Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(12): e22505, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38213593

RESUMO

Present work describes the peristaltic flow of Sisko nanomaterial with bioconvection and gyrotactic microorganisms. Slip conditions are incorporated through elastic channel walls. Additionally, we considered the aspects of thermal radiation and viscous dissipation. Further ohmic heating features are also present in the thermal field. Buongiorno's nanofluid model comprising thermophoresis and Brownian movement is taken. The lubrication approach is utilized for the simplification of the problem. Being highly coupled and nonlinear, the resulting system of equations must be solved numerically using the NDSolve technique and bvp4c via Matlab. Velocity, concentration, thermal field and motile microorganisms. are addressed graphically.

2.
Micromachines (Basel) ; 13(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014225

RESUMO

Nanofluids are extremely useful to investigators due to their greater heat transfer rates, which have significant applications in multiple industries. The primary objective of this article is to look into the effect of viscous dissipation in Sisko nano liquid flow with gold Au nanoparticles on a porous stenosis artery. Heat transfer properties were explored. Blood was utilized as a base fluid for nanoparticles. To renovate the governing nonlinear PDEs into nonlinear ODEs, appropriate transformations were used. The bvp4c-based shooting method, via MATLAB, was used to determine the numerical results of the nonlinear ODEs. Furthermore, flow forecasts for each physical quantity were explored. To demonstrate the physical influences of flow constraints versus presumed flow fields, physical explanations were used. The findings demonstrated that the velocity contour improved as the volume fraction, curvature, power law index, and material parameter upsurged. For the Prandtl number, the volume fraction of nanoparticles, the index of the power law, and the temperature profile of the nanofluid declined. Furthermore, the drag force and transfer of the heat were also investigated as explanations for influences on blood flow. Further, the Nusselt number reduced and the drag force enhanced as the curvature parameter values increased. The modeling and numerical solutions play an impressive role in predicting the cause of atherosclerosis.

3.
Nanomaterials (Basel) ; 12(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36014601

RESUMO

The current article discusses the outcomes of the double diffusion convection of peristaltic transport in Sisko nanofluids along an asymmetric channel having an inclined magnetic field. Consideration is given to the Sisko fluid model, which can forecast both Newtonian and non-Newtonian fluid properties. Lubricating greases are the best examples of Sisko fluids. Experimental research shows that most realistic fluids, including human blood, paint, dirt, and other substances, correspond to Sisko's proposed definition of viscosity. Mathematical modelling is considered to explain the flow behavior. The simpler non-linear PEDs are deduced by using an elongated wavelength and a minimal Reynolds number. The expression is also numerically calculated. The impacts of the physical variables on the quantities of flow are plotted graphically as well as numerically. The results reveal that there is a remarkable increase in the concentration, temperature, and nanoparticle fraction with the rise in the Dufour and thermophoresis variables.

4.
Sci Prog ; 104(3): 368504211033677, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34293964

RESUMO

The consequences of double-diffusivity convection on the peristaltic transport of Sisko nanofluids in the non-uniform inclined channel and induced magnetic field are discussed in this article. The mathematical modeling of Sisko nanofluids with induced magnetic field and double-diffusivity convection is given. To simplify PDEs that are highly nonlinear in nature, the low but finite Reynolds number, and long wavelength estimation are used. The Numerical solution is calculated for the non-linear PDEs. The exact solution of concentration, temperature and nanoparticle are obtained. The effect of various physical parameters of flow quantities is shown in numerical and graphical data. The outcomes show that as the thermophoresis and Dufour parameters are raised, the profiles of temperature, concentration, and nanoparticle fraction all significantly increase.

5.
Comput Methods Biomech Biomed Engin ; 23(8): 345-371, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32098508

RESUMO

This article presents a two-dimensional theoretical study of hemodynamics through a diseased permeable artery with a mild stenosis and an aneurysm present. The effect of metallic nanoparticles on the blood flow is considered, motivated by drug delivery (pharmacology) applications. Two different models are adopted to mimic non-Newtonian characteristics of the blood flow; the Casson (viscoplastic) fluid model is deployed in the core region and the Sisko (viscoelastic) fluid model employed in the peripheral (porous) region. The revised Buongiorno two-component nanofluid model is utilized for nanoscale effects. The blood is considered to contain a homogenous suspension of nanoparticles. The governing equations are derived by extending the Navier-Stokes equations with linear Boussinesq approximation (which simulates both heat and mass transfer). Natural (free) double-diffusive convection is considered to simulate the dual influence of thermal and solutal buoyancy forces. The conservation equations are normalised by employing appropriate non-dimensional variables. The transformed equations are solved numerically using the finite element method with the variational formulation scheme available in the FreeFEM++ code. A comprehensive mesh-independence study is included. The effect of selected parameters (thermophoresis, Brownian motion, Grashof number, thermo-solutal buoyancy ratio, Sisko parameter ratio, and permeability parameter) on velocity, temperature, nanoparticle concentration, and hemodynamic pressure have been calculated for two clinically important cases of arteries with stenosis and an aneurysm. Skin-friction coefficient, Nusselt number, volumetric flow rate, and resistance impedance of blood flow are also computed. Colour contours and graphs are employed to visualize the simulated blood flow characteristics. It is observed that by increasing the thermal buoyancy parameter, i.e. Grashof number (Gr), the nanoparticle concentration and temperature decrease, whereas velocity increases with an increment in the Brownian motion parameter (Nb). Furthermore, velocity decreases in the peripheral porous region with elevation in the Sisko material ratio (m) and permeability parameter (k'). The simulations are relevant to transport phenomena in pharmacology and nano-drug targeted delivery in haematology.


Assuntos
Aneurisma/fisiopatologia , Artérias/fisiopatologia , Simulação por Computador , Hemodinâmica/fisiologia , Hidrodinâmica , Nanopartículas/química , Constrição Patológica , Fricção , Movimento (Física) , Análise Numérica Assistida por Computador , Porosidade , Reologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...