Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134204, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579586

RESUMO

Selenium (Se) plays a critical role in diverse biological processes and is widely used across manufacturing industries. However, the contamination of Se oxyanions also poses a major public health concern. Microbial transformation is a promising approach to detoxify Se oxyanions and produce elemental selenium nanoparticles (SeNPs) with versatile industrial potential. Yeast-like fungi are an important group of environmental microorganisms, but their mechanisms for Se oxyanions reduction remain unknown. In this study, we found that Aureobasidium melanogenum I15 can reduce 1.0 mM selenite by over 90% within 48 h and efficiently form intracellular or extracellular spherical SeNPs. Metabolomic and proteomic analyses disclosed that A. melanogenum I15 evolves a complicated selenite reduction mechanism involving multiple metabolic pathways, including the glutathione/glutathione reductase pathway, the thioredoxin/thioredoxin reductase pathway, the siderophore-mediated pathway, and multiple oxidoreductase-mediated pathways. This study provides the first report on the mechanism of selenite reduction and SeNPs biogenesis in yeast-like fungi and paves an alternative avenue for the bioremediation of selenite contamination and the production of functional organic selenium compounds.


Assuntos
Ascomicetos , Ácido Selenioso , Selênio , Ácido Selenioso/metabolismo , Selênio/metabolismo , Ascomicetos/metabolismo , Oxirredução , Nanopartículas/química , Nanopartículas/metabolismo , Nanopartículas Metálicas/química , Biodegradação Ambiental , Proteínas Fúngicas/metabolismo , Proteômica
2.
J Hazard Mater ; 468: 133850, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401219

RESUMO

The reduction of selenite [Se(Ⅳ)] by microorganisms is a green and efficient detoxification strategy. We found that Se(Ⅳ) inhibited exopolysaccharide and protein secretion by Lactiplantibacillus plantarum BSe and compromised cell integrity. In this study, L. plantarum BSe reduced Se(Ⅳ) by increasing related enzyme activity and electron transfer. Genomic analysis demonstrated that L. plantarum BSe should be able to reduce Se(Ⅳ). Further transcriptome analysis showed that L. plantarum BSe enhanced its tolerance to Se(Ⅳ) by upregulating the expression of surface proteins and transporters, thus reducing the extracellular Se(Ⅳ) concentration through related enzymatic reactions and siderophore-mediated pathways. Lactiplantibacillus plantarum BSe was able to regulate the expression of related genes involved in quorum sensing and a two-component system and then select appropriate strategies for Se(Ⅳ) transformation in response to varying environmental Se(Ⅳ) concentrations. In addition, azo reductase was linked to the reduction of Se(Ⅳ) for the first time. The present study established a multipath model for the reduction of Se(Ⅳ) by L. plantarum, providing new insights into the biological reduction of Se(Ⅳ) and the biogeochemical cycle of selenium.


Assuntos
Ácido Selenioso , Selênio , Ácido Selenioso/metabolismo , Oxirredução , Genômica , Selênio/metabolismo , Transporte de Elétrons
3.
Environ Sci Technol ; 58(9): 4204-4213, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373240

RESUMO

Arsenic (As) is widely present in the environment, and virtually all bacteria possess a conserved ars operon to resist As toxicity. High selenium (Se) concentrations tend to be cytotoxic. Se has an uneven regional distribution and is added to mitigate As contamination in Se-deficient areas. However, the bacterial response to exogenous Se remains poorly understood. Herein, we found that As(III) presence was crucial for Enterobacter sp. Z1 to develop resistance against Se(IV). Se(IV) reduction served as a detoxification mechanism in bacteria, and our results demonstrated an increase in the production of Se nanoparticles (SeNPs) in the presence of As(III). Tandem mass tag proteomics analysis revealed that the induction of As(III) activated the inositol phosphate, butanoyl-CoA/dodecanoyl-CoA, TCA cycle, and tyrosine metabolism pathways, thereby enhancing bacterial metabolism to resist Se(IV). Additionally, arsHRBC, sdr-mdr, purHD, and grxA were activated to participate in the reduction of Se(IV) into SeNPs. Our findings provide innovative perspectives for exploring As-induced Se biotransformation in prokaryotes.


Assuntos
Arsênio , Arsenitos , Selênio , Selênio/farmacologia , Selênio/metabolismo , Ácido Selenioso/farmacologia , Ácido Selenioso/metabolismo , Enterobacter/metabolismo , Oxirredução
4.
Biotechnol Lett ; 45(11-12): 1513-1520, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864746

RESUMO

Selenite biotransformation by microorganisms is an effective detoxification and assimilation process. However, current knowledge of the molecular mechanisms of selenite reduction remains circumscribed. Here, the reduction of Se(IV) by a highly selenite-resistant Bacillus sp. SL (up to 50 mM) was systematically analyzed, and the molecular mechanisms of selenite reduction were investigated. Remarkably, 10 mM selenite was entirely transformed by the strain SL within 20 h, demonstrating a faster conversion rate compared to other microorganisms. Furthermore, glutathione (GSH) and exopolysaccharides (EPS) changes were also monitored during the process. Transcriptomic analysis revealed that the genes of ferredoxin-sulfite oxidoreductase (6.82) and sulfate adenylyltransferase (6.32) were significantly upregulated, indicating that the sulfur assimilation pathway is the primary reducing pathway involved in selenite reduction by strain SL. Moreover, key genes associated with NAD(P)/FAD-dependent oxidoreductases and thioredoxin were significantly upregulated. The reduction of Se(IV) was mediated by multiple pathways in strain SL. To our knowledge, this is the initial report to identify the involvement of sulfur assimilation pathway in selenite reduction for bacillus, which is rare in aerobic bacteria.


Assuntos
Bacillus , Ácido Selenioso , Ácido Selenioso/metabolismo , Bacillus/genética , Bacillus/metabolismo , Transcriptoma/genética , Oxirredução , Oxirredutases/metabolismo , Selenito de Sódio/metabolismo
5.
AMB Express ; 13(1): 93, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37665384

RESUMO

The biosynthetic process of selenium nanoparticles (SeNPs) by specific bacterial strain, whose growth directly affects the synthesis efficiency, has attracted great attentions. We previously reported that Bacillus paralicheniformis SR14, a SeNPs-producing bacteria, could improve intestinal antioxidative function in vitro. To further analyze the biological characteristics of SR14, whole genome sequencing was used to reveal the genetic characteristics in selenite reduction and sugar utilization. The results reviewed that the genome size of SR14 was 4,448,062 bp, with a GC content of 45.95%. A total of 4300 genes into 49 biological pathways was annotated to the KEGG database. EC: 1.1.1.49 (glucose-6-phosphate 1-dehydrogenase) and EC: 5.3.1.9 (glucose-6-phosphate isomerase), were found to play a potential role in glucose degradation and EC:2.7.1.4 (fructokinase) might be involved in the fructose metabolism. Growth profile and selenite-reducing ability of SR14 under different sugar supplements were determined and the results reviewed that glucose had a better promoting effect on the reduction of selenite and growth of bacteria than fructose, sucrose, and maltose. Moreover, RT-qPCR experiment proved that glucose supplement remarkably promoted the expressions of thioredoxin, fumarate reductase, and the glutathione peroxidase in SR14. Analysis of mRNA expression showed levels of glucose-6-phosphate dehydrogenase and fructokinase significantly upregulated under the supplement of glucose. Overall, our data demonstrated the genomic characteristics of SR14 and preliminarily determined that glucose supplement was most beneficial for strain growth and SeNPs synthesis.

6.
J Hazard Mater ; 457: 131713, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37301074

RESUMO

Microbial biotransformation of Cr(VI) is a sustainable approach to reduce Cr(VI) toxicity and remediate Cr(VI) contamination. In this study, Bacillus cereus SES with the capability of reducing both Cr(VI) and Se(IV) was isolated, and the effect of Se supplementation on Cr(VI) reduction by Bacillus cereus SES was investigated. Se(IV) addition enabled 2.6-fold faster Cr(VI) reduction, while B. cereus SES reduced 96.96% Se(IV) and produced more selenium nanoparticles (SeNPs) in the presence of Cr(VI). Co-reduction products of B. cereus SES on Cr(VI) and Se(IV) were SeNPs adsorbed with Cr(III). The relevant mechanisms were further revealed by proteomics. Se(IV) supplementation mediated the synthesis of Cr(VI) reductants and stress-resistant substances, thus enhancing Cr(VI) resistance and promoting Cr(VI) reduction. Meanwhile, high Se(IV) reduction rate was associated with Cr(VI)-induced electron transport processes, and Cr(VI) mediated the up-regulation of flagellar assembly, protein export and ABC transporters pathways to synthesis and export more SeNPs. Furthermore, Se combined with B. cereus SES had the potential to reduce the toxicity of Cr(VI) via reducing the bioavailability of Cr and improving the bioavailability of Se in soil. Results suggested that Se could be an efficient strategy to enhance the remediation of B. cereus SES on Cr contamination.


Assuntos
Nanopartículas , Selênio , Selênio/farmacologia , Selênio/metabolismo , Bacillus cereus/metabolismo , Oxirredução
7.
Microbiol Spectr ; 11(3): e0065923, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37219421

RESUMO

Microorganisms capable of converting toxic selenite into elemental selenium (Se0) are considered an important and effective approach for bioremediation of Se contamination. In this study, we investigated the mechanism of reducing selenite to Se0 and forming Se nanoparticles (SeNPs) by food-grade probiotic Lactobacillus casei ATCC 393 (L. casei ATCC 393) through proteomics analysis. The results showed that selenite added during the exponential growth period of bacteria has the highest reduction efficiency, and 4.0 mM selenite decreased by nearly 95% within 72 h and formed protein-capped-SeNPs. Proteomics analysis revealed that selenite induced a significant increase in the expression of glutaredoxin, oxidoreductase, and ATP binding cassette (ABC) transporter, which can transport glutathione (GSH) and selenite. Selenite treatment significantly increased the CydC and CydD (putative cysteine and glutathione importer, ABC transporter) mRNA expression level, GSH content, and GSH reductase activity. Furthermore, supplementation with an additional GSH significantly increased the reduction rate of selenite, while GSH depletion significantly inhibited the reduction of selenite, indicating that GSH-mediated Painter-type reaction may be the main pathway of selenite reduction in L. casei ATCC 393. Moreover, nitrate reductase also participates in the reduction process of selenite, but it is not the primary factor. Overall, L. casei ATCC 393 effectively reduced selenite to SeNPs by GSH and nitrate reductase-mediated reduction pathway, and the GSH pathway played the decisive role, which provides an environmentally friendly biocatalyst for the bioremediation of Se contamination. IMPORTANCE Due to the high solubility and bioavailability of selenite, and its widespread use in industrial and agricultural production, it is easy to cause selenite to accumulate in the environment and reach toxic levels. Although the bacteria screened from special environments have high selenite tolerance, their safety has not been fully verified. It is necessary to screen out strains with selenite-reducing ability from nonpathogenic, functionally known, and widely used strains. Herein, we found food-grade probiotic L. casei ATCC 393 effectively reduced selenite to SeNPs by GSH and nitrate reductase-mediated reduction pathway, which provides an environmentally friendly biocatalyst for the bioremediation of Se contamination.


Assuntos
Lacticaseibacillus casei , Probióticos , Ácido Selenioso/química , Ácido Selenioso/metabolismo , Lacticaseibacillus casei/genética , Biodegradação Ambiental , Oxirredução , Proteômica , Bactérias/metabolismo , Glutationa/metabolismo
8.
Molecules ; 28(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175203

RESUMO

Selenium (Se) is in great demand as a health supplement due to its superior reactivity and excellent bioavailability, despite selenium nanoparticles (SeNPs) having signs of minor toxicity. At present, the efficiency of preparing SeNPs using lactic acid bacteria is unsatisfactory. Therefore, a probiotic bacterial strain that is highly efficient at converting selenite to elemental selenium is needed. In our work, four selenite-reducing bacteria were isolated from soil samples. Strain LAB-Se2, identified as Pediococcus acidilactici DSM20284, had a reduction rate of up to 98% at ambient temperature. This strain could reduce 100 mg L-1 of selenite to elemental Se within 48 h at pH 4.5-6.0, a temperature of 30-40 °C, and a salinity of 1.0-6.5%. The produced SeNPs were purified, freeze-dried, and subsequently systematically characterised using FTIR, DSL, SEM-EDS, and TEM techniques. SEM-EDS analysis proved the presence of selenium as the foremost constituent of SeNPs. The strain was able to form spherical SeNPs, as determined by TEM. In addition, DLS analysis confirmed that SeNPs were negatively charged (-26.9 mV) with an average particle size of 239.6 nm. FTIR analysis of the SeNPs indicated proteins and polysaccharides as capping agents on the SeNPs. The SeNPs synthesised by P. acidilactici showed remarkable antibacterial activity against E. coli, B. subtilis, S. aureus, and K. pneumoniae with inhibition zones of 17.5 mm, 13.4 mm, 27.9 mm, and 16.2 mm, respectively; they also showed varied MIC values in the range of 15-120 µg mL-1. The DPPH, ABTS, and hydroxyl, and superoxide scavenging activities of the SeNPs were 70.3%, 72.8%, 95.2%, and 85.7%, respectively. The SeNPs synthesised by the probiotic Lactococcus lactis have the potential for safe use in biomedical and nutritional applications.


Assuntos
Nanopartículas , Pediococcus acidilactici , Selênio , Selênio/química , Ácido Selenioso/química , Pediococcus acidilactici/metabolismo , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Nanopartículas/química
9.
Biotechnol Rep (Amst) ; 37: e00787, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36818378

RESUMO

Selenium nanoparticles (SeNPs) have antimicrobial and antifungal activity. SeNPs using Se resistant bacteria is a low cost and eco-friendly technology. Fungal contamination of wood during drying is one of the main causes of economic losses in the wood industry. The bacterium Delftia sp. 5 resistance to Se and its ability to produce SeNPs able to inhibit the growth of the wood brown-rotting fungus Oligoporus pelliculosus was analyzed. The strain showed an optimal SeNPs production when selenite concentration was 160 mg L -1. The SeNPs were spherical with an average size 192.33 ± 8.6 nm and a zeta potential of -41.4 ± 1.3 nm. The SeNPs produced by Delftia sp. 5 (33.6 ± 0.1 mg L -1 Se) inhibited the growth of O. pelliculosus in agar plates and in Nothofagus pumilio (Lenga) wood samples. Delftia sp. 5 SeNPs could be used for embedding lenga wood prior to drying for preventing the growth of the deteriorating fungi O. pelliculosus.

10.
J Hazard Mater ; 433: 128834, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398797

RESUMO

Selenite biotransformation by microorganisms is an effective detoxification and assimilation process. Bacillus subtilis is a probiotic bacterium that can reduce Se(IV) to SeNPs under aerobic conditions. However, current knowledge on the molecular mechanisms of selenite reduction by B. subtilis remains limited. Here, the reduction of Se(IV) by probiotic bacterium Bacillus subtilis 168 was systematically analysed, and the molecular mechanisms of selenium nanoparticle (SeNPs) formation were characterised in detail. B. subtilis 168 reduced 5.0 mM selenite by nearly 40% in 24 h, and the produced SeNPs were spherical and localised intracellularly or extracellularly. FTIR (Fourier transform infrared) spectroscopy suggested the presence of proteins, lipids, and carbohydrates on the surface of the isolated SeNPs. Transcriptome data analysis revealed that the expression of genes associated with the proline metabolism, glutamate metabolism, and sulfite metabolism pathways was significantly up-regulated. Gene mutation and complementation revealed the ability of PutC, GabD, and CysJI to reduce selenite in vivo. In vitro experiments demonstrated that PutC, GabD, and CysJI could catalyse the reduction of Se(IV) under optimal conditions using NADPH as a cofactor. To the best of our knowledge, our study is the first to demonstrate the involvement of PutC and GabD in selenite reduction. Particularly, our findings demonstrated that the reduction of Se(IV) was mediated by multiple pathways both in vivo and in vitro. Our findings thus provide novel insights into the molecular mechanisms of Se(VI) reduction in aerobic bacteria.


Assuntos
Nanopartículas , Selênio , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Perfilação da Expressão Gênica , Nanopartículas/química , Ácido Selenioso/metabolismo , Selênio/metabolismo , Selenito de Sódio/farmacologia
11.
Front Microbiol ; 13: 862130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479612

RESUMO

The application of biosynthesized nano-selenium fertilizers to crops can improve their nutrient levels by increasing their selenium content. However, microorganisms with a high selenite tolerance and rapid reduction rate accompanied with the production of selenium nanoparticles (SeNPs) at the same time have seldom been reported. In this study, a bacterial strain showing high selenite resistance (up to 300 mM) was isolated from a lateritic red soil and identified as Proteus mirabilis QZB-2. This strain reduced nearly 100% of 1.0 and 2.0 mM selenite within 12 and 18 h, respectively, to produce SeNPs. QZB-2 isolate reduced SeO3 2 - to Se0 in the cell membrane with NADPH or NADH as electron donors. Se0 was then released outside of the cell, where it formed spherical SeNPs with an average hydrodynamic diameter of 152.0 ± 10.2 nm. P. mirabilis QZB-2 could be used for SeNPs synthesis owing to its simultaneously high SeO3 2 - tolerance and rapid reduction rate.

12.
Front Microbiol ; 13: 834293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350625

RESUMO

A ferredoxin protein (AAY72_06850, named FesR) was identified to associate with chromate [Cr(VI)] resistance in Alishewanella sp. WH16-1. FesR and its similar proteins were phylogenetically separated from other reductase families. Unlike the reported Cr(VI) and selenite [Se(IV)] reductases, two 4Fe-4S clusters and one flavin adenine dinucleotide (FAD) -binding domain were found in the FesR sequence. The experiment in vivo showed that the mutant strain ΔfesR had lost partial Cr(VI) and Se(IV) reduction capacities compared to the wild-type and complemented strains. Furthermore, overexpression in Escherichia coli and enzymatic tests in vitro showed FesR were involved in Cr(VI) and Se(IV) reduction. 4Fe-4S cluster in purified FesR was detected by ultraviolet-visible spectrum (UV-VIS) and Electron Paramagnetic Resonance (EPR). The Km values of FesR for Cr(VI) and Se(IV) reduction were 1682.0 ± 126.2 and 1164.0 ± 89.4 µmol/L, and the Vmax values for Cr(VI) and Se(IV) reduction were 4.1 ± 0.1 and 9.4 ± 0.3 µmol min-1 mg-1, respectively. Additionally, site-directed mutagenesis and redox potential analyses showed that 4Fe-4S clusters were essential to FesR, and FAD could enhance the enzyme efficiencies of FesR as intracellular electron transporters. To the best of our knowledge, FesR is a novel Cr(VI) and Se(IV) reductase.

13.
Water Res ; 204: 117602, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34481283

RESUMO

Selenate and sulfide are both contaminants which severely pollute water bodies. Respective bioremediation of selenate- and sulfide-contaminated wastewaters requires abundant electron donors and acceptors. Here, we present a novel concept coupling biological selenate to selenite (shortcut deselenization) and chemical sulfide-driven selenite reduction, to remove multiple pollutants simultaneously. Vial tests showed that shortcut deselenization could save at least two thirds of operation time and one third of carbon source, compared to the complete deselenization to elemental selenium. Subsequent co-removal of sulfide and selenite was optimized at reaction pH of ∼10 and reactant molar ratio of ∼4. Using a newly-designed continuous flow system, >95% removal of both selenate and sulfide was achieved by coupling shortcut deselenization to sulfide oxidation. A series of characterization tools revealed that the final collected precipitates were comprised of high-purity hexagonal selenium (97.4%, wt) and inconsiderable sulfur (2.6%, wt). Superior over selenate-reducing solutions generally producing selenium mixed with reagents or microorganisms, the selenium products generated here were highly purified thus very favorable for further recovery and reuse. Overall, this proof-of-concept study provided a promising technology not only for co-removal of multiple pollutants, but also for substantial costs saving, as well as for valuable products recovery.


Assuntos
Poluentes Ambientais , Compostos de Selênio , Selênio , Ácido Selênico , Ácido Selenioso , Sulfetos , Águas Residuárias
14.
Environ Pollut ; 280: 117001, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33799130

RESUMO

Microbial selenite reduction has increasingly attracted attention from the scientific community because it allows the separation of toxic Se from waste sources with the concurrent recovery of Se nanoparticles, a multifunctional material in nanotechnology industries. In this study, four selenite-reducing bacteria, isolated from a river water sample, were found to reduce selenite by > 85% within 3 d of incubation, at ambient temperature. Among them, strain NDSe-7, belonging to genus Lysinibacillus, can reduce selenite and produce Se nanospheres in alkaline conditions, up to pH 10.0, and in salinity of up to 7.0%. This strain can reduce 80 mg/L of selenite to elemental Se within 24 h at pH 6.0-8.0, at a temperature of 30-40 °C, and salinity of 0.1-3.5%. Strain NDSe-7 exhibited potential for use in Se removal and recovery from industrial saline wastewater with high alkalinity. This study indicates that extremophilic microorganisms for environmental remediation can be found in a conventional environment.


Assuntos
Bacillaceae , Nanopartículas , Selênio , Bactérias , Oxirredução , Rios , Ácido Selenioso
15.
Ecotoxicology ; 30(7): 1465-1475, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32880083

RESUMO

Selenium (Se) is an essential element for human health. Se-enriched agricultural products can promote people's intake of Se. Microorganisms play an important role in Se cycling. In this study, two new bacterial strains were isolated from paddy soil and were identified as Chitinophaga sp. and Comamonas testosteroni, respectively. More than 44% and 39% of 1.0 mM selenite were reduced in 84 h by them using yeast extract as carbon source, respectively. Scanning electron microscope (SEM) and Energy dispersive X-ray spectrometry (EDS) results indicated that the reduction product of selenite was nanometer Se. These strains could promote the available Se in soil and the content of Se in rice plants in pot experiments. Organic combined Se in soils was increased up to 35%, accompanied by the 92% and 130% increase of Se in rice plants. To our best knowledge, this is the first report of Se reduction by Chitinophaga. This work might provide a prospective strategy for microbial fortification of Se in corps.


Assuntos
Oryza , Selênio , Biofortificação , Humanos , Ácido Selenioso , Solo
16.
J Hazard Mater ; 406: 124690, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33296764

RESUMO

Selenite in the environment is extremely biotoxic, thus, the biotransformation of selenite into selenium nanoparticles (SeNPs) by microorganisms is gaining increasing interest. However, the relatively low selenite tolerance and slow processing by known microorganisms limit its application. In this study, a highly selenite-resistant strain (up to 800 mM) was isolated from coalmine soil and identified as Providencia rettgeri HF16. Remarkably, 5 mM selenite was entirely transformed by this strain within 24 h, and SeNPs were detected as early as 2 h of incubation, which is a more rapid conversion than that described for other microorganisms. The SeNPs were spherical in shape with diameters ranging from 120 nm to 295 nm, depending on the incubation time. Moreover, in vitro selenite-reduction activity was detected in the cytoplasmic protein fraction with NADPH or NADH serving as electron donors. Proteomics analysis and key enzyme activity tests revealed the presence of a sulfite reductase-mediated selenite reduction pathway. To our knowledge, this is the first report to identify the involvement of sulfite reductase in selenite reduction under physiological conditions. P. rettgeri HF16 could be a suitable and robust biocatalyst for the bioremediation of selenite, and would accelerate the efficient and economical synthesis of selenium nanoparticles.


Assuntos
Nanopartículas , Selênio , Biodegradação Ambiental , Oxirredução , Proteômica , Providencia , Ácido Selenioso
17.
N Biotechnol ; 58: 17-24, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32184193

RESUMO

Microbial reduction of selenium oxyanions has attracted attention in recent years. In this study, an original and simple method for the synthesis of extracellular selenium nanoparticles (Se NPs) of relatively uniform size has been developed using strains Sp7 and Sp245 of the ubiquitous plant-growth promoting rhizobacterium Azospirillum brasilense, both capable of selenite (SeO32-) reduction. In addition, a reliable purification protocol for the recovery of the Se NPs has been perfected, which could be applied with minor modifications to cultures of other microbial species. Importantly, it was found that, by changing the conditions of bacterial reduction of selenite, extracellularly localised Se NPs can be obtained using bacteria which would otherwise produce intracellular Se NPs. In particular, bacterial cultures grown up to the end of the logarithmic growth phase, washed free of culture medium and then incubated with selenite, were used to obtain extracellular Se NPs. Their sizes depended on the initial selenite concentration (∼25-80 nm in diameter at 50-10 mM selenite, respectively). The Se NPs obtained were characterised by transmission electron microscopy (TEM), dynamic light scattering, as well as Raman and UV-vis spectroscopies. Their zeta potential was found to be negative (ca. minus 21-24 mV). Bacterial selenite reduction was also studied in the presence of the efflux pump inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP). In this case, TEM indicated the formation only of intracellular selenium crystallites. The data show that the formation of extracellular Se NPs requires normal bacterial metabolic activity, while CCCP evidently blocks the membrane export of Se0 nuclei.


Assuntos
Azospirillum brasilense/metabolismo , Nanopartículas/metabolismo , Ácido Selenioso/metabolismo , Selênio/metabolismo , Azospirillum brasilense/citologia , Nanopartículas/química , Oxirredução , Ácido Selenioso/química , Selênio/química
18.
Water Res ; 172: 115538, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007675

RESUMO

In nature, many microorganisms show resistance to toxic selenite by reducing selenite to non-soluble and low toxic elemental selenium. Extracellular polymeric substances (EPS), a high-molecular-weight biopolymers originated from microbial metabolism, contain many reducing groups and can induce reductive transformation of pollutants. However, the roles of EPS and its redox state in reductive detoxification or reduction removal of selenite, respectively, remain unknown yet. Herein, the reduction of selenite by different sources of EPS was investigated. Selenite was proved to be reduced by EPS and partly transformed to elemental selenium. The formed elemental selenium was mainly selenium nanoparticles confirmed by transmission electron microscopy coupled with energy dispersive spectroscopy. The redox state of EPS governed selenite reduction and elemental selenium formation, and the reduced state of EPS was in favor of selenite reduction. Dissolved oxygen concentration in water regulated EPS redox state and influenced selenite reduction. The thiols, aldehyde and phenolic groups in EPS were responsible for selenite reduction. Under selenite stress, EPS was capable of increasing cell survivability by enhancing microorganisms-mediated selenite reduction. This work revealed the previously undiscovered roles of EPS in selenite reduction and elemental selenium formation in aquatic environments and also suggested a possible crucial role of EPS in selenium biogeochemical cycle.


Assuntos
Nanopartículas , Selênio , Matriz Extracelular de Substâncias Poliméricas , Oxirredução , Ácido Selenioso
19.
Appl Environ Microbiol ; 85(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31519658

RESUMO

A wide range of microorganisms have been shown to transform selenium-containing oxyanions to reduced forms of the element, particularly selenium-containing nanoparticles. Such reactions are promising for the detoxification of environmental contamination and the production of valuable selenium-containing products, such as nanoparticles for application in biotechnology. It has previously been shown that aerobic methane-oxidizing bacteria, including Methylococcus capsulatus (Bath), are able to perform the methane-driven conversion of selenite (SeO32-) to selenium-containing nanoparticles and methylated selenium species. Here, the biotransformation of selenite by Mc. capsulatus (Bath) has been studied in detail via a range of imaging, chromatographic, and spectroscopic techniques. The results indicate that the nanoparticles are produced extracellularly and have a composition distinct from that of nanoparticles previously observed from other organisms. The spectroscopic data from the methanotroph-derived nanoparticles are best accounted for by a bulk structure composed primarily of octameric rings in the form Se8 -x S x with an outer coat of cell-derived biomacromolecules. Among a range of volatile methylated selenium and selenium-sulfur species detected, methyl selenol (CH3SeH) was found only when selenite was the starting material, although selenium nanoparticles (both biogenic and chemically produced) could be transformed into other methylated selenium species. This result is consistent with methyl selenol being an intermediate in the methanotroph-mediated biotransformation of selenium to all the methylated and particulate products observed.IMPORTANCE Aerobic methane-oxidizing bacteria are ubiquitous in the environment. Two well-characterized strains, Mc. capsulatus (Bath) and Methylosinus trichosporium OB3b, representing gamma- and alphaproteobacterial methanotrophs, respectively, can convert selenite, an environmental pollutant, to volatile selenium compounds and selenium-containing particulates. Both conversions can be harnessed for the bioremediation of selenium pollution using biological or fossil methane as the feedstock, and these organisms could be used to produce selenium-containing particles for food and biotechnological applications. Using an extensive suite of techniques, we identified precursors of selenium nanoparticle formation and also found that these nanoparticles are made up of eight-membered mixed selenium and sulfur rings.


Assuntos
Nanopartículas Metálicas/química , Metanol/análogos & derivados , Methylococcaceae/metabolismo , Methylococcus capsulatus/metabolismo , Compostos Organosselênicos/metabolismo , Ácido Selenioso/metabolismo , Selênio/metabolismo , Biodegradação Ambiental , Biotecnologia , Biotransformação , Metano/metabolismo , Metanol/metabolismo
20.
Sci Total Environ ; 669: 168-174, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30878925

RESUMO

Denitrifying anaerobic methane oxidation (DAMO) is the process of coupling the anaerobic oxidation of methane (AOM) with denitrification, which plays an important part in controlling the flow of methane in anoxic niches. In this study, we explored the feasibility of microbial selenite reduction using methane by DAMO culture. Isotopic 13CH4 and long-term experiments showed that selenite reduction was coupled to methane oxidation, and selenite was ultimately reduced to Se (0) by the analyses of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The introduction of nitrate, the original electron acceptor in the DAMO culture, inhibited selenite reduction. Meanwhile, the microbial community of DAMO culture was significantly changed when the electron acceptor was changed from nitrate to selenite after long-term selenite reduction. High-throughput 16S rRNA gene sequencing indicated that Methylococcus (26%) became the predominant microbe performing selenite reduction and methane oxidation and the possible pathways of AOM accompanied with selenite reduction were proposed. This study revealed more potential relation during the biogeochemical cycle of carbon, nitrogen, and selenium.


Assuntos
Bactérias/metabolismo , Desnitrificação , Metano/metabolismo , Ácido Selenioso/metabolismo , Anaerobiose , Microscopia Eletrônica de Varredura , Oxirredução , Espectroscopia Fotoeletrônica , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...