Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 841
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39099244

RESUMO

We developed technique similar to transcatheter treatment for superior sinus venosus defects to treat a patient with a Partial Anomalous Pulmonary Venous Connection of the right upper pulmonary veins (RUPV) without an atrial septal defect. A double transseptal puncture was performed, and the left atrium (LA) was connected with the RUPV using a covered stent. The blood flow from the superior vena cava was directed to the right atrium (RA) using a second covered stent.

2.
Microbiology (Reading) ; 170(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39109421

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is an important waterborne pathogen capable of causing serious gastrointestinal infections with potentially fatal complications, including haemolytic-uremic syndrome. All STEC serogroups harbour genes that encode at least one Shiga toxin (stx1 and/or stx2), which constitute the primary virulence factors of STEC. Loop-mediated isothermal amplification (LAMP) enables rapid real-time pathogen detection with a high degree of specificity and sensitivity. The aim of this study was to develop and validate an on-site portable diagnostics workstation employing LAMP technology to permit rapid real-time STEC detection in environmental water samples. Water samples (n=28) were collected from groundwater wells (n=13), rivers (n=12), a turlough (n=2) and an agricultural drain (n=1) from the Corrib catchment in Galway. Water samples (100 ml) were passed through a 0.22 µm filter, and buffer was added to elute captured cells. Following filtration, eluates were tested directly using LAMP assays targeting stx1, stx2 and E. coli phoA genes. The portable diagnostics workstation was used in field studies to demonstrate the on-site testing capabilities of the instrument. Real-time PCR assays targeting stx1 and stx2 genes were used to confirm the results. The limit of detection for stx1, stx2 and phoA LAMP assays were 2, 2 and 6 copies, respectively. Overall, stx1, stx2 and phoA genes were detected by LAMP in 15/28 (53.6 %), 9/28 (32.2 %) and 24/28 (85.7 %) samples, respectively. For confirmation, the LAMP results for stx1 and stx2 correlated perfectly (100 %) with those obtained using PCR. The portable diagnostics workstation exhibited high sensitivity throughout the on-site operation, and the average time from sample collection to final result was 40 min. We describe a simple, transferable and efficient diagnostic technology for on-site molecular analysis of various water sources. This method allows on-site testing of drinking water, enabling evidence-based decision-making by public health and water management authorities.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Escherichia coli Shiga Toxigênica , Microbiologia da Água , Técnicas de Amplificação de Ácido Nucleico/métodos , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentação , Sensibilidade e Especificidade , Rios/microbiologia , Toxina Shiga I/genética , Água Subterrânea/microbiologia
3.
Foodborne Pathog Dis ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110442

RESUMO

Between 2017 and 2019, pulsed-field gel electrophoresis was replaced by whole genome sequencing (WGS) for identifying enteric disease clusters in Canada. The number and characteristics of all clusters of Listeria monocytogenes, Salmonella, Shiga toxin-producing Escherichia coli (STEC), and Shigella spp. between 2015 and 2021 were analyzed. Following the transition to WGS, an increase in the number of Salmonella, STEC, and Shigella clusters was noted, whereas the number of clusters of L. monocytogenes decreased. Unlike previous subtyping methods, WGS provided increased resolution to identify discrete clusters of Salmonella Enteritidis. This led to the identification of a number of outbreaks linked to frozen raw breaded chicken products and ultimately a change in food safety policy to reduce the number of illnesses associated with these products. Other pathogens did not experience a similar increase in the number of outbreaks detected. Although WGS did provide increased confidence in the genetic relatedness of cases and isolates, challenges remained in collecting epidemiological data to link these illnesses to a common source.

4.
Microorganisms ; 12(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39065242

RESUMO

The zoonotic Shiga toxin-producing Escherichia coli (STEC) group is unanimously regarded as exceptionally hazardous for humans. This study aimed to provide a genomic perspective on the STEC recovered sporadically from humans and have a foundation of internationally comparable data. Fifty clinical STEC isolates, representing the culture-confirmed infections reported by the STEC Reference Laboratory between 2016 and 2023, were subjected to whole-genome sequencing (WGS) analysis and sequences were interpreted using both commercial and public free bioinformatics tools. The WGS analysis revealed a genetically diverse population of STEC dominated by non-O157 serogroups commonly reported in human STEC infections in the European Union. The O26:H11 strains of ST21 lineage played a major role in the clinical disease resulting in hospitalisation and cases of paediatric HUS in Romania surpassing the O157:H7 strains. The latter were all clade 7 and mostly ST1804. Notably, among the Romanian isolates was a stx2a-harbouring cryptic clade I strain associated with a HUS case, stx2f- and stx2e-positive strains, and hybrid strains displaying a mixture of intestinal and extraintestinal virulence genes were found. As a clearer picture emerges of the STEC strains responsible for infections in Romania, further surveillance efforts are needed to uncover their prevalence, sources, and reservoirs.

5.
Vaccines (Basel) ; 12(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39066363

RESUMO

Shiga toxin-producing Escherichia coli (STEC) poses a significant public health risk due to its zoonotic potential and association with severe human diseases, such as hemorrhagic colitis and hemolytic uremic syndrome. Ruminants are recognized as primary reservoirs for STEC, but swine also contribute to the epidemiology of this pathogen, highlighting the need for effective prevention strategies across species. Notably, a subgroup of STEC that produces Shiga toxin type 2e (Stx2e) causes edema disease (ED) in newborn piglets, economically affecting pig production. This study evaluates the immunogenicity of a chimeric protein-based vaccine candidate against STEC in pregnant sows and the subsequent transfer of immunity to their offspring. This vaccine candidate, which includes chimeric proteins displaying selected epitopes from the proteins Cah, OmpT, and Hes, was previously proven to be immunogenic in pregnant cows. Our analysis revealed a broad diversity of STEC serotypes within swine populations, with the cah and ompT genes being prevalent, validating them as suitable antigens for vaccine development. Although the hes gene was detected less frequently, the presence of at least one of these three genes in a significant proportion of STEC suggests the potential of this vaccine to target a wide range of strains. The vaccination of pregnant sows led to an increase in specific IgG and IgA antibodies against the chimeric proteins, indicating successful immunization. Additionally, our results demonstrated the effective passive transfer of maternal antibodies to piglets, providing them with immediate, albeit temporary, humoral immunity against STEC. These humoral responses demonstrate the immunogenicity of the vaccine candidate and are preliminary indicators of its potential efficacy. However, further research is needed to conclusively evaluate its impact on STEC colonization and shedding. This study highlights the potential of maternal vaccination to protect piglets from ED and contributes to the development of vaccination strategies to reduce the prevalence of STEC in various animal reservoirs.

6.
Pediatr Nephrol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967838

RESUMO

Vascular endothelial cells are equipped with numerous specialized granules called Weibel-Palade bodies (WPBs). They contain a cocktail of proteins that can be rapidly secreted (3-5 min) into the vascular lumen after an appropriate stimulus such as thrombin. These proteins are ready without synthesis. Von Willebrand factor (VWF) and P-selectin are the main constituents of WPBs. Upon stimulation, release of ultralarge VWF multimers occurs and assembles into VWF strings on the apical side of endothelium. The VWF A1 domain becomes exposed in a shear-dependent manner recruiting and activating platelets. VWF is able to recruit leukocytes via direct leukocyte binding or via the activated platelets promoting NETosis. Ultralarge VWF strings are ultimately cleaved into smaller pieces by the protease ADAMTS-13 preventing excessive platelet adhesion. Under carefully performed flowing conditions and adequate dose of Shiga toxins, the toxin induces the release of ultralarge VWF multimers from cultured endothelial cells. This basic information allows insight into the pathogenesis of thrombotic thrombocytopenic purpura (TTP) and of STEC-HUS in the diarrhea phase. In TTP, ADAMTS-13 activity is deficient and systemic aggregation of platelets will occur after a second trigger. In STEC-HUS, stimulated release of WPB components in the diarrhea phase of the disease can be presumed to be the first hit in the damage of Gb3 positive endothelial cells.

7.
Br Poult Sci ; : 1-11, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967914

RESUMO

1. Shiga toxin-producing Escherichia coli (STEC) strains are associated with disease outbreaks which cause a public health problem. The aim of this study was to determine the frequency of STEC strains, their virulence factors, phylogenetic groups and antimicrobial resistance profiles in broiler chickens.2. A total of 222 E.coli isolates were collected from the caecum of chickens intended to be slaughtered. Antibiotic susceptibility was tested against 21 antimicrobial agents and ESBL phenotype was assessed by double-disk synergy test. The presence of STEC virulence genes stx1, stx2,eaeA and ehxA was detected by PCR. The identification of STEC serogroups was realised by PCR amplification. Additive virulence genes, phylogenetic groups and integrons were examined among the STEC isolates.3. Out of 222 E.coli isolates, 72 (32%) were identified as STEC strains and the most predominant serogroups were O103, O145 and O157. Shiga toxin gene 1 (stx1) was found in 84.7% (61/72) of the STEC strains, and eae and stx2 were detected in 38.8% and 13.8%, respectively. The ESBL phenotype was documented in 48.6% (35/72) of isolates. Most of the isolates (90.3%) carried class 1 integron with the gene cassette encoding resistance to trimethoprim (dfrA) and streptomycin (aadA) in 31.9% of the isolates. Class 2 integron was identified in 36.1% of isolates.4. Broilers can be considered as a reservoir of STEC strains which have high virulence factors and integrons that might be transmitted to other chickens, environments and humans. It is important to undertake surveillance and efficient control measures in slaughterhouses and farms to control measures of STEC bacteria.

8.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39025805

RESUMO

AIM: To investigate the possible contamination of raw flour and raw flour-based products, such as pancake/batter mixes, with Salmonella, generic Escherichia coli, and Shiga-toxin-producing E. coli (STEC). Samples included flours available for sale in the UK over a period of four months (January to April 2020). The Bread and Flour regulations, 1998 state the permitted ingredients in flour and bread but it does not specify the regular monitoring of the microbiological quality of flour and flour-based products. METHODS AND RESULTS: Samples of raw flour were collected by local authority sampling officers in accordance with current guidance on microbiological food sampling then transported to the laboratory for examination. Microbiological testing was performed to detect Salmonella spp., generic E. coli, and STEC characterized for the presence of STEC virulence genes: stx1, stx2, and subtypes, eae, ipah, aggR, lt, sth, and stp, using molecular methods Polymerase Chain Reaction (PCR). Of the 882 flours sampled, the incidence of Salmonella was 0.1% (a single positive sample that contained multiple ingredients such as flour, dried egg, and dried milk, milled in the UK), and 68 samples (7.7%) contained generic E. coli at a level of >20 CFU/g. Molecular characterization of flour samples revealed the presence of the Shiga-toxin (stx) gene in 10 samples (5 imported and 5 from the UK) (1.1%), from which STEC was isolated from 7 samples (0.8%). Salmonella and STEC isolates were sequenced to provide further characterization of genotypes and to compare to sequences of human clinical isolates held in the UKHSA archive. Using our interpretive criteria based on genetic similarity, none of the STEC flour isolates correlated with previously observed human cases, while the singular Salmonella serotype Newport isolate from the mixed ingredient product was similar to a human case in 2019, from the UK, of S. Newport. Although there have been no reported human cases of STEC matching the isolates from these flour samples, some of the same serotypes and stx subtypes detected are known to have caused illness in other contexts. CONCLUSION: Results indicate that while the incidence was low, there is a potential for the presence of Salmonella and STEC in flour, and a genetic link was demonstrated between a Salmonella isolate from a flour-based product and a human case of salmonellosis.


Assuntos
Farinha , Microbiologia de Alimentos , Salmonella , Escherichia coli Shiga Toxigênica , Farinha/microbiologia , Farinha/análise , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/genética , Salmonella/genética , Salmonella/isolamento & purificação , Reino Unido , Contaminação de Alimentos/análise , Humanos
9.
Int J Food Microbiol ; 423: 110846, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39079448

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens frequently carried by cattle, responsible in humans of mild to bloody diarrhoea, haemolytic uraemic syndrome (HUS) and even death. In 2023-2024, a study on STEC contamination of hide and carcasses of dairy cattle at slaughter was planned in Emilia-Romagna region (northern Italy). When the study was still in progress and 60 animals were sampled, the detection of STEC O177 isolates reached high rates and gained our attention. A total of five O177 STEC strains were detected, namely four from three carcasses (5.0 %) and one from a hide sample (1.7 %). The isolates were typed by WGS as following: 1) STEC O177:H11 sequence type (ST) 765 (stx2a+, eae+), detected from one carcass; 2) STEC O177:H25 ST659 (stx2c+, eae+) detected from three carcasses and one hide sample. One carcass was contaminated by both STEC serotypes. The isolates carried other virulence determinants often found in STEC strains associated with HUS, namely the exha, astA and espP genes, together with genes for adhesion to the epithelial cells of the gut (lpfA, fdeC, fimH) and non-Locus for Enterocyte Effacement (LEE) effector protein genes (nleA, nleB). The STEC O177:H11 isolate harboured antimicrobial resistance (AMR) genes to ß-lactams (blaTEM-1A), aminoglycosides (aadA1, aph(3″)-Ib, aph(6)-Id), trimethoprim (dfrA1), sulphonamides (sul1, sul2), tetracyclines (tetA), (tetB), streptothricin (sat2), and quaternary ammonium compounds (qacEdelta1). On the contrary, the STEC O177:H25 isolates carried no AMR genes. Persistent carriage of STEC O177:H25 ST659 (stx2c+, eae+) at farm level was assessed by testing animals of the same herd sent to slaughter. Interestingly, the colonies of STEC O177:H11 and STEC O177:H25 had different morphology on CHROMagar™ STEC plates, being mauve and colourless, respectively. Since mauve is the colour STEC colonies commonly have on the CHROMagar™ STEC medium, our findings can help microbiologists in the selection of uncommon serotypes. To the best of our knowledge, this is the first detection of STEC O177 from carcasses and hides of dairy cattle at slaughter. Noteworthy, the STEC-positive hide was classified as "very dirty" thus stressing the need of clean animals entering the slaughter chain, as required by Regulation (EC) No 853/2004. Since STEC O177 has been responsible of HUS in Europe, our data could add information on the source of uncommon serogroups in human infections.

10.
Braz J Microbiol ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083224

RESUMO

In this study, a total of 248 ground beef samples were analyzed for the presence of Shiga toxin-producing Escherichia coli (STEC). Out of these samples, only one (0.4%) tested positive for STEC. Further analysis using PCR confirmed the presence of all tested genes associated with STEC, including stx1, stx2, eae, ehx, uid, rfbO157, and fliCH7 in this isolate. Interestingly, no STEC strains were detected in the remaining 100 beef cut samples or the 100 chicken cut samples, indicating the absence of detectable STEC contamination in those specific samples. The isolated strain exhibited significant cytotoxic activity in Vero cells, indicating its ability to produce cytotoxic Shiga toxins. To further investigate the strain, whole-genome sequencing (WGS) analyses were performed. The resistome analysis revealed the absence of acquired antimicrobial resistance genes, indicating a pan-susceptible phenotype. However, this strain presented chromosomal mutations in gyrA, gyrB, parC, parE, pmrA, pmrB, and folP. Plasmid analysis identified the presence of two plasmids, namely IncFIB(AP001918) and IncFII. The multi-locus sequence typing (MLST) identified the strain as belonging to sequence type (ST) 11, which is associated with E. coli O157:H7 strains. The virulome analysis confirmed the presence of several canonical virulence markers, including stx1, stx2, eae-g01-gamma, ehxA, stx1a-O157, and stx2a-O157. Overall, this study identified for the first time a rare occurrence of STEC contamination in ground beef, with the isolated strain belonging to the highly virulent O157:H7 serotype. These findings contribute to our understanding of STEC prevalence and characteristics in food samples, highlighting the importance of effective food safety measures to prevent potential health risks associated with STEC contamination.

11.
Foodborne Pathog Dis ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042484

RESUMO

To investigate the epidemiology of Shiga toxin-producing Escherichia coli (STEC) in dairy cattle, 975 samples (185 feces, 34 silage, 36 cattle drinking water, 360 raw milk, and 360 teat skin swabs) were collected from two dairy farms in Baoji and Yangling, Shaanxi Province, China, and were screened for STEC. Whole-genome sequencing was used to analyze the genomic characteristics and potential transmission of STEC isolates. A total of 32 samples were contaminated with STEC, including 4.0% (19/479) in Farm A and 2.6% (13/496) in Farm B. Compared with adult cows (4.5%), nonadult cows had a higher rate (21.3%) of STEC colonization. A total of 14 serotypes and 11 multilocus sequence typing were identified in 32 STEC isolates, among which O55:H12 (25.0%) and ST101 (31.3%) were the most predominant, respectively. Six stx subtypes/combinations were identified, including stx1a (53.1%), stx2g (15.6%), stx2d, stx2a+stx2d, stx1a+stx2a (6.3%, for each), and stx2a (3.1%). Of 32 STEC isolates, 159 virulence genes and 27 antibiotic resistance genes were detected. Overall, STEC isolates showed low levels of resistance to the 16 antibiotics tested (0-40.6%), with most common resistance to ampicillin (40.6%). The phylogenetic analysis confirmed that STEC in the gut of cattle can be transmitted through feces. The results of this study help to improve our understanding of the epidemiological aspects of STEC in dairy cattle and provide early warning and control of the prevalence and spread of the bacterium.

12.
Pathogens ; 13(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39057803

RESUMO

Wildlife may represent an important source of infectious diseases for humans and other wild and domestic animals. Wild ruminants can harbour and transmit Shiga toxin-producing Escherichia coli (STEC) to humans, and some strains even carry important antimicrobial resistance. In this study, 289 livers of wild roe deer, fallow deer, red deer and chamois collected in Liguria, north-west Italy, from 2019 to 2023 were analysed. Overall, 44 STEC strains were isolated from 28 samples. The characterisation of serogroups showed the presence of O104, O113, O145 and O146 serogroups, although for 28 colonies, the serogroup could not be determined. The most prevalent Shiga toxin gene in isolated strains was Stx2, and more specifically the subtype Stx2b. The other retrieved subtypes were Stx1a, Stx1c, Stx1d and Stx2g. The isolated strains generally proved to be susceptible to the tested antimicrobials. However, multi-drug resistances against highly critical antimicrobials were found in one strain isolated from a roe deer. This study highlights the importance of wildlife monitoring in the context of a "One Health" approach.

13.
Toxins (Basel) ; 16(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39057965

RESUMO

Shiga toxin-producing Escherichia coli (STEC) causes a wide spectrum of diseases including hemorrhagic colitis and hemolytic uremic syndrome (HUS). Previously, we developed a rapid, sensitive, and potentially portable assay that identified STEC by detecting Shiga toxin (Stx) using a B-cell based biosensor platform. We applied this assay to detect Stx2 present in food samples that have been implicated in previous STEC foodborne outbreaks (milk, lettuce, and beef). The STEC enrichment medium, modified Tryptone Soy Broth (mTSB), inhibited the biosensor assay, but dilution with the assay buffer relieved this effect. Results with Stx2a toxoid-spiked food samples indicated an estimated limit of detection (LOD) of ≈4 ng/mL. When this assay was applied to food samples inoculated with STEC, it was able to detect 0.4 CFU/g or 0.4 CFU/mL of STEC at 16 h post incubation (hpi) in an enrichment medium containing mitomycin C. Importantly, this assay was even able to detect STEC strains that were high expressors of Stx2 at 8 hpi. These results indicate that the STEC CANARY biosensor assay is a rapid and sensitive assay applicable for detection of STEC contamination in food with minimal sample processing that can complement the current Food Safety Inspection Service (US) methodologies for STEC.


Assuntos
Técnicas Biossensoriais , Microbiologia de Alimentos , Lactuca , Escherichia coli Shiga Toxigênica , Escherichia coli Shiga Toxigênica/isolamento & purificação , Técnicas Biossensoriais/métodos , Lactuca/microbiologia , Contaminação de Alimentos/análise , Leite/microbiologia , Animais , Toxina Shiga II/análise , Toxina Shiga II/genética , Limite de Detecção , Carne Vermelha/microbiologia , Bovinos
14.
Euro Surveill ; 29(30)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39056198

RESUMO

BackgroundHaemolytic uremic syndrome (HUS) is a severe complication of infection with Shiga toxin-producing Escherichia coli (STEC). Although the reservoirs of STEC are known, the source of the infection of sporadic cases is often unknown. In 2023, we observed several cases of bloody diarrhoea with STEC infection in children and adolescents returning from vacations.AimWe aimed to explore the association between travel and bloody diarrhoea with STEC infection in children and adolescents.MethodsWe included all children and adolescents with bloody diarrhoea with STEC infection identified in 2023 by the ItalKid-HUS Network surveillance system in northern Italy. We interviewed children's families and sent a questionnaire on recent travels abroad. The exposure time was between 3 days after arrival abroad and 5 days after return home. A self-controlled case series (SCCS) design was used in the analysis.ResultsOf the 43 cases, 11 developed HUS. Twenty-three cases did not travel abroad, while 20 had travelled to several destinations. The incidence rate ratio (IRR) associated with travel to Egypt was 88.6 (95% confidence interval (CI): 17.0-462). Serotype analysis excluded the possibility of a single strain causing the infections. We did not find the source of the infections.ConclusionThere is an elevated risk of acquiring STEC infection with bloody diarrhoea and HUS associated with travel to Egypt. Specific investigations to identify the source are needed to implement effective preventive measures.


Assuntos
Diarreia , Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Viagem , Humanos , Egito/epidemiologia , Escherichia coli Shiga Toxigênica/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/diagnóstico , Adolescente , Criança , Feminino , Masculino , Síndrome Hemolítico-Urêmica/epidemiologia , Síndrome Hemolítico-Urêmica/microbiologia , Itália/epidemiologia , Diarreia/microbiologia , Diarreia/epidemiologia , Pré-Escolar , Lactente , Incidência , Vigilância da População
15.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38984791

RESUMO

The rectal-anal junction (RAJ) is the major colonization site of Shiga toxin-producing Escherichia coli (STEC) O157 in beef cattle, leading to transmission of this foodborne pathogen from farms to food chains. To date, there is limited understanding regarding whether the mucosa-attached microbiome has a profound impact on host-STEC interactions. In this study, the active RAJ mucosa-attached microbiota and its potential role in host immunity-STEC commensal interactions were investigated using RAJ mucosal biopsies collected from calves orally challenged with two STEC O157 strains with or without functional stx2a (stx2a+ or stx2a-). The results revealed that shifts of microbial diversity, topology, and assembly patterns were subjected to stx2a production post-challenge and Paeniclostridium and Gallibacterium were the keystone taxa for both microbial interactions and assembly. Additional mucosal transcriptome profiling showed stx2a-dependent host immune responses (i.e. B- and T-cell signaling and antigen processing and presentation) post-challenge. Further integrated analysis revealed that mucosa-attached beneficial microbes (i.e. Provotella, Faecalibacterium, and Dorea) interacted with host immune genes pre-challenge to maintain host homeostasis; however, opportunistic pathogenic microbes (i.e. Paeniclostridium) could interact with host immune genes after the STEC O157 colonization and interactions were stx2a-dependent. Furthermore, predicted bacterial functions involved in pathogen (O157 and Paeniclostridium) colonization and metabolism were related to host immunity. These findings suggest that during pathogen colonization, host-microbe interactions could shift from beneficial to opportunistic pathogenic bacteria driven and be dependent on the production of particular virulence factors, highlighting the potential regulatory role of mucosa-attached microbiota in affecting pathogen-commensal host interactions in calves with STEC O157 infection.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Mucosa Intestinal , Reto , Animais , Escherichia coli O157/imunologia , Escherichia coli O157/genética , Reto/microbiologia , Bovinos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/veterinária , Mucosa Intestinal/microbiologia , Mucosa Intestinal/imunologia , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/imunologia , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Interações entre Hospedeiro e Microrganismos/imunologia , Toxina Shiga II/genética , Toxina Shiga II/imunologia
16.
J Food Prot ; 87(9): 100332, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029800

RESUMO

In-shell pecans are typically harvested after falling from trees to the ground, presenting a potential route of contamination of foodborne pathogens from soil contact. In-shell pecans are often subjected to various processing or washing steps prior to being shelled. This study determined Shiga toxin-producing Escherichia coli (STEC) reductions after treatment with antimicrobial washes on direct and soil-inoculated in-shell pecans and evaluated the cross-contamination potential of the spent pecan washes after treatment. Pecans were directly and soil-inoculated with an STEC cocktail (O157:H7, O157:NM, O121, O26). Direct inoculation was achieved by spraying the STEC cocktail on the pecans. For soil-inoculation pecans, autoclaved soil was sprayed with the STEC cocktail, homogenized for 2 min, and used to coat in-shell pecans. Inoculated pecans were washed in treatments of 2% lactic acid (LA), 1,000 ppm free chlorine (sodium hypochlorite; NaClO), hot water (HW; 85 ± 2 °C), or ambient water (C [control]; 18 ± 2 °C) for 2, 5, and 10 min and diluted to enumerate STEC populations. After treatments, 100 mL of the spent wash was vacuum filtered through a 0.45-µm membrane and plated on selective agar. HW significantly reduced STEC populations from pecans with and without soil regardless of treatment time (p < 0.05), NaClO reduced STEC populations more than the ambient control wash on directly inoculated pecans, but there were no significant differences between STEC reductions from ambient water (C), LA, and NaClO treatments on soil-inoculated pecans (p > 0.05). Larger STEC populations were enumerated from ambient water wash compared to the antimicrobial washes (p < 0.05). The HW, LA, and NaClO treatments were effective at maintaining the quality of the wash water, with STEC levels being generally at or below the detection limit (<1 CFU/100 mL), while HW was the most effective at reducing STEC from in-shell pecans with and without a soil coating (>5-log CFU/mL reductions).

17.
EJHaem ; 5(3): 548-553, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895057

RESUMO

The role of eculizumab in treating Shiga-toxin-producing Escherichia coli (STEC) hemolytic uremic syndrome (HUS) patients with neurological involvement remains unclear. We describe two distinctly different STEC-HUS patients with neurologic involvement successfully managed with eculizumab, and perform a literature review of all published cases. Both patients had complete resolution of neurological symptoms after initiation of eculizumab. Eighty patients with STEC-HUS treated with eculizumab were identified in the literature, 68.7% had complete resolution of neurological symptoms. Based on our experience and literature review, three prevailing themes were noted: 1) Early eculizumab administration optimized neurological outcomes, 2) Symptom resolution may not be immediate, neurological symptoms may initially worsen before improvement, and 3) Plasma exchange yielded no benefit. Early administration of eculizumab may reverse neurotoxicity in patients with STEC-HUS.

18.
Ital J Food Saf ; 13(2): 12218, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38887590

RESUMO

In this study, two Mediterranean coastal lagoons (Lesina and Varano) of southern Italy, located in the north of the Apulia region, were investigated for the presence of Shiga toxin Escherichia coli (STEC) and potentially enteropathogenic Vibrio species in parallel with norovirus (NoV), hepatitis A virus (HAV), hepatitis E virus (HEV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study aimed to evaluate the presence of potentially pathogenic bacteria and viruses in the water and sediments of these ecosystems. From March 2022 to February 2023, a total of 98 samples were collected: 49 water samples and 49 sediment samples. STEC strains were isolated in three samples (3.1%), of which one (2%) was water (stx1 and stx2 positive) and two (4.1%) were sediment (both stx2 positive) samples. Vibrio spp. were detected in twenty samples (20.4%), of which nine were water (18.4%) and eleven were sediment (22.4%) samples. The species detected included V. parahaemolyticus, V. cholerae, and V. vulnificus. NoV was detected in 25 (25.5%) samples, while none of the water or sediment samples were positive for HAV, HEV, and SARS-CoV-2. The results of this study provide an overview of the presence of potentially pathogenic microorganisms in areas influenced by anthropogenic pressure. Monitoring the circulation of these pathogens could be useful to evaluate the water flowing into the lagoons, in particular discharge waters (i.e., urban, agricultural, and livestock runoff), considering the presence of fish and shellfish farms in these sites.

19.
Pathogens ; 13(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38921808

RESUMO

Several pathotypes of enteric E. coli have been identified. The group represented by Shiga toxin-producing E. coli (STEC) is of particular interest. Raw milk and raw milk products are significant sources of STEC infection in humans; therefore, identifying pathogens at the herd level is crucial for public health. Most national surveillance programs focus solely on raw milk and raw milk cheeses that are ready for retail sale, neglecting the possibility of evaluating the source of contamination directly at the beginning of the dairy chain. To assess the viability of the application of new molecular methodologies to STEC identification in raw milk filters and in calf feces, we analyzed 290 samples from 18 different dairy herds, including 88 bulk tank milk (BTM), 104 raw milk filters (RMF), and 98 calf feces samples. In total 3.4% of BTM, 41.4% of RMF, and 73.4% of calves' feces were positive for stx, supporting our hypothesis that BTM is not a suitable matrix to assess the presence of STEC at herd level, underestimating it. Our conclusion is that the surveillance program needs critical and extensive improvements such as RMF and calves' feces analysis implementation to be more efficient in detecting and preventing STEC infections. The epidemiology of these infections and the characteristics of the pathogen clearly show how a One Health approach will be pivotal in improving our capabilities to control the spread of these infections.

20.
Microorganisms ; 12(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38930491

RESUMO

Infections with Shiga toxin-producing Escherichia coli (STEC) are increasing in Denmark and elsewhere. STEC is also the most frequent cause of haemolytic uraemic syndrome (HUS) in Danish children. Most cases are considered sporadic, while approximately one-third can be attributed to a known source of infection. Hence, we examined sources of sporadic STEC infection in Denmark. From January 2018 to December 2020, we conducted a prospective nationwide case-control study among Danish adults and children. Cases with confirmed positive STEC infection were notified infections within the national laboratory surveillance system. Control persons were randomly selected from the Danish Civil Registration System, individually matched in age in 5-year bands and sex. Participants were invited by an electronic letter to complete either an adult or child questionnaire online. Univariate and adjusted matched odds ratios were computed for adults and children using conditional logistic regression. The study recruited 1583 STEC cases and 6228 controls. A total of 658 cases (42%) and 2155 controls (35%) were included in the analysis. Depending on age, univariate analysis adjusted for socio-demographic determinants showed that the consumption of boiled beef (mOR = 2.2, 95% confidence interval (CI): 1.6-3.1) and fried minced beef (mOR = 1.6, CI: 1.2-2.1), drinking raw (unpasteurized) milk (mOR = 11, CI 1.1-110), eating grilled food (mOR = 9.8, CI: 5.6-17) and having a household member using diapers (mOR = 2.1, CI: 1.4-3.2) were determinants of sporadic STEC infection. Further multivariate adjusted analysis resulted in the same determinants. This study confirms that beef is an overall important risk factor for STEC infection in Denmark. We also present evidence that a proportion of sporadic STEC infections in Denmark are determined by age-specific eating habits, environmental exposures and household structure, rather than being exclusively food-related. These findings are relevant for targeted public health actions and guidelines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...