Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.459
Filtrar
1.
Biomaterials ; 312: 122723, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39121732

RESUMO

The challenges generated by insufficient T cell activation and infiltration have constrained the application of immunotherapy. Making matters worse, the complex tumor microenvironment (TME), resistance to apoptosis collectively poses obstacles for cancer treatment. The carrier-free small molecular self-assembly strategy is a current research hotspot to overcome these challenges. This strategy can transform multiple functional agents into sustain-released hydrogel without the addition of any excipients. Herein, a coordination and hydrogen bond mediated tricomponent hydrogel (Cel hydrogel) composed of glycyrrhizic acid (GA), copper ions (Cu2+) and celastrol (Cel) was initially constructed. The hydrogel can regulate TME by chemo-dynamic therapy (CDT), which increases reactive oxygen species (ROS) in conjunction with GA and Cel, synergistically expediting cellular apoptosis. What's more, copper induced cuproptosis also contributes to the anti-tumor effect. In terms of regulating immunity, ROS generated by Cel hydrogel can polarize tumor-associated macrophages (TAMs) into M1-TAMs, Cel can induce T cell proliferation as well as activate DC mediated antigen presentation, which subsequently induce T cell proliferation, elevate T cell infiltration and enhance the specific killing of tumor cells, along with the upregulation of PD-L1 expression. Upon co-administration with aPD-L1, this synergy mitigated both primary and metastasis tumors, showing promising clinical translational value.


Assuntos
Cobre , Hidrogéis , Inibidores de Checkpoint Imunológico , Imunoterapia , Ativação Linfocitária , Triterpenos Pentacíclicos , Espécies Reativas de Oxigênio , Linfócitos T , Microambiente Tumoral , Triterpenos Pentacíclicos/farmacologia , Hidrogéis/química , Animais , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Ativação Linfocitária/efeitos dos fármacos , Cobre/química , Microambiente Tumoral/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos Endogâmicos C57BL , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/química , Feminino , Triterpenos/farmacologia , Triterpenos/química
3.
Eur J Pharmacol ; 984: 177027, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366504

RESUMO

Cancer chemotherapy induces cell stress in rapidly dividing cancer cells to trigger their growth arrest and apoptosis. However, adverse effects related to cardiotoxicity underpinned by a limited regenerative potential of the heart limits clinical application: In particular, chemotherapy with doxorubicin (DOXO) causes acute heart injury that can transition to persisting cardiomyopathy (DOXO-CM). Here, we tested if MuRF1 inhibition ("MuRFi") was able to attenuate DOXO-CM. To mimic DOXO chemotherapy, we treated mice over four weeks with five DOXO injections, resulting in a cumulative dosage of 25 mg/kg. At day 28, mice had lower body and heart weights, reduced cardiac cross-sectional myofibrillar areas (CSAs), and disturbed functional ejection fractions (EFs) and fractional shortenings (FS) as indicated by echocardiography (ECHO). In contrast, mice with a 1 g/kg Myomed#205 spiked diet, a previously described experimental MuRFi therapy, showed lower DOXO-CM at day 28, and also reduced acute DOXO cardiac injury at day 7 (single DOXO dose; 15 mg/kg). Underlying molecular signatures using Western blot (WB) assays showed at day 28 reduced phospho-AKT (AKTp) and phospo-4EBP1 (4 EBP1p) levels following DOXO that were normalized following MuRFi treatment. Taken together, our data suggest that MuRFi treatment is suitable to attenuate DOXO-CM by preserving AKTp and 4 EBP1p levels in DOXO stressed cardiomyocytes, thereby supporting de novo protein translation and cardiomyocyte survival under translational arrest stress.

4.
Mol Ther Oncol ; 32(4): 200875, 2024 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-39351074

RESUMO

Alternative splicing products of AIMP2 and AIMP2-DX2 (DX2) have been reported to be associated with human lung cancer. In fact, DX2 expression is elevated in human lung cancers, and DX2 transgenic mice also develop lung cancer, in particular small cell lung cancer (SCLC). However, the mechanism by which DX2 is induced during cancer progression has not been clearly elucidated. Here, we show that DX2 is induced by nicotine, the main component of smoking-related chemicals, which can stabilize the human epidermal growth factor receptor 2 (HER2) protein and transcriptionally increase sonic hedgehog (Shh). Indeed, nicotine showed tumorigenicity via DX2 by promoting spheroid formation and in vivo lung and kidney cancer progression. Moreover, the elimination of DX2 using small interfering RNA (siRNA) or an optimized inhibitor (SNU-14) blocked the induction of HER2 and Shh and completely suppressed tumor sphere formation in response to nicotine. These results indicate that DX2 is critical for lung cancer progression, and a specific DX2 inhibitor would be useful for the treatment of human cancers, including SCLC and non-SCLC (NSCLC).

5.
J Adv Res ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366483

RESUMO

BACKGROUND: Fibrosis is a tissue damage repair response caused by multiple pathogenic factors which could occur in almost every apparatus and leading to the tissue structure damage, physiological abnormality, and even organ failure until death. Up to now, there is still no specific drugs or strategies can effectively block or changeover tissue fibrosis. JNKs, a subset of mitogen-activated protein kinases (MAPK), have been reported that participates in various biological processes, such as genetic expression, DNA damage, and cell activation/proliferation/death pathways. Increasing studies indicated that abnormal regulation of JNK signal pathway has strongly associated with tissue fibrosis. AIM OF REVIEW: This review designed to sum up the molecular mechanism progresses in the role of JNK signal pathway in organ fibrosis, hoping to provide a novel therapy strategy to tackle tissue fibrosis. KEY SCIENTIFIC CONCEPTS OF REVIEW: Recent evidence shows that JNK signaling pathway could modulates inflammation, immunoreaction, oxidative stress and Multiple cell biological functions in organ fibrosis. Therefore, targeting the JNK pathway may be a useful strategy in cure fibrosis.

6.
ACS Nano ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39383335

RESUMO

Self-assembly of hydrogels for mechanical support and drug delivery has been extensively researched in traumatic brain injury (TBI), where treatment options are limited. The chief challenge is that most self-assembled hydrogels rely on high molecular carriers or the incorporation of exogenous inactive substances as mediators. It is difficult for these drug delivery systems to achieve clinical translation due to concerns regarding biological safety. Here we report a small molecule hydrogel (GBR-gel) loading small molecule drugs (glycyrrhizic acid, berberine, and rhein) that originated from popular Chinese medicines without additional drug loading or inactive components under physiological conditions. In the long run, GBR-gel possesses several advantages, including ease of preparation, cost-effectiveness, and high biocompatibility. As a proof-of-concept, GBR-gel allows for prompt administration at the site of brain injury to exert potent pharmacodynamic effects. Further single-cell RNA sequencing and experimental validation indicated that GBR-gel can effectively rescue the suppressed glutamatergic synapse pathway after TBI, thereby attenuating inflammatory responses and neural impairments. Our work provides an alternative strategy for timely intervention of TBI.

7.
Mitochondrion ; 79: 101971, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357561

RESUMO

Parkinson's disease (PD), a neurodegenerative disorder, is one of the most significant challenges confronting modern societies, affecting millions of patients globally each year. The pathophysiology of PD is significantly influenced by mitochondrial dysfunction, as evident by the contribution of altered mitochondrial dynamics, bioenergetics, and increased oxidative stress to neuronal death. This review examines the potential use of small molecules that target mitochondria as a therapeutic approach for treating PD. Progress in mitochondrial biology has revealed various mitochondrial targets that can be modulated to restore function and mitigate neurodegeneration. Small molecules that promote mitochondrial biogenesis, enhance mitochondrial dynamics, decrease oxidative stress, and prevent the opening of the mitochondrial permeability transition pore (mPTP) have shown promise in preclinical models. Additionally, targeting mitochondrial quality control mechanisms, such as mitophagy, provides another therapeutic approach. This review explores recent research on small molecules targeting mitochondria, examines their mechanisms of action, and assesses their potential efficacy and safety profiles. By highlighting the most promising candidates and addressing the challenges and future directions in this field, this review aims to offer a comprehensive overview of current and future prospects for mitochondrial-targeted therapies in PD. Ultimately, treating mitochondrial dysfunction holds significant promise for developing disease-modifying PD medications, giving patients hope for better outcomes and improved quality of life.

8.
J Nanobiotechnology ; 22(1): 595, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354476

RESUMO

BACKGROUND: Therapeutic approaches that combine conventional photodynamic therapy (PDT) with gas therapy (GT) to sensitize PDT are an attractive strategy, but the molecular structure design of the complex lacks effective guiding strategies. RESULTS: Herein, we have developed a nanoplatforms Cy-NMNO@SiO2 based on mesoporous silica materials loaded NIR-activatable small-molecule fluorescent probe Cy-NMNO for the synergistic treatment of photodynamic therapy/gas therapy (PDT/GT) in antibacterial and skin cancer. The theoretical calculation results showed that the low dissociation of N-NO in Cy-NMNO enabled it to dissociate effectively under NIR light irradiation, which is conducive to produce Cy and NO. Cy showed better 1O2 generation performance than Cy-NMNO. The cytotoxicity of Cy-NMNO obtained via the synergistic effect of GT and PDT synergistically enhances the effect of photodynamic therapy, thus achieving more effective tumor treatment and sterilization than conventional PDT. Moreover, the nanoplatforms Cy-NMNO@SiO2 realized efficient drug loading and drug delivery. CONCLUSIONS: This work not only offers a promising approach for PDT-GT synergistic drug delivery system, but also provides a valuable reference for the design of its drug molecules.


Assuntos
Nanopartículas , Óxido Nítrico , Fotoquimioterapia , Fármacos Fotossensibilizantes , Dióxido de Silício , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Nanopartículas/química , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Humanos , Dióxido de Silício/química , Animais , Camundongos , Linhagem Celular Tumoral , Raios Infravermelhos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Cutâneas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C
9.
Angew Chem Int Ed Engl ; : e202418081, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363693

RESUMO

Immunotherapy is a promising cancer treatment method for eradicating tumor cells by enhancing the immune response. However, there are several major obstacles to conventional phototherapy-mediated immune responses, including inadequate immunogenicity and immunosuppressive environment. Here, we present a novel photoimmunotherapy modality-the development of membrane-anchoring small molecule inducing plasma membrane rupture (PMR) by NIR-II photo-stimulation, thus evoking cell necrotic death and enhancing antitumor immunotherapy. Our top-performing membrane-anchoring small molecule (CBT-3) exhibits temperature-tunable PMR efficiency, allowing rapid necrotic death in cancer cells at 50 µM dose by using exogenous NIR-II light-mediated mild photothermal effect (1064 nm, 0.6 W cm-2). Further evidence indicated that this gentle therapeutic approach activated inflammatory signaling pathways in cells, enhanced immunogenic cell death, and reshaped the immunosuppressive tumor microenvironment, ultimately promoting systemic antitumor immune responses in vivo. This study represents the first instance of utilizing NIR-II photo-amplified PMR effect based on membrane-anchoring small molecule, providing a novel avenue for advancing cancer photoimmunotherapy.

10.
Chemistry ; : e202403341, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363700

RESUMO

Fluorination is an efficient strategy for improving organic solar cells (OSCs) efficiency, particularly by fluorinating the end group of emerging nonfullerene acceptors. Here, the fluorination effect was investigated by using small molecule donors with fluorine-free (SBz) and fluorinated (SBz-F) end groups, paired with the emerging nonfullerene acceptor Y6. Interestingly and unexpectedly, fluorination of the end group negatively affects OSCs efficiency, with fluorine-free SBz:Y6 OSCs achieving a higher power conversion efficiency (PCE) of 11.05% compared to the fluorine-containing SBz-F:Y6 blends (PCE = 9.61%). Analysis of space-charge limited currents reveals lower and unbalanced hole/electron mobility in SBz-F:Y6 compared to the SBz:Y6 blends. These findings are further supported by charge recombination dynamics and donor-acceptor miscibility analyses.

11.
Heliyon ; 10(18): e37263, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39309860

RESUMO

Gastric cancer is a prevalent and highly lethal malignancy that poses substantial challenges to healthcare systems globally. Owing to its often asymptomatic nature in early stages, diagnosis frequently occurs at advanced stages when surgical intervention is no longer a viable option, forcing most patients to rely on nonsurgical treatments such as chemotherapy, targeted therapies, and emerging immunotherapies. Unfortunately, the therapeutic response rates for these treatments are suboptimal, and even among responders, the eventual development of drug resistance remains a significant clinical hurdle. Signal transducer and activator of transcription 3 (STAT3) is a widely expressed cellular protein that plays crucial roles in regulating cellular processes such as growth, metabolism, and immune function. Aberrant activation of the STAT3 pathway has been implicated in the initiation, progression, and therapeutic resistance of several cancers, with gastric cancer being particularly affected. Dysregulated STAT3 signaling not only drives tumorigenesis but also facilitates the development of resistance to chemotherapy and targeted therapies, as well as promotes metastatic dissemination. In this study, we explored the critical role of the STAT3 signaling cascade in the pathogenesis of gastric cancer, its contribution to drug resistance, and its involvement in the metastatic process. Furthermore, we assess recent advances in the development of STAT3 inhibitors and their potential application as therapeutic agents in the treatment of gastric cancer. This work provides a comprehensive overview of the current understanding of STAT3 in gastric cancer and offers a foundation for future research aimed at improving therapeutic outcomes in this challenging disease.

12.
Trends Biochem Sci ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39277450

RESUMO

Immune checkpoint blockade (ICB) therapies, which block inhibitory receptors on T cells, can be efficacious in reinvigorating dysfunctional T cell responses. However, most cancers do not respond to these therapies and even in those that respond, tumors can acquire resistance. New strategies are needed to rescue and recruit T cell responses across patient populations and disease states. In this review, we define mechanisms of T cell dysfunction, focusing on key transcription factor (TF) networks. We discuss the complex and sometimes contradictory roles of core TFs in both T cell function and dysfunction. Finally, we review strategies to target TFs using small molecule modulators, which represent a challenging but highly promising opportunity to tune the T cell response toward sustained immunity.

13.
Bioorg Med Chem Lett ; 112: 129939, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39218407

RESUMO

Autophagy is a catabolic process that was described to play a critical role in advanced stages of cancer, wherein it maintains tumor cell homeostasis and growth by supplying nutrients. Autophagy is also described to support alternative cellular trafficking pathways, providing a non-canonical autophagy-dependent inflammatory cytokine secretion mechanism. Therefore, autophagy inhibitors have high potential in the treatment of cancer and acute inflammation. In our study, we identified compound 1 as an inhibitor of the ATG12-ATG3 protein-protein interaction. We focused on the systematic modification of the original hit 1, a casein kinase 2 (CK2) inhibitor, to find potent disruptors of ATG12-ATG3 protein-protein interaction. A systematic modification of the hit structure led us to a wide plethora of compounds that maintain its ATG12-ATG3 inhibitory activity, which could act as a viable starting point to design new compounds with diverse therapeutic applications.


Assuntos
Proteínas Relacionadas à Autofagia , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Humanos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Ligação Proteica , Estrutura Molecular , Autofagia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo
15.
ACS Chem Neurosci ; 15(19): 3496-3512, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39292558

RESUMO

Amyloid-ß (Aß1-42) peptides aggregated into plaques deposited in the brain are the main hallmark of Alzheimer's disease (AD), a social and economic burden worldwide. In this context, insoluble Aß1-42 fibrils are the main components of plaques. The recent trials that used approved AD drugs show that they can remove the fibrils from AD patients' brains, but they did not halt the course of the disease. Mounting evidence envisages that the soluble Aß1-42 oligomers' interactions with the neuronal membrane trigger higher cell death than Aß1-42 fibril interactions. Developing a compound that can alleviate the oligomer's toxicity is one of the most demanding tasks for curing the disease. We performed two molecular dynamics (MD) simulations in an explicit solvent model. In the first case, 55-µs of multiscale all-atom (AA)/coarse-grained (CG) MD simulations were carried out to decipher the impact of a previously described small anti-Aß molecule, termed M30 (2-octahydroisoquinolin-2(1H)-ylethanamine), on an Aß1-42 tetramer structure in close contact with a DMPC bilayer. In the second case, 15-µs AA/CG MD simulations were performed to rationalize the dynamics between Aß1-42 and Aß1-42-M30 tetramer complexes embedded in DMPC. On the membrane bilayer, we found that the Aß1-42 tetramer penetrates the bilayer surface due to unrestricted conformational flexibility and many contacts with the membrane phosphate groups. In contrast, no Aß1-42-M30 tetramer penetration was observed during the entire course of the simulation. In the case of the membrane-embedded Aß1-42 tetramer, the integrity of the bottom bilayer leaflet was severely affected by the interactions between the negatively charged phosphate groups and the positively charged residues of the Aß1-42 tetramer, resulting in a deep tetramer penetration into the bilayer hydrophobic region. These contacts were not observed in the case of the membrane-embedded Aß1-42-M30 tetramer. It was noted that M30 molecules bind to Aß1-42 tetramer through hydrogen bonds, resulting in a conformational stable Aß1-42-M30 complex. The associated complex has reduced conformational changes and an enhanced rigidity that prevents the tetramer dissociation by interfering with the tetramer-membrane contacts. Our findings suggest that the M30 molecules could bind to Aß1-42 tetramer resulting in a rigid structure, and that such complexes do not significantly perturb the membrane bilayer organization. These observations support the in vitro and in vivo experimental evidence that the M30 molecules prevent synaptotocity, improving AD-affected mice memory.


Assuntos
Peptídeos beta-Amiloides , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo
16.
Mol Ther Nucleic Acids ; 35(3): 102303, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39281703

RESUMO

Mature microRNAs (miRNAs) are short, single-stranded RNAs that bind to target mRNAs and induce translational repression and gene silencing. Many miRNAs discovered in animals have been implicated in diseases and have recently been pursued as therapeutic targets. However, conventional pharmacological screening for candidate small-molecule drugs can be time-consuming and labor-intensive. Therefore, developing a computational program to assist mature miRNA-targeted drug discovery in silico is desirable. Our previous work (https://doi.org/10.1002/advs.201903451) revealed that the unique functional loops formed during Argonaute-mediated miRNA-mRNA interactions have stable structural characteristics and may serve as potential targets for small-molecule drug discovery. Developing drugs specifically targeting disease-related mature miRNAs and their target mRNAs would avoid affecting unrelated ones. Here, we present SMTRI, a convolutional neural network-based approach for efficiently predicting small molecules that target RNA secondary structural motifs formed by interactions between miRNAs and their target mRNAs. Measured on three additional testing sets, SMTRI outperformed state-of-the-art algorithms by 12.9%-30.3% in AUC and 2.0%-18.4% in accuracy. Moreover, four case studies on the published experimentally validated RNA-targeted small molecules also revealed the reliability of SMTRI.

17.
ACS Appl Mater Interfaces ; 16(40): 53333-53342, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39344970

RESUMO

In this work, three alkoxy-substituted quinoxaline core-based small-molecule acceptors (BQO-F, BQDO-F, and BQDO-Cl) are developed to elucidate the impact of ethoxy substituents on the physicochemical and photoelectric properties. Comparative analysis reveals that dialkoxy-substituted BQDO-F has a more planar molecular skeleton, a red-shifted absorption spectrum, upshifted energy levels, stronger crystallinity, and reduced energetic disorder compared to the monoalkoxy-substituted BQO-F. Although the replacement of fluorine atoms with chlorine atoms on the end-capped units of BQDO-F leads to a bathochromically shifted absorption spectrum, the resulting molecule BQDO-Cl shows worse π-π packing order compared to BQDO-F. Benefiting from the more favorable active layer morphology and improved carrier dynamics, the PBDB-T:BQDO-F-based organic solar cell achieves a much higher power conversion efficiency (PCE) of 16.41% compared to that of 14.48% obtained in the BQO-F-based device. In comparison with the BQDO-F-based device, the higher voltage loss of the BQDO-Cl-based device results in a lower PCE of 15.89%. The results clarify the effects of ethoxy substituents and end-capped substitutions of quinoxaline core-based small-molecule acceptors on efficient organic solar cells.

18.
bioRxiv ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39345358

RESUMO

Vertebrate jaw development is coordinated by highly conserved ligand-receptor systems such as the peptide ligand Endothelin 1 (Edn1) and Endothelin receptor type A (Ednra), which are required for patterning of lower jaw structures. The Edn1/Ednra signaling pathway establishes the identity of lower jaw progenitor cells by regulating expression of numerous patterning genes, but the intracellular signaling mechanisms linking receptor activation to gene regulation remain poorly understood. As a first step towards elucidating this mechanism, we examined the function of the Gq/11 family of Gα subunits in zebrafish using pharmacological inhibition and genetic ablation of Gq/11 activity and transgenic induction of a constitutively active Gq protein in edn1 -/- embryos. Genetic loss of Gq/11 activity fully recapitulated the edn1 -/- phenotype, with genes encoding G11 being most essential. Furthermore, inducing Gq activity in edn1 -/- embryos not only restored Edn1/Ednra-dependent jaw structures and gene expression signatures but also caused homeosis of the upper jaw structure into a lower jaw-like structure. These results indicate that Gq/11 is necessary and sufficient to mediate the lower jaw patterning mechanism for Ednra in zebrafish.

19.
Skin Res Technol ; 30(9): e70042, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39233331

RESUMO

BACKGROUND: Value analysis of a small-molecule fluorescent probe for methylation detection in different cervical lesions. MATERIALS AND METHODS: (1) The grayscale values of distinct lesion tissues were remarkably distinct among the four groups (p < 0.05). The comparison of the grayscale value between the two groups showed that the CA group noticeably exceeded the LSIL and cervicitis groups, and the HSIL group was apparently higher than the LSIL and cervicitis groups (p < 0.05); (2) The mean grayscale values of the enrolled subjects were calculated with 55.21 as the midline, with >55.21 as positive and ≤55.21 as negative. RESULTS: The results showed that the positive rate of the cervicitis group was 0.00%, the LSIL group 67.74%, the HSIL group 83.33%, and the CA group 100.00%. The results among the four groups were notably distinct (p < 0.05); (3) The comparison among DAPI, probe, bright, and merged images of cervicitis, LSIL, HSIL, and CA indicated that different cervical lesions were with quite various stains. CONCLUSION: The grayscale value, positive rate, and stained picture of distinct cervical lesions were remarkably different. The small-molecule fluorescent probe has a good value in differentiating cervical lesions and can be considered for popularization and application.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Corantes Fluorescentes , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Adulto , Pessoa de Meia-Idade , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Idoso , Sensibilidade e Especificidade , Cervicite Uterina/metabolismo , Displasia do Colo do Útero/diagnóstico
20.
Regul Toxicol Pharmacol ; 153: 105709, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39343352

RESUMO

Accurately determining the mutagenicity of small-molecule N-nitrosamine drug impurities and nitrosamine drug substance-related impurities (NDSRIs) is critical to identifying mutagenic and cancer hazards. In the current study we have evaluated several approaches for enhancing assay sensitivity for evaluating the mutagenicity of N-nitrosamines in the bacterial reverse mutagenicity (Ames) test. Preincubation assays were conducted using five activation conditions: no exogenous metabolic activation and metabolic activation mixes employing both 10% and 30% liver S9 from hamsters and rats pretreated with inducers of enzymatic activity. In addition, preincubations were conducted for both 60 min and 30 min. These test variables were evaluated by testing 12 small-molecule N-nitrosamines and 17 NDSRIs for mutagenicity in Salmonella typhimurium tester strains TA98, TA100, TA1535, and TA1537, and Escherichia coli strain WP2 uvrA (pKM101). Eighteen of the 29 N-nitrosamine test substances tested positive under one or more of the testing conditions and all 18 positives could be detected by using tester strains TA1535 and WP2 uvrA (pKM101), preincubations of 30 min, and S9 mixes containing 30% hamster liver S9. In general, the conditions under which NDSRIs were mutagenic were similar to those found for small-molecule N-nitrosamines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...