Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Psychiatry Res ; 334: 115815, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422867

RESUMO

Our study focused on human brain transcriptomes and the genetic risks of cigarettes per day (CPD) to investigate the neurogenetic mechanisms of individual variation in nicotine use severity. We constructed whole-brain and intramodular region-specific coexpression networks using BrainSpan's transcriptomes, and the genomewide association studies identified risk variants of CPD, confirmed the associations between CPD and each gene set in the region-specific subnetworks using an independent dataset, and conducted bioinformatic analyses. Eight brain-region-specific coexpression subnetworks were identified in association with CPD: amygdala, hippocampus, medial prefrontal cortex (MPFC), orbitofrontal cortex (OPFC), dorsolateral prefrontal cortex, striatum, mediodorsal nucleus of the thalamus (MDTHAL), and primary motor cortex (M1C). Each gene set in the eight subnetworks was associated with CPD. We also identified three hub proteins encoded by GRIN2A in the amygdala, PMCA2 in the hippocampus, MPFC, OPFC, striatum, and MDTHAL, and SV2B in M1C. Intriguingly, the pancreatic secretion pathway appeared in all the significant protein interaction subnetworks, suggesting pleiotropic effects between cigarette smoking and pancreatic diseases. The three hub proteins and genes are implicated in stress response, drug memory, calcium homeostasis, and inhibitory control. These findings provide novel evidence of the neurogenetic underpinnings of smoking severity.


Assuntos
Estudo de Associação Genômica Ampla , Nicotina , Humanos , Transcriptoma , Encéfalo , Corpo Estriado
2.
Cell Mol Biol Lett ; 26(1): 5, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588752

RESUMO

BACKGROUND: The synaptic vesicle glycoprotein 2 (SV2) family is essential to the synaptic machinery involved in neurotransmission and vesicle recycling. The isoforms SV2A, SV2B and SV2C are implicated in neurological diseases such as epilepsy, Alzheimer's and Parkinson's disease. Suitable cell systems for studying regulation of these proteins are essential. Here we present gene expression data of SV2A, SV2B and SV2C in two human neuroblastoma cell lines after differentiation. METHODS: Human neuroblastoma cell lines SiMa and IMR-32 were treated for seven days with growth supplements (B-27 and N-2), all-trans-retinoic acid (ATRA) or vasoactive intestinal peptide (VIP) and gene expression levels of SV2 and neuronal targets were analyzed. RESULTS: The two cell lines reacted differently to the treatments, and only one of the three SV2 isoforms was affected at a time. SV2B and choline O-acetyltransferase (CHAT) expression was changed in concert after growth supplement treatment, decreasing in SiMa cells while increasing in IMR-32. ATRA treatment resulted in no detected changes in SV2 expression in either cell line while VIP increased both SV2C and dopamine transporter (DAT) in IMR-32 cells. CONCLUSION: The synergistic expression patterns between SV2B and CHAT as well as between SV2C and DAT mirror the connectivity between these targets found in disease models and knock-out animals, although here no genetic alteration was made. These cell lines and differentiation treatments could possibly be used to study SV2 regulation and function.


Assuntos
Diferenciação Celular/genética , Regulação Neoplásica da Expressão Gênica , Glicoproteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Sítios de Ligação , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Tretinoína/farmacologia , Peptídeo Intestinal Vasoativo/farmacologia
3.
Biosci Rep ; 40(7)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32667033

RESUMO

BACKGROUND: Glioblastoma (GBM) has a high degree of malignancy, aggressiveness and recurrence rate. However, there are limited options available for the treatment of GBM, and they often result in poor prognosis and unsatisfactory outcomes. MATERIALS AND METHODS: In order to identify potential core genes in GBM that may provide new therapeutic insights, we analyzed three gene chips (GSE2223, GSE4290 and GSE50161) screened from the GEO database. Differentially expressed genes (DEG) from the tissues of GBM and normal brain were screened using GEO2R. To determine the functional annotation and pathway of DEG, Gene Ontology (GO) and KEGG pathway enrichment analysis were conducted using DAVID database. Protein interactions of DEG were visualized using PPI network on Cytoscape software. Next, 10 Hub nodes were screened from the differentially expressed network using MCC algorithm on CytoHubba software and subsequently identified as Hub genes. Finally, the relationship between Hub genes and the prognosis of GBM patients was described using GEPIA2 survival analysis web tool. RESULTS: A total of 37 up-regulated and 187 down-regulated genes were identified through microarray analysis. Amongst the 10 Hub genes selected, SV2B appeared to be the only gene associated with poor prognosis in glioblastoma based on the survival analysis. CONCLUSION: Our study suggests that high expression of SV2B is associated with poor prognosis in GBM patients. Whether SV2B can be used as a new therapeutic target for GBM requires further validation.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Glioblastoma/genética , Glicoproteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Encéfalo/patologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Biologia Computacional , Conjuntos de Dados como Assunto , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas/genética , Análise de Sobrevida , Regulação para Cima
4.
J Alzheimers Dis ; 75(1): 173-185, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280101

RESUMO

BACKGROUND: Given that amyloid-ß (Aß) peptide is produced and released at synapses, synaptic Aß is one of the promising therapeutic targets to prevent synaptic dysfunction in Alzheimer's disease (AD). Although Aß production begins with the cleavage of the amyloid-ß protein precursor (AßPP) by ß-site AßPP cleaving enzyme 1 (BACE1), the mechanism on how BACE1 is involved in AßPP processing at synapses remains unclear. OBJECTIVE: This study aimed to identify novel BACE1 interacting proteins regulating Aß production at the synapse. METHODS: BACE1 interacting proteins were pulled down using a mass spectrometry-based proteomics of wild-type (WT) rat brain synaptoneurosome lysates utilizing anti-BACE1 antibody. Then, a novel BACE1 interactor was identified and characterized using experimental systems that utilized transfected cells and knockout (KO) mice. RESULTS: Synaptic vesicle protein 2B (SV2B) was identified as a novel presynaptic interaction partner of BACE1. In HEK293 cells, co-overexpression of SV2B with BACE1 significantly reduced the sAßPPß and Aß levels released in the media; thus, SV2B overexpression negatively affected the AßPP cleavage by BACE1. Compared with those of WT mice, the hippocampal lysates of SV2B knockout mice had significantly elevated Aß levels, whereas the ß-secretase activity and the AßPP and BACE1 protein levels remained unchanged. Finally, a fractionation assay revealed that BACE1 was mislocalized in SV2B KO mice; hence, SV2B may be involved in BACE1 trafficking downregulating the amyloidogenic pathway of AßPP. CONCLUSION: SV2B has a novel role of negatively regulating the amyloidogenic processing of AßPP at the presynapses.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptossomos/metabolismo
5.
Molecules ; 24(9)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052478

RESUMO

The synaptic vesicle protein 2 (SV2) is involved in synaptic vesicle trafficking. The SV2A isoform is the most studied and its implication in epilepsy therapy led to the development of the first SV2A PET radiotracer [18F]UCB-H. The objective of this study was to evaluate in vivo, using microPET in rats, the specificity of [18F]UCB-H for SV2 isoform A in comparison with the other two isoforms (B and C) through a blocking assay. Twenty Sprague Dawley rats were pre-treated either with the vehicle, or with specific competitors against SV2A (levetiracetam), SV2B (UCB5203) and SV2C (UCB0949). The distribution volume (Vt, Logan plot, t* 15 min) was obtained with a population-based input function. The Vt analysis for the entire brain showed statistically significant differences between the levetiracetam group and the other groups (p < 0.001), but also between the vehicle and the SV2B group (p < 0.05). An in-depth Vt analysis conducted for eight relevant brain structures confirmed the statistically significant differences between the levetiracetam group and the other groups (p < 0.001) and highlighted the superior and the inferior colliculi along with the cortex as regions also displaying statistically significant differences between the vehicle and SV2B groups (p < 0.05). These results emphasize the in vivo specificity of [18F]UCB-H for SV2A against SV2B and SV2C, confirming that [18F]UCB-H is a suitable radiotracer for in vivo imaging of the SV2A proteins with PET.


Assuntos
Encéfalo/diagnóstico por imagem , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Piridinas/metabolismo , Pirrolidinonas/metabolismo , Animais , Encéfalo/metabolismo , Levetiracetam/administração & dosagem , Levetiracetam/farmacologia , Imageamento por Ressonância Magnética , Masculino , Modelos Animais , Estrutura Molecular , Tomografia por Emissão de Pósitrons , Piridinas/química , Pirrolidinonas/química , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade
6.
Behav Brain Res ; 271: 277-85, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24937053

RESUMO

SV2B is a synaptic protein widely distributed throughout the brain, which is part of the complex vesicle protein machinery involved in the regulation of synaptic vesicle endocytosis and exocytosis, and therefore in neurotransmitters release. The aims of the present work were twofold: (1) phenotype SV2B knockout mice (SV2B KO) in a battery of cognitive tests; and (2) examine their vulnerability to amyloid-ß25-35 (Aß25-35) peptide-induced toxicity. SV2B KO mice showed normal learning and memory abilities in absence of Aß25-35 injection. SV2B KO mice were protected against the learning deficits induced after icv injection of an oligomeric preparation of amyloid-ß25-35 peptide, as compared to wild-type littermates (SV2B WT). These mice failed to show Aß25-35-induced impairments in a number of cognitive domains: working memory measured by a spontaneous alternation procedure, recognition memory measured by a novel object recognition task, spatial reference memory assessed in a Morris water-maze, and long-term contextual memory assessed in a inhibitory avoidance task. In addition, SV2B KO mice were protected against Aß25-35-induced oxidative stress and decrease in ChAT activity in the hippocampus. These data suggest that SV2B could be a key modulator of amyloid toxicity at the synaptic site.


Assuntos
Acetilcolina/deficiência , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/toxicidade , Cognição , Glicoproteínas de Membrana/deficiência , Memória , Proteínas do Tecido Nervoso/deficiência , Fragmentos de Peptídeos/toxicidade , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/psicologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Colina O-Acetiltransferase/efeitos dos fármacos , Colina O-Acetiltransferase/metabolismo , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Memória/efeitos dos fármacos , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Percepção Espacial/efeitos dos fármacos , Vesículas Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...