RESUMO
Satellite remote sensing is currently an established, effective, and constantly used tool and methodology for monitoring agriculture and fertilisation. At the same time, in recent years, the need for the detection of livestock manure and digestate spreading on the soil is emerging, and the development of spectral indices and classification processes based on satellite multispectral data acquisitions is growing. However, the application of such indicators is still underutilised and, given the polluting impact of livestock manure and digestate on soil, groundwater, and air, an in-depth study is needed to improve the monitoring of this practice. Additionally, this paper aims at exposing a new spectral index capable of detecting the land affected by livestock manure and digestate spreading. This indicator was created by studying the spectral response of bare soil and livestock manure and digestate, using Copernicus Sentinel-2 MSI satellite acquisitions and ancillary datasets (e.g., soil moisture, precipitation, regional thematic maps). In particular, time series of multispectral satellite acquisitions and ancillary data were analysed, covering a survey period of 13 months between February 2022 and February 2023. As no previous indications on fertilisation practices are available, the proposed approach consists of investigating a broad-spectrum area, without investigations of specific test sites. A large area of approximately 236,344 hectares covering three provinces of the Emilia-Romagna Region (Italy) was therefore examined. A series of ground truth points were also collected for assessing accuracy by filling in the confusion matrix. Based on the definition of the spectral index, a value of the latter greater than three provides the most conservative threshold for detecting livestock manure and digestate spreading with an accuracy of 62.53%. Such results are robust to variations in the spectral response of the soil. On the basis of these very encouraging results, it is considered plausible that the proposed index could improve the techniques for detecting the spreading of livestock manure and digestate on bare ground, classifying the areas themselves with a notable saving of energy compared to the current investigation methodologies directly on the ground.
RESUMO
Soil degradation, marked by declining organic matter, threatens global food security. The impact of brewer's spent yeast (BSY) on clay and sand was analysed at varying application rates to assess its effectiveness in improving soil quality. A randomized complete block design with three replicates was employed. One kilogram of soil were mixed with BSY at application rates of 2 t/ha and 5 t/ha. The samples were incubated at 26 °C for 5 months with daily watering. We analysed pH, total nitrogen, organic carbon, total phosphorus, and electrical conductivity (EC); microbial activity (total heterotrophic bacteria, actinobacteria, and fungi) and soil enzyme activity (dehydrogenase, catalase, protease). BSY application improved soil quality, particularly in clay. Clay showed increased in pH, EC, N and C. BSY significantly boosted microbial populations (bacteria, fungi) in clay with a lesser effect in sand. Enzyme activity and a fertility index also improved in BSY-treated clay, while sand displayed increased activity of a different enzyme. Results suggest BSY holds promise as an organic fertilizer, especially for clay soils. Further research is needed to optimize application, understand long-term effects, and evaluate economic feasibility and social acceptance. This study contributes to the search for sustainable, local solutions to improve soil health and agricultural practices.
Assuntos
Microbiologia do Solo , Solo , Solo/química , Nitrogênio/análise , Fertilizantes/análise , Concentração de Íons de Hidrogênio , Argila/química , Fósforo/análise , Cerveja , Carbono/análise , Carbono/química , Fungos , Bactérias , Areia , Agricultura/métodos , Condutividade ElétricaRESUMO
Sewage sludge is an ever-increasing by-product of the wastewater treatment process frequently used as a soil fertiliser. To control its quality and prevent any possible hazardous impact of fertilisation, some mandatory limits of heavy metal content have been established by the European Commission (Sewage Sludge Directive). However, since the implementation of the limits, new emerging contaminants have been reported worldwide. Regardless of the wastewater treatment process, sewage sludge contains antibiotics, antibiotic-resistant bacteria and antibiotic resistance genes, which can be released into the environment through its land application. Such a practice may even boost the dissemination and further development of antibiotic resistance phenomenon - already a global problem challenging modern medicine. Due to the growing pharmaceutical pollution in the environment, the time is ripe to assess the risk for the human and environmental health of sewage sludge land application in the context of antibiotic resistance spread. In this review we present the current knowledge in the field and we emphasise the necessity for more studies.
Assuntos
Antibacterianos/análise , Resistência Microbiana a Medicamentos , Fertilizantes/microbiologia , Esgotos , Poluentes do Solo/análise , Solo/química , Resistência Microbiana a Medicamentos/genética , Fertilizantes/análise , Humanos , Metais Pesados/análise , Medição de Risco , Esgotos/química , Esgotos/microbiologia , Águas Residuárias/químicaRESUMO
Leafy vegetables have a relatively high potential for Cd uptake and translocation, and are thus considered Cd accumulators. For this reason, leaves and roots of lettuce (Lactuca sativa L.) and endive (Cichorium endivia L.) plants, grown on different agricultural soils in Campania region (southern Italy), subjected to different fertilisation treatments (unfertilisation, compost amendment and mineral fertilisation), were analysed for Cd concentrations. Moreover, to clarify if the highest concentrations found are linked to older and inedible or to younger and edible leaves, external and internal endive leaves were separately analysed. All the leafy vegetables analysed showed on average 2-fold higher Cd concentrations in leaves than in roots. Leaf Cd concentrations in both lettuce and endive plants significantly differed among fertilisation treatments, with values highest in the plants grown on mineral fertilised soils. Apart from the soil fertilisation treatments, however, Cd leaf concentrations were often higher (up to 4-fold) than the threshold deduced by the EU 420/2011 Regulation, although the plants grew on unpolluted soils. Anyway, external leaves of endive plants showed significantly higher concentrations than internal leaves (in some cases the values were 3-fold higher), partly reassuring on the consumption of the younger leaves. Moreover, this study points out two major drawbacks in the Italian and European regulatory frameworks: (1) metal concentration (as total and/or available fraction) limits in agricultural soils are lacking; (2) metal concentration thresholds (currently existing only for Cd and Pb in crops) reported in the EU 420/2011 Regulation, expressed on the fresh weight basis rather than on the dry weight basis, appear not suitable.