Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.555
Filtrar
1.
J Environ Sci (China) ; 147: 310-321, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003049

RESUMO

In this study, the effects of different salinity gradients and addition of compatible solutes on anaerobic treated effluent water qualities, sludge characteristics and microbial communities were investigated. The increase in salinity resulted in a decrease in particle size of the granular sludge, which was concentrated in the range of 0.5-1.0 mm. The content of EPS (extracellular polymeric substances) in the granular sludge gradually increased with increasing salinity and the addition of betaine (a typical compatible solute). Meanwhile, the microbial community structure was significantly affected by salinity, with high salinity reducing the diversity of bacteria. At higher salinity, Patescibacteria and Proteobacteria gradually became the dominant phylum, with relative abundance increasing to 13.53% and 12.16% at 20 g/L salinity. Desulfobacterota and its subordinate Desulfovibrio, which secrete EPS in large quantities, dominated significantly after betaine addition.Their relative abundance reached 13.65% and 7.86% at phylum level and genus level. The effect of these changes on the treated effluent was shown as the average chemical oxygen demand (COD) removal rate decreased from 82.10% to 79.71%, 78.01%, 68.51% and 64.55% when the salinity gradually increased from 2 g/L to 6, 10, 16 and 20 g/L. At the salinity of 20 g/L, average COD removal increased to 71.65% by the addition of 2 mmol/L betaine. The gradient elevated salinity and the exogenous addition of betaine played an important role in achieving stability of the anaerobic system in a highly saline environment, which provided a feasible strategy for anaerobic treatment of organic saline wastewater.


Assuntos
Betaína , Salinidade , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Betaína/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Anaerobiose , Microbiota/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/efeitos dos fármacos
2.
J Environ Sci (China) ; 147: 404-413, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003058

RESUMO

Salinity was considered to have effects on the characteristics, performance microbial communities of aerobic granular sludge. This study investigated granulation process with gradual increase of salt under different gradients. Two identical sequencing batch reactors were operated, while the influent of Ra and Rb was subjected to stepwise increments of NaCl concentrations (0-4 g/L and 0-10 g/L). The presence of filamentous bacteria may contribute to granules formed under lower salinity conditions, potentially leading to granules fragmentation. Excellent removal efficiency achieved in both reactors although there was a small accumulation of nitrite in Rb at later stages. The removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in Ra were 95.31%, 93.70% and 88.66%, while the corresponding removal efficiencies in Rb were 94.19%, 89.79% and 80.74%. Salinity stimulated extracellular polymeric substances (EPS) secretion and enriched EPS producing bacteria to help maintain the integrity and stability of the aerobic granules. Heterotrophic nitrifying bacteria were responsible for NH4+-N and NO2--N oxidation of salinity systems and large number of denitrifying bacteria were detected, which ensure the high removal efficiency of TN in the systems.


Assuntos
Reatores Biológicos , Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Fósforo/metabolismo , Salinidade , Cloreto de Sódio , Bactérias/metabolismo , Microbiota , Análise da Demanda Biológica de Oxigênio
3.
J Environ Sci (China) ; 147: 607-616, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003075

RESUMO

This study embarks on an explorative investigation into the effects of typical concentrations and varying particle sizes of fine grits (FG, the involatile portion of suspended solids) and fine debris (FD, the volatile yet unbiodegradable fraction of suspended solids) within the influent on the mixed liquor volatile suspended solids (MLVSS)/mixed liquor suspended solids (MLSS) ratio of an activated sludge system. Through meticulous experimentation, it was discerned that the addition of FG or FD, the particle size of FG, and the concentration of FD bore no substantial impact on the pollutant removal efficiency (denoted by the removal rate of COD and ammonia nitrogen) under constant operational conditions. However, a notable decrease in the MLVSS/MLSS ratio was observed with a typical FG concentration of 20 mg/L, with smaller FG particle sizes exacerbating this reduction. Additionally, variations in FD concentrations influenced both MLSS and MLVSS/MLSS ratios; a higher FD concentration led to an increased MLSS and a reduced MLVSS/MLSS ratio, indicating FD accumulation in the system. A predictive model for MLVSS/MLSS was constructed based on quality balance calculations, offering a tool for foreseeing the MLVSS/MLSS ratio under stable long-term influent conditions of FG and FD. This model, validated using data from the BXH wastewater treatment plant (WWTP), showcased remarkable accuracy.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Tamanho da Partícula , Poluentes Químicos da Água/análise
4.
J Environ Sci (China) ; 147: 36-49, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003054

RESUMO

Anaerobic digestion (AD) is widely employed for sludge stabilization and waste reduction. However, the slow hydrolysis process hinders methane production and leads to prolonged sludge issues. In this study, an efficient and eco-friendly lysozyme pre-treatment method was utilized to address these challenges. By optimizing lysozyme dosage, hydrolysis and cell lysis were maximized. Furthermore, lysozyme combined with hydrothermal pretreatment enhanced overall efficiency. Results indicate that: (1) When lysozyme dosage reached 90 mg/g TS after 240 min of pretreatment, SCOD, soluble polysaccharides, and protein content reached their maxima at 855.00, 44.09, and 204.86 mg/L, respectively. This represented an increase of 85.87%, 365.58%, and 259.21% compared to the untreated sludge. Three-dimensional fluorescence spectroscopy revealed the highest fluorescence intensity in the IV region (soluble microbial product), promoting microbial metabolic activity. (2) Lysozyme combined with hydrothermal pretreatment significantly increased SCOD, soluble proteins, and polysaccharide release from sludge, reducing SCOD release time. Orthogonal experiments identified Group 3 as the most effective for SCOD and soluble polysaccharide release, while Group 9 released the most soluble proteins. The significance order of factors influencing SCOD, soluble proteins, and polysaccharide release is hydrothermal temperature > hydrothermal time > enzymatic digestion time.(3) The lysozyme-assisted hydrothermal pretreatment group exhibited the fastest release and the highest SCOD concentration of 8,135.00 mg/L during anaerobic digestion. Maximum SCOD consumption and cumulative gas production increased by 95.89% and 130.58%, respectively, compared to the control group, allowing gas production to conclude 3 days earlier.


Assuntos
Muramidase , Esgotos , Eliminação de Resíduos Líquidos , Muramidase/metabolismo , Esgotos/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Metano , Hidrólise
5.
J Environ Sci (China) ; 148: 321-335, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095168

RESUMO

Sewage sludge in cities of Yangzi River Belt, China, generally exhibits a lower organic content and higher silt contentdue to leakage of drainage system, which caused low bioenergy recovery and carbon emission benefits in conventional anaerobic digestion (CAD). Therefore, this paper is on a pilot scale, a bio-thermophilic pretreatment anaerobic digestion (BTPAD) for low organic sludge (volatile solids (VS) of 4%) was operated with a long-term continuous flow of 200 days. The VS degradation rate and CH4 yield of BTPAD increased by 19.93% and 53.33%, respectively, compared to those of CAD. The analysis of organic compositions in sludge revealed that BTPAD mainly improved the hydrolysis of proteins in sludge. Further analysis of microbial community proportions by high-throughput sequencing revealed that the short-term bio-thermophilic pretreatment was enriched in Clostridiales, Coprothermobacter and Gelria, was capable of hydrolyzing acidified proteins, and provided more volatile fatty acid (VFA) for the subsequent reaction. Biome combined with fluorescence quantitative polymerase chain reaction (PCR) analysis showed that the number of bacteria with high methanogenic capacity in BTPAD was much higher than that in CAD during the medium temperature digestion stage, indicating that short-term bio-thermophilic pretreatment could provide better methanogenic conditions for BTPAD. Furthermore, the greenhouse gas emission footprint analysis showed that short-term bio-thermophilic pretreatment could reduce the carbon emission of sludge anaerobic digestion system by 19.18%.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Projetos Piloto , Reatores Biológicos/microbiologia , Metano/metabolismo , Metano/análise , Carbono/metabolismo , Carbono/análise , China , Biocombustíveis
6.
J Environ Sci (China) ; 148: 409-419, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095176

RESUMO

Sedimentation sludge water (SSW), a prominent constituent of wastewater from drinking water treatment plants, has received limited attention in terms of its treatment and utilization likely due to the perceived difficulties associated with managing SSW sludge. This study comprehensively evaluated the water quality of SSW by comparing it to a well-documented wastewater (filter backwash water (FBW)). Furthermore, it investigated the pollutant variations in the SSW during pre-sedimentation process, probed the underlying reaction mechanism, and explored the feasibility of employing a pilot-scale coagulation-sedimentation process for SSW treatment. The levels of most water quality parameters were generally comparable between SSW and FBW. During the pre-sedimentation of SSW, significant removal of turbidity, bacterial counts, and dissolved organic matter (DOM) was observed. The characterization of DOM components, molecular weight distributions, and optical properties revealed that the macromolecular proteinaceous biopolymers and humic acids were preferentially removed. The characterization of particulates indicated that high surface energy, zeta potential, and bridging/adsorption/sedimentation/coagulation capacities in aluminum residuals of SSW, underscoring its potential as a coagulant and promoting the generation and sedimentation of inorganic-organic complexes. The coagulation-sedimentation process could effectively remove pollutants from low-turbidity SSW ([turbidity]0 < 15 NTU). These findings provide valuable insights into the water quality dynamics of SSW during the pre-sedimentation process, facilitating the development of SSW quality management and enhancing its reuse rate.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Esgotos/química , Material Particulado/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Substâncias Húmicas/análise , Qualidade da Água
7.
J Environ Sci (China) ; 148: 579-590, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095191

RESUMO

This work established a quantitative method to access the shear stability of aerobic granular sludge (AGS) and validated its feasibility by using the mature AGS from a pilot-scale (50 tons/day) membrane bioreactor (MBR) for treating real municipal wastewater. The results showed that the changing rate (ΔS) of the peak area (S) of granule size distribution (GSD) exhibited an exponential relationship (R2≥0.76) with the shear time (y=a-b·cx), which was a suitable indicative index to reflect the shear stability of different AGS samples. The limiting granule size (LGS) was defined and proposed to characterize the equilibrium size for AGS after being sheared for a period of time, whose value in terms of Dv50 showed high correlation (R2=0.92) with the parameter a. The free Ca2+ (28.44-34.21 mg/L) in the influent specifically interacted with polysaccharides (PS) in the granule's extracellular polymeric substance (EPS) as a nucleation site, thereby inducing the formation of Ca precipitation to enhance its Young's modulus, while Ca2+ primarily interacted with PS in soluble metabolic product (SMP) during the initial granulation process. Furthermore, the Young's modulus significantly affected the parameter a related to shear stability (R2=0.99). Since the parameter a was more closely related (R2=1.00) to ΔS than that of the parameter b or c, the excellent correlation (R2=0.99) between the parameter a and the wet density further verified the feasibility of this method.


Assuntos
Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Projetos Piloto , Águas Residuárias/química , Membranas Artificiais , Aerobiose
8.
Environ Pollut ; : 124638, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089474

RESUMO

A comparative study explored how photoaging, ozonation aging, and Fenton aging affect tire wear particles (TWPs) and their phosphorus (P) removal in activated sludge. Aging altered TWPs' properties, increasing surface roughness, porosity, and generating more small particles, especially environmental persistent free radicals (EPFRs) in ozonation and Fenton aging. Post-aging TWPs (50 mg/L) inhibited sludge P removal significantly (p<0.05), with rates of 44.3% and 59.6% for ozonation and Fenton aging, respectively. In addition, the metabolites involved in P cycling (poly-ß-hydroxyalkanoates: PHA and glycogen) and essential enzymes (Exopolyphosphatase: PPX and Polyphosphate kinase: PPK) were significantly inhibited (p<0.05). Moreover, TWPs led to a decrease in microbial cells within the sludge and altered the community structure, a situation exacerbated by the aging of TWPs. P-removing bacteria decreased (e.g., Burkholderia, Candidatus), while extracellular polymeric substance-secreting bacteria increased (e.g., Pseudomonas, Novosphingobium). Pearson correlation analysis highlighted EPFRs' role in TWPs' acute toxicity to microbial cells, yet, emphasizing particle size's impact on the sludge system's purification and community structure.

9.
Environ Int ; 190: 108920, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39094405

RESUMO

Sludge bulking caused by filamentous bacteria is a prevalent issue in wastewater treatment systems. While previous studies have primarily concentrated on controlling sludge bulking, the biological risks associated with it have been overlooked. This study demonstrates that excessive growth of filamentous bacteria during sludge bulking can significantly increase the abundance of antibiotic resistance genes (ARGs) in activated sludge. Through metagenomic analysis, we identified specific ARGs carried by filamentous bacteria, such as Sphaerotilus and Thiothrix, which are responsible for bulking. Additionally, by examining over 1,000 filamentous bacterial genomes, we discovered a diverse array of ARGs across different filamentous bacteria derived from wastewater treatment systems. Our findings indicate that 74.84% of the filamentous bacteria harbor at least one ARG, with the occurrence frequency of ARGs in these bacteria being approximately 1.5 times higher than that in the overall bacterial population in activated sludge. Furthermore, genomic and metagenomic analyses have shown that the ARGs in filamentous bacteria are closely linked to mobile genetic elements and are frequently found in potentially pathogenic bacteria, highlighting potential risks posed by these filamentous bacteria. These insights enhance our understanding of ARGs in activated sludge and underscore the importance of risk management in wastewater treatment systems.

10.
Ecotoxicol Environ Saf ; 283: 116820, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094454

RESUMO

Wastewater treatment plants (WWTPs) can benefit from utilizing digital technologies to reduce greenhouse gas (GHG) emissions and to comply with effluent quality standards. In this study, the GHG emissions and electricity consumption of a WWTP were evaluated via computer simulation by varying the dissolved oxygen (DO), mixed liquor recirculation (MLR), and return activated sludge (RAS) parameters. Three different measures, namely, effluent water quality, GHG emissions, and energy consumption, were combined as water-energy-carbon coupling index (WECCI) to compare the effects of the parameters on WWTPs, and the optimal operating condition was determined. The initial conditions of the A2O process were set to 4.0 mg/L of DO, 100 % MLR, and 90.7 % RAS. Eighty scenarios with various DO, MLR, and RAS were simulated under steady-state condition to optimize the biological treatment process. The optimal operating conditions were found to be 1.5 mg/L of DO, 190 % MLR, and 90.9 % RAS, which had the highest WECCI of 2.40 when compared to the WECCI of the initial condition (1.07). This optimal condition simultaneously reduced GHG emissions by 1348 kg CO2-eq/d and energy consumption by 11.64 MWh/d. This implies that controlling DO, MLR, and RAS through sensors, valves, and pumps offers a promising approach to operating WWTPs with reduced electricity consumption and GHG emissions while attaining effluent quality standards. Additionally, the nitrous oxide stripping rate exhibited linear relationships with the effluent total ammonia and nitrite concentrations in the aerobic reactor, suggesting that monitoring dissolved nitrogen compounds in the effluent and reactor could be a viable strategy to control MLR and DO in the biological reactor. The digital-based assessment and optimization tools developed in this study are expected to hold promise for application in broader environmental management efforts.

11.
Chemosphere ; : 142992, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094703

RESUMO

A straightforward and eco-friendly preparation method for porous sludge biochar (SBA-3) was developed to deodorize gaseous dimethyl disulfide (DMDS) using ion exchange to adjust micropore structures coupled with carboxyl functionalization. Compared with the unmodified sludge biochar SBA-1 and SBA-2 treated with ion exchange, the pore size of SBA-3 decreased accompanied with increasing specific surface area and micropore volume. The Brunauer-Emmett-Teller (BET) specific surface area and micropore volume were 176.35 and 0.0314 cm³ g-1, which were 2.02 and 1.71-fold larger than those of SBA-2, as well as 20.60 and 78.5-fold larger than those of SBA-1, respectively. Meanwhile, the amount of -COOH on the surface of SBA-3 increased from 0.425 to 1.123 mmol g-1, which was 2.64-fold larger than that of SBA-1. The adsorption behavior between DMDS and SBA-3 could be well described by the quasi-second-order kinetic model and Langmuir isotherm model. The maximum monolayer adsorption capacity was 35.12 mg g-1 at 303 K. Thermodynamic and DFT calculations indicated that the adsorption of DMDS on SBA-3 was exothermic with the deodorization mechanisms involving pore filling and chemisorption.

12.
Water Res ; 263: 122093, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39096809

RESUMO

Anammox granular sludge (AnGS) has received considerable attention due to its low carbon footprint (less aeration energy and carbon source consumption) and high biomass density, but growth rate and stability are still the bottlenecks of AnGS process. Calcium ion (Ca2+) is essential for the growth of anaerobic ammonium oxidation bacteria (AnAOB) and plays an important role in the formation and stability of AnGS. Response of AnGS to Ca2+ under different concentrations was comprehensively investigated by multi-spectral and metagenomics analysis in four aspects: nitrogen removal performance, surface morphology, extracellular polymeric substance (EPS) composition and characterization, and microbial community. The nitrogen removal efficiency was significantly enhanced at appropriate Ca2+ concentration (2 mmol/L), owning to the more favorable morphology and functional microbial composition of AnGS. However, the nitrogen removal performance of AnGS declined with the Ca2+concentration increased from 2 to 8 mmol/L, due to the negative effects of excess Ca2+on EPS, mass transfer efficiency, and functional microorganisms. Meanwhile, an unexpected slight "rebound" of nitrogen removal efficiency was observed at Ca2+ = 6 mmol/L and attributed to the defense mode transformation of AnGS (from "ion stabilization" to "precipitate shield" modes) against excess Ca2+ stress. Based on the findings, the response mechanism of AnGS to Ca2+ with different concentrations was established. Our results enhanced the understanding of the interaction between AnGS and Ca2+, which may be valuable for filling the theoretical gap in enhancing the granulation and stability of AnGS and providing a reference for the practical operation of the AnGS process.

13.
Bioresour Technol ; : 131201, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39097236

RESUMO

For revealing the influence of temperature on volatile fatty acids (VFAs) generation from primary sludge (PS) during the anaerobic fermentation process facilitated by peroxymonosulfate (PMS), five fermentation groups (15, 25, 35, 45, and 55 °C) were designed. The results indicated that the production of VFAs (5148 mg COD/L) and acetic acid (2019 mg COD/L) reached their peaks at 45 °C. High-throughput sequencing technology disclosed that Firmicutes, Proteobacteria, and Actinobacteria was the dominant phyla, carbohydrate metabolism and membrane transport were the most vigorous at 45 °C. Additionally, higher temperature and PMS exhibit synergistic effects in promoting VFAs accumulation. This study unveiled the mechanism of the effect of the pretreatment of PS with PMS on the VFAs production, which established a theoretical foundation for the production of VFAs.

14.
Sci Total Environ ; : 174974, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053544

RESUMO

Recent research on the archaea community in aerobic granular sludge (AGS) has attracted considerable attention. This review summarizes the existing literature on composition, distribution, and related functions of archaea community in AGS. Furthermore, the effects of granulation, substrate, temperature, process types, and aeration models on the archaea community were discussed. Significantly, the layered structure of AGS facilitates the enrichment of archaea, including methanogenic archaea and ammonia-oxidizing archaea. Archaea engage in metabolic interactions with other microorganisms, enhancing the ecological functionalities of AGS and its tolerance to adverse conditions. Future investigations should focus on minimizing greenhouse gas emissions and exploring the roles and interactive mechanisms of archaea and other microorganisms within AGS.

15.
Chemosphere ; 363: 142824, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996980

RESUMO

The disposal and resource utilization of sewage sludge (SS) have always been significant challenges for environmental protection. This study employed straightforward pyrolysis to prepare iron-containing sludge biochar (SBC) used as a catalyst and to recover bio-oil used as fuel energy. The results indicated that SBC-700 could effectively activate persulfate (PS) to remove 97.2% of 2,4-dichlorophenol (2,4-DCP) within 60 min. Benefiting from the appropriate iron content, oxygen-containing functional groups and defective structures provide abundant active sites. Meanwhile, SBC-700 exhibits good stability and reusability in cyclic tests and can be easily recovered by magnetic separation. The role of non-radicals is emphasized in the SBC-700/PS system, and in particular, single linear oxygen (1O2) is proposed to be the dominant reactive oxygen. The bio-oil, a byproduct of pyrolysis, exhibits a higher heating value (HHV) of about 30 MJ/kg, with H/C and O/C ratios comparable to those of biodiesel. The energy recovery rate of the SS pyrolysis system was calculated at 80.5% with a lower input cost. In conclusion, this investigation offers a low-energy consumption and sustainable strategy for the resource utilization of SS while simultaneously degrading contaminants.

16.
Environ Res ; 260: 119635, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025351

RESUMO

Activated sludge (AS) microbial communities are influenced by various environmental variables. However, a comprehensive analysis of how these variables jointly and nonlinearly shape the AS microbial community remains challenging. In this study, we employed advanced machine learning techniques to elucidate the collective effects of environmental variables on the structure and function of AS microbial communities. Applying Dirichlet multinomial mixtures analysis to 311 global AS samples, we identified four distinct microbial community types (AS-types), each characterized by unique microbial compositions and metabolic profiles. We used 14 classical linear and nonlinear machine learning methods to select a baseline model. The extremely randomized trees demonstrated optimal performance in learning the relationship between environmental factors and AS types (with an accuracy of 71.43%). Feature selection identified critical environmental factors and their importance rankings, including latitude (Lat), longitude (Long), precipitation during sampling (Precip), solids retention time (SRT), effluent total nitrogen (Effluent TN), average temperature during sampling month (Avg Temp), mixed liquor temperature (Mixed Temp), influent biochemical oxygen demand (Influent BOD), and annual precipitation (Annual Precip). Significantly, Lat, Long, Precip, Avg Temp, and Annual Precip, influenced metabolic variations among AS types. These findings emphasize the pivotal role of environmental variables in shaping microbial community structures and enhancing metabolic pathways within activated sludge. Our study encourages the application of machine learning techniques to design artificial activated sludge microbial communities for specific environmental purposes.

17.
Bioresour Technol ; 407: 131135, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033826

RESUMO

Existing phosphorus (P) resources are becoming increasingly scarce, so it is necessary to recover P from potential sources. This paper is based on thermal hydrolysis process (THP) at 140-180 °C, coupled with low-temperature pyrolysis at 300 °C, to study its effect on the recovery and conversion of P from sewage sludge. Most significant change was observed in apatite P, which increased from 3.43 ± 0.48 mg/g in raw sludge to 30.17 ± 1.17 mg/g in biochar (BTHP-180-4-300) during optimal process (THP condition: 180 °C, 4 h; pyrolysis condition: 300 °C). Reactions between phosphates and metal ions became more complete during this combined process. Unstable forms of P were converted into more stable forms, with transformations from Al-P and Fe-P toward Ca-P compounds like Ca3(PO4)2, Ca3Mg3(PO4)4, Ca2P2O7, and Ca(H2PO4)2, making P less degradable and more suitable as slow-release fertilizers. Additionally, P characteristics of actual THP in a sewage treatment plant were similar to those of laboratory THP.

18.
Environ Res ; 260: 119656, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39034021

RESUMO

This review explores recent progress in sequencing batch reactors (SBRs) and hybrid systems for wastewater treatment, emphasizing their adaptability and effectiveness in managing diverse wastewater compositions. Through extensive literature analysis from 1985 to 2024, the integration of advanced technologies like photocatalysis within hybrid systems is highlighted, showing promise for improved pollutant removal efficiencies. Insights into operational parameters, reactor design, and microbial communities influencing SBR performance are discussed. Sequencing batch biofilm reactors (SBBRs) demonstrate exceptional efficiency in Chemical Oxygen Demand, nitrogen, and phosphorus removal, while innovative anaerobic-aerobic-anoxic sequencing batch reactors (AOA-SBRs) offer effective nutrient removal strategies. Hybrid systems, particularly photocatalytic sequencing batch reactors (PSBRs), show potential for removing persistent pollutants like antibiotics and phenols, underscoring the significance of advanced oxidation processes. However, research gaps persist, including the need for comparative studies between different SBR types and comprehensive evaluations of long-term performance, environmental variability, and economic viability. Addressing these gaps will be vital for the practical deployment of SBRs and hybrid systems. Further exploration of synergies, economic considerations, and reactor stability will enhance the sustainability and scalability of these technologies for efficient and eco-friendly wastewater treatment.

19.
Insects ; 15(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39057273

RESUMO

Residual organic sludge generated from bioenergy facilities (BF-rOS) is often disposed instead of recycled, thus contributing to further environmental pollution. This study explored the resource utilization of BF-rOS using Hermetia illucens larvae (BSFL). When BF-rOS was fed to BSFL for two weeks, the dry weight per individual BSFL was approximately 15% of that of BSFL that were fed food waste (FW). However, the dry weight increased by approximately two-fold in BSFL that were fed effective microorganism (EM)-supplemented BF-rOS containing 60% moisture. However, under both conditions, the BSFL did not mature into pupae. In contrast, the highest dry weight per BSFL was observed with the BF-rOS/FW (50%:50%) mixture, regardless of EM supplementation. Furthermore, the highest bioconversion rate was observed when the BSFL were fed the BF-rOS/FW (50%:50%) mixture, and the frass produced by the BSFL contained fertilizer-appropriate components. In addition, the nutritional components of the BSFL exhibited a nutrient profile suitable for animal feed, except for those fed BF-rOS only. In conclusion, this investigation demonstrates that BF-rOS should be recycled for fertilizer production by mixing it with FW as a BSFL feed, which generates the valuable insect biomass as potential nutrition for animal feeding.

20.
Water Res ; 261: 122035, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38981352

RESUMO

Calcium-induced agglomeration of anaerobic granular sludge bed (AGSB) has become a critical factor in performance decline of calcified anaerobic reactors. However, the agglomeration process of AGSB and the underlying mechanisms remain unclear and elusive. This study delved into the evolution of calcified AGSB, and four typical states of normal AGSB (Nor-AGSB), calcified dispersed AGSB (Dis-AGSB), calcified dimeric AGSB (Dim-AGSB), and calcified polymeric AGSB (Pol-AGSB) were characterized. It was found that the minimum transport velocity of Dis-AGSB was 3.14-3.79 times higher than that of Nor-AGSB, and surpassed both the superficial velocity and the bubble-induced wake velocity. This led to the sedimentation of AGS at the bottom of reactor, resulting in stable contacts with each other. Solid fillers between AGS, namely cement, were observed within Dim-AGSB and Pol-AGSB, and could be classified as tightly- and loosely- bonded cement (T- and L-cement). Further analysis revealed that T-cement was rich in extracellular polymeric substances and intertwining pili/flagella, serving as the primary driving force for robust inter-AGS adhesion. While the L-cement was primarily in the form of calcite precipitation, and blocked the convective mass transfer pathways in Pol-AGSB, leading to the decreased convective mass transfer capacity. The critical distance between calcite and AGS was further revealed as 5.33 nm to form stable initial adhesion. Consequently, the agglomeration mechanism involving the evolution of AGSB was proposed as calcium-induced sedimentation, calcium-induced adhesion, and calcium-induced stasis in order. This study is expected to offer deep insight into the calcium-induced agglomeration especially from the overlooked perspective of AGSB, and provides feasible control strategies to manage the pressing calcification issues in engineering applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...