sirtuin (SIRT) 7 on the viability and migration of ATC cells were detected using cell counting kit-8, transwell and wound healing assays. The interaction between SIRT7 and KIF23 was evaluated by co-immunoprecipitation (Co-IP) assay. The succinylation (succ) of KIF23 was analyzed by western blot. RESULTS: The KIF23 expression was upregulated in ATC cells. Silencing of KIF23 suppressed the viability and migration of 8505C and BCPAP cells. The KIF23-succ level was decreased in ATC cells. SIRT7 interacted with KIF23 to inhibit the succinylation of KIF23 at K537 site in human embryonic kidney (HEK)-293T cells. Overexpression of SIRT7 enhanced the protein stability of KIF23 in HEK-293T cells. Besides, overexpression of KIF23 promoted the viability and migration of 8505C and BCPAP cells, which was partly blocked by silenced SIRT7. CONCLUSIONS: SIRT7 promoted the proliferation and migration of ATC cells by regulating the desuccinylation of KIF23.


Assuntos
Sirtuínas , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/metabolismo , Linhagem Celular Tumoral , Apoptose , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Proliferação de Células/genética , Proteínas Associadas aos Microtúbulos , Sirtuínas/genética , Sirtuínas/farmacologia
20.
Cardiovasc Res ; 120(4): 403-416, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38198357

RESUMO

AIMS: Pulmonary hypertension (PH) is a pulmonary vascular disease characterized by a high mortality rate. Pulmonary arterial endothelium cells (PAECs) serve as a primary sensor of various environmental cues, such as shear stress and hypoxia, but PAEC dysfunction may trigger vascular remodelling during the onset of PH. This study aimed to illustrate the role of Sirtuin 7 (SIRT7) in endothelial dysfunction during PH and explore the potential therapeutic strategy for PH. METHODS AND RESULTS: SIRT7 levels were measured in human and murine experimental PH samples. Bioinformatic analysis, immunoprecipitation, and deacetylation assay were used to identify the association between SIRT7 and Krüpple-like factor 4 (KLF4), a key transcription factor essential for endothelial cell (EC) homeostasis. Sugen5416 + hypoxia (SuHx)-induced PH mouse models and cell cultures were used for the study of the therapeutic effect of SIRT7 for PH. SIRT7 level was significantly reduced in lung tissues and PAECs from PH patients and the SuHx-induced PH mouse model as compared with healthy controls. Pulmonary endothelium-specific depletion of Sirt7 increased right ventricular systolic pressure and exacerbated right ventricular hypertrophy in the SuHx-induced PH model. At the molecular level, we identified KLF4 as a downstream target of SIRT7, which deacetylated KLF4 at K228 and inhibited the ubiquitination-proteasome degradation. Thus, the SIRT7/KLF4 axis maintained PAEC homeostasis by regulating proliferation, migration, and tube formation. PAEC dysfunction was reversed by adeno-associated virus type 1 vector-mediated endothelial overexpression of Sirt7 or supplementation with nicotinamide adenine dinucleotide (NAD)+ intermediate nicotinamide riboside which activated Sirt7; both approaches successfully reversed PH phenotypes. CONCLUSION: The SIRT7/KLF4 axis ensures PAEC homeostasis, and pulmonary endothelium-specific SIRT7 targeting might constitute a PH therapeutic strategy.


Assuntos
Hipertensão Pulmonar , Sirtuínas , Animais , Humanos , Camundongos , Endotélio Vascular/metabolismo , Hipóxia/metabolismo , Pulmão/metabolismo , Artéria Pulmonar , Sirtuínas/genética , Sirtuínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...