Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
1.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1599-1607, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39235018

RESUMO

Effective microorganisms (EM) might alleviate deterioration of soil environmental quality and yield decline of pepper (Capsicum annuum) caused by continuous replanting and imbalanced fertilizer application in Xinjiang. We investigated the effects of applying EM microbial agent on the growth of pepper plants, yield, soil nutrient content, soil enzyme activity, and rhizosphere eukaryotic community. The results showed that the application of EM microbial agent increased plant height, stem diameter, leaf length, leaf width and root length by 22.6%, 35.3%, 33.3%, 29.7% and 15.1%, respectively. It also increased fruit width, individual fruit weight, and yield by 5.3%, 42.9%, and 74.7%, respectively. After the application of EM microbial agent, the levels of soil available nitrogen increased by 10.2% and 5.8% during the flowering and maturity stages, respectively. Similarly, available phosphorus increased by 10.4% and 13.4%, respectively. The soil sucrase activity was increased by 40.7%, 14.6%, and 9.3% during the seedling, flowering, and maturity stages, respectively. Urease activity was also increased by 7.9%, 10.2%, and 11.5%, respectively. Furthermore, the application of EM microbial agent increased soil peroxidase activity by 16.8% and 44.6% at flowering and maturity stages, respectively. The application of microbial agent significantly altered the ß-diversity of the rhizosphere eukaryotic community in pepper plants. Specifically, microbial agent increased the relative abundances of populations belonging to Enchytraeus and Sminthurides genera, which could contribute to soil improvement and nutrient cycling. Compared to the CK, the relative abundance of pathogenic microorganisms including Olpidium and Aplanochytrium genera decreased by 98.0% and 89.3%, and the relative abundance of the Verticillium decreased to 0. These results demonstrated that EM microbial agent could increase soil nutrient content, enhance soil enzyme activity, and reduce soil pathogenic fungi in the pepper cultivation areas of Xinjiang, thus achieving beneficial effects on pepper growth and fruit yield.


Assuntos
Capsicum , Rizosfera , Microbiologia do Solo , Capsicum/crescimento & desenvolvimento , Capsicum/microbiologia , China , Solo/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo
2.
BMC Plant Biol ; 24(1): 837, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242495

RESUMO

BACKGROUND: The expansion of bamboo forests increases environmental heterogeneity in tea plantation ecosystems, affecting soil properties and microbial communities. Understanding these impacts is essential for developing sustainable bamboo management and maintaining ecological balance in tea plantations. METHODS: We studied the effect of the continuous expansion of Pleioblastus amarus into tea plantations, by establishing five plot types: pure P. amarus forest area (BF), P. amarus forest interface area (BA), mixed forest interface area (MA), mixed forest center area (TB), and pure tea plantation area (TF). We conducted a comprehensive analysis of soil chemical properties and utilized Illumina sequencing to profile microbial community composition and diversity, emphasizing their responses to bamboo expansion. RESULTS: (1) Bamboo expansion significantly raised soil pH and enhanced levels of organic matter, nitrogen, and phosphorus, particularly noticeable in BA and MA sites. In the TB sites, improvements in soil nutrients were statistically indistinguishable from those in pure tea plantation areas. (2) Continuous bamboo expansion led to significant changes in soil bacterial diversity, especially noticeable between BA and TF sites, while fungal diversity was unaffected. (3) Bamboo expansion substantially altered the composition of less abundant bacterial and fungal communities, which proved more sensitive to changes in soil chemical properties. CONCLUSION: The expansion of bamboo forests causes significant alterations in soil pH and nutrient characteristics, impacting the diversity and composition of soil bacteria in tea plantations. However, as expansion progresses, its long-term beneficial impact on soil quality in tea plantations appears limited.


Assuntos
Microbiologia do Solo , Solo , Solo/química , Concentração de Íons de Hidrogênio , Bactérias/genética , Bactérias/classificação , Microbiota , Nitrogênio/análise , Nitrogênio/metabolismo , Camellia sinensis/microbiologia , Camellia sinensis/crescimento & desenvolvimento , Florestas , Nutrientes/análise , Poaceae/crescimento & desenvolvimento , Fósforo/análise
3.
Sci Rep ; 14(1): 21265, 2024 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261650

RESUMO

The ecological function of biological crusts in arid and semi-arid areas is of great importance. Bacteria, as a crucial microbial group in biological crusts, play a key role in the formation, nutrient cycling, and regulation of these crusts. However, the succession of biological crusts and the diversity of bacterial communities, along with key environmental factors in the Loess Plateau's hilly and gully areas, remain unclear. This study investigated soil bacterial abundance and diversity in bare soil (BS), alga-lichen mixed crust (MC), and alga-lichen mixed crust subsoil (MCS) using high-throughput sequencing methods. It explored the relationship between the bacterial community in biological crusts and key environmental factors. The results indicated that the Chao1, Shannon index, and phylogenetic diversity of bacteria significantly increased with the succession of biological crusts. There were notable differences in the community composition and structure of bacteria at different stages of crust development, with Rubrobacteria and Cyanobacteriia dominating in MCS. Effective phosphorus, available potassium, nitrogen, pH, and total organic carbon were identified as key environmental factors affecting soil bacterial communities. In summary, the succession of biological crusts alters soil physicochemical characteristics and creates different ecological niches for bacterial communities. Soil nutrients and pH play a crucial role in the selection of bacterial species and the shaping of bacterial communities in the Loess Plateau's hilly and gully areas.


Assuntos
Bactérias , Nutrientes , Microbiologia do Solo , Solo , China , Solo/química , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Nutrientes/análise , Filogenia , Biodiversidade , Nitrogênio/análise , Nitrogênio/metabolismo , Microbiota , Fósforo/análise , Fósforo/metabolismo , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética
4.
Plants (Basel) ; 13(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39273930

RESUMO

Straw return has important impacts on black soil protection, food security, and environmental protection. One year of straw return (S1) reduces rice yield and increases greenhouse gas (GHG) emissions. However, the effects of successive years of straw return on rice yield, soil nutrients, and GHG emissions in the northeast rice region are still unclear. Therefore, we conducted four successive years of straw return (S4) in a positional experiment to investigate the effects of different years of straw return on rice yield, soil nutrients, and GHG emissions in the northeast rice region. The experimental treatments included the following: no straw return (S0), a year of straw return (S1), two successive years of straw return (S2), three successive years of straw return (S3), and four successive years of straw return (S4). Compared with S1, the rice yields of S2, S3, and S4 increased by 10.89%, 15.46%, and 16.98%, respectively. But only S4 increased by 4.64% compared to S0, while other treatments were lower than S0. S4 increased panicles per m2 and spikelets per panicle by 9.34% and 8.93%, respectively, compared to S1. Panicles per m2 decreased by 8.06% at S4 compared to S0, while spikelets per panicle increased by 13.23%. Compared with S0, the soil organic carbon, total nitrogen, NH4+-N, NO3--N, available phosphorus, and available potassium of S4 increased by 11.68%, 10.15%, 24.62%, 21.38%, 12.33%, and 13.35%, respectively. Successive years of rice straw return decreased GHG intensity (GHGI). Compared with S1, the GHGI of S4, S3, and S2 decreased by 16.2%, 11.84%, and 9.36%, respectively. Thus, S4 increased rice yield and soil nutrients, reducing GHGI.

5.
Plants (Basel) ; 13(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39273952

RESUMO

The process and function that underlie the assembly of root-associated microbiomes may be strongly linked to the survival strategy of plants. However, the assembly and functional changes of root-associated microbial communities in different desert plants in natural desert ecosystems are still unclear. Thus, we studied the microbial communities and diversity of root endosphere (RE), rhizosphere soil (RS), and bulk soil (BS) among three representative desert plants (Alhagi sparsifolia, Tamarix ramosissima, and Calligonum caput-medusae) in three Xinjiang desert regions {Taklimakan (CL), Gurbantünggüt (MSW), and Kumtag (TLF)} in China. This study found that the soil properties {electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (TN) and phosphorus (TP), available nitrogen (AN) and phosphorus (AP)} of C. caput-medusae were significantly lower than those of A. sparsifolia and T. ramosissima, while the root nutrients (TN and TP) of A. sparsifolia were significantly higher compared to C. caput-medusae and T. ramosissima. The beta diversity of bacteria and fungi (RE) among the three desert plants was significantly different. The common OTU numbers of bacteria and fungi in three compartments (RE, RS, and BS) of the three desert plants were ranked as RS > BS > RE. The bacterial and fungal (RE) Shannon and Simpson indexes of C. caput-medusae were significantly lower as compared to those of A. sparsifolia and T. ramosissima. Additionally, bacterial and fungal (RE and RS) node numbers and average degree of C. caput-medusae were lower than those found in A. sparsifolia and T. ramosissima. Root and soil nutrients collectively contributed to the composition of root-associated bacterial (RE, 12.4%; RS, 10.6%; BS, 16.6%) and fungal communities (RE, 34.3%; RS, 1.5%; BS, 17.7%). These findings demonstrate variations in the bacterial and fungal populations across different plant species with distinct compartments (RE, RS, and BS) in arid environments. More importantly, the study highlights how much soil and plant nutrients contribute to root-associated microbial communities.

6.
Sci Rep ; 14(1): 20377, 2024 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223290

RESUMO

Portable X-ray Fluorescence probe (pXRF) is a tool used to measure many elements quickly and efficiently in soil with minimal sample preparation. Although this sensing technique has been widely used to determine total elemental concentrations, it has not been calibrated for plant-available nutrient predictions. We evaluated the potential of using pXRF for fast plant-available nutrient quantification. Two experiments were conducted in soils treated with two types of biochars to obtain a practical range of soil pH (5.5 - 8.0) and organic carbon (2.0 - 5.5%). Biochars applied were derived from switchgrass (SGB) and poultry litter (PLB). The first experiment received biochars at application rates up to 8% (w/w) and had no plants. The second experiment had up to 4% of SGB or PLB planted with ryegrass (Lolium perenne). Linear regression (LR), polynomial regression (PolR), power regression (PowR), and stepwise multiple linear regression (SMLR) were the models tested. Regardless of the extraction method, phosphorus (P) showed a strong relationship between pXRF and several laboratory extraction methods; however, K prediction via pXRF was sensitive to the plant factor. The optimum soil available-P corresponding to the maximum P uptake in plant tissues can be assessed with pXRF. The LR was inconsistent for calcium (Ca), sulfur (S), and copper (Cu) and non-significant for magnesium (Mg), iron (Fe), and zinc (Zn). Our results showed that pXRF is applicable to estimate P availability in soils receiving organic amendments. More evaluations are needed with diverse soil types to confirm the findings before using pXRF for fertilizer recommendation.


Assuntos
Carvão Vegetal , Solo , Espectrometria por Raios X , Solo/química , Carvão Vegetal/química , Espectrometria por Raios X/métodos , Nutrientes/análise , Fósforo/análise , Lolium/química , Lolium/metabolismo , Plantas/química , Plantas/metabolismo
7.
Plants (Basel) ; 13(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39339586

RESUMO

Tillage practices significantly influence crop yield and soil quality. This study investigated the impact of rotary tillage (RT) and deep tillage (DT) on soil properties, microbial diversity, and melon (Cucumis melo L.) root growth and yield. RT involved breaking up the topsoil to a depth of 15 cm using a rotary tiller, while DT employed a rotary tiller followed by a moldboard plow to turn the soil layer over to a depth of 35 cm. The melon variety "Nasimi" was used as the material. Our findings revealed a remarkable response of soil phosphorus to tillage practices. High-throughput sequencing results revealed a significant impact of tillage practices on the soil fungal composition, richness, and diversity but little impact on the bacterial communities. Compared to RT, DT markedly enhanced melon root length, root surface area, root volume, and mean root diameter by 47.42%, 56.70%, 58.83%, and 27.28%, respectively. Additionally, DT treatments significantly increased melon yield (53.46%) compared to RT. The results indicate that DT improves soil nutrient availability, affects soil fungal community characteristics, and optimizes root distribution in soil, thereby improving melon yield. The findings offer valuable theoretical insights for the implementation of effective tillage practices in open-field melon cultivation.

8.
Plants (Basel) ; 13(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39339634

RESUMO

Plant-growth-promoting rhizobacteria (PGPR) play an important role in plant growth and rhizosphere soil. In order to evaluate the effects of PGPR strains on tea plant growth and the rhizosphere soil microenvironment, 38 PGPR strains belonging to the phyla Proteobacteria with different growth-promoting properties were isolated from the rhizosphere soil of tea plants. Among them, two PGPR strains with the best growth-promoting properties were then selected for the root irrigation. The PGPR treatment groups had a higher Chlorophyll (Chl) concentration in the eighth leaf of tea plants and significantly promoted the plant height and major soil elements. There were significant differences in microbial diversity and metabolite profiles in the rhizosphere between different experimental groups. PGPR improved the diversity of beneficial rhizosphere microorganisms and enhanced the root metabolites through the interaction between PGPR and tea plants. The results of this research are helpful for understanding the relationship between PGPR strains, tea plant growing, and rhizosphere soil microenvironment improvement. Moreover, they could be used as guidance to develop environmentally friendly biofertilizers with the selected PGPR instead of chemical fertilizers for tea plants.

9.
Plants (Basel) ; 13(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39204756

RESUMO

The ecological stoichiometric characteristics of soil elements have greatly enhanced our understanding of the circulation of soil nutrients. However, there is limited knowledge regarding the alteration of carbon, nitrogen, and phosphorus stoichiometric ratios in deep soil after afforestation. To examine the variations in stoichiometric ratios of soil elements with different vegetation types, restoration times, and soil depths, we collected soil samples from grassland, Caragana korshinskii shrubland, and Picea asperata forestland at different stand ages (10a, 25a, and 40a) in Xining City, which is located on the Loess Plateau. Our results showed that, at 25a, the carbon-to-nitrogen (C:N) and carbon-to-phosphorus (C:P) ratios were significantly higher in the grassland soil than under other vegetation types, whereas the nitrogen-to-phosphorus (N:P) ratio had no significant difference among the three vegetation types. At 40a, the ratios of soil C:N, C:P, and N:P in the shrubland were the highest. With the increasing of the restoration time, the ratios of soil C:N, C:P, and N:P in grassland with 25a became higher than for 40a or 10a. The ratios in the shrubland were highest at 40a, followed by 25a and then 10a, while the ratios in the forestland showed no significant difference. At 40a, the soil C:N, C:P, and N:P ratios of shrubland were highest at the soil depth of 40-100 cm. The soil C:N, C:P, and N:P ratios showed positive correlations with soil ammonium nitrogen and nitrate nitrogen, and the soil N:P ratios showed a negative correlation with soil available phosphorus. Plant diversity significantly influenced the soil stoichiometric ratio of the upper soil layer. In the upper soil layer (0-40 cm), species richness showed a positive correlation with soil C:N, C:P, and N:P ratios, and the Margalef index exhibited a positive correlation with soil C:N and C:P ratios. The results of this study indicate that the stoichiometric ratio and nutrient availability of Caragana korshinskii shrubland were the highest over time. Therefore, these findings can be served as a valuable reference for local revegetation and ecological restoration.

10.
Plants (Basel) ; 13(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39204761

RESUMO

Soil salinity represents a significant factor affecting agricultural productivity and crop quality. The present study was conducted to investigate the effects of soil conditioner (SC) comprising halotolerant microorganisms on the soil fertility, yield, rice quality, and the physicochemical and structural properties of starch in hybrid rice under saline conditions. The experimental treatments were composed of two high-quality hybrid rice varieties, i.e., 'Y Liangyou 957' (YLY957) and Jing Liangyou 534 (JLY534), and two soil amendment treatments, i.e., the application of SC at control levels and 2250 kg hm-2, or 'CK and SC', respectively. The crop was subjected to a mixture of fresh and sea water (EC 11 dS/m). The results demonstrated that the application of SC significantly enhanced the rice yield under salt stress conditions owing to an increase in the number of grains per panicle. Furthermore, SC was found to be effective in improving the organic matter and soil nutrient content. Furthermore, the application of SC resulted in an improvement in antioxidant defense, higher leaf SPAD values, and greater crop biomass, as well as the translocation of photo-assimilates at the heading stage. The application of SC not only improved the milling and appearance quality but also enhanced the taste value of rice by increasing the amylose and reducing the protein content. Furthermore, the application of SC also decreased the indentations on the surfaces of starch granules and cracks on the edges of the granules. The rice varieties subjected to SC exhibited excellent pasting properties, characterized by reduced proportions of amylopectin short chains and a lower gelatinization temperature and enthalpy of gelatinization. Overall, these findings serve to reinforce the efficacy of soil conditioner as a valuable tool to improve rice productivity and sustainability with improved rice grain quality under saline conditions.

11.
Carbon Balance Manag ; 19(1): 28, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210203

RESUMO

Forest conversion to agricultural land has been shown to deplete soil organic carbon (SOC) and soil total nitrogen (STN) stocks. However, research on how soil properties respond to forest conversion to shifting cultivation has produced conflicting results. The conflicting findings suggest that the agricultural system may influence the response of SOC and STN to forest conversion to agriculture, depending on the presence of vegetative cover throughout the year. Due to the unique characteristics of montane evergreen forests (MEF) and banana plantations (BP), SOC and STN response to MEF conversion to BP may differ from existing models. Nevertheless, research on how soil properties are affected by MEF conversion to BP is scarce globally. In order to fill this research gap, the goal of this study was to evaluate how much deforestation for BP affects SOC, STN, and soil quality by analysing these soil parameters in MEF and BP fields down to 1-m depth, using standard profile-based procedures. Contrary to the specified hypothesis that SOC and STN losses would be restricted to the upper 20-cm soil layer, SOC losses were extended to the 40-cm depth layer and STN losses to the 60-cm depth layer. The soils lost 18.56 Mg ha - 1 (37%) of SOC from the upper 20 cm and 33.15 Mg ha - 1 (37%) from the upper 40 cm, following MEF conversion to BP. In terms of STN, the upper 20, 40, and 60 cm lost 2.98 (43%), 6.62 (47%), and 8.30 Mg ha - 1 (44%), respectively. Following MEF conversion to BP, the SOC stratification ratio decreased by 49%, implying a decline in soil quality. Massive exportation of nutrients, reduced C inputs due to complete removal of the arboreal component and crop residues, the erodibility of the soils on the study area's steep hillslopes, and the potential for banana plantations to increase throughfall kinetic energy, and splash erosion through canopy dripping are thought to be the leading causes of SOC and STN losses. More research is needed to identify the extent to which each cause influences SOC and STN losses.

12.
J Hazard Mater ; 478: 135535, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39153301

RESUMO

Here we investigated the effects of three types of microplastics (MPs), i.e., PS (P), ABS (B), PVC (V), and each with additive (MPAs) (PA, BA, and VA), on soil health, microbial community, and plant growth in two acidic and slightly alkaline soils. Incubation experiment revealed that although MPs and MPAs consistently stimulated soil nutrients and heavy metals (e.g., Mn, Cu) in weakly alkaline soils, only BA and VA led to increase in soil nutrients and heavy metals in acidic soils. This suggests distinct response patterns in the two soils depending on their initial pH. Concerning microorganisms, MPs and MPAs reduced the assembly degree of bacteria in acidic soils, with a reduction of Chloroflexi and Acidobacteriota but an increase of WPS-2 in VA. Culture experiment showed consistent positive or negative responses in radish seed germination, roots, and antioxidant activity across MPs and MPAs types in both soils, while the responses of seed heavy metals (e.g., Cr, Cd) were consistent in acidic soils but dependent on MPs and MPAs types in alkaline soils. Therefore, our study strongly suggests that the effects of MPs on soil-microbial-plant systems were highly dependent on initial soil characteristics and the types of MPs with plastic additives.


Assuntos
Metais Pesados , Microbiota , Microplásticos , Raphanus , Microbiologia do Solo , Poluentes do Solo , Solo , Raphanus/efeitos dos fármacos , Raphanus/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Poluentes do Solo/toxicidade , Microplásticos/toxicidade , Metais Pesados/toxicidade , Microbiota/efeitos dos fármacos , Solo/química , Germinação/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Agricultura , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento
13.
Front Microbiol ; 15: 1449922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113843

RESUMO

Introduction: Currently, straw biodegradation and soil improvement in rice-mushroom rotation systems have attracted much attention. However, there is still a lack of studies on the effects of rice-mushroom rotation on yield, soil properties and microbial succession. Methods: In this study, no treatment (CK), green manure return (GM) and rice straw return (RS) were used as controls to fully evaluate the effect of Stropharia rugosoannulata cultivation substrate return (SRS) on soil properties and microorganisms. Results: The results indicated that rice yield, soil nutrient (organic matter, organic carbon, total nitrogen, available nitrogen and available potassium) and soil enzyme (urease, saccharase, lignin peroxidase and laccase) activities had positive responses to the rice-mushroom rotation. At the interannual level, microbial diversity varied significantly among treatments, with the rice-mushroom rotation significantly increasing the relative alpha diversity index of soil bacteria and enriching beneficial microbial communities such as Rhizobium, Bacillus and Trichoderma for rice growth. Soil nutrients and enzymatic activities were significantly correlated with microbial communities during rice-mushroom rotation. The fungal-bacterial co-occurrence networks were modular, and Latescibacterota, Chloroflexi, Gemmatimonadota and Patescibacteria were closely related to the accumulation of nutrients in the soil. The structural equation model (SEM) showed that fungal diversity responded more to changes in soil nutrients than did bacterial diversity. Discussion: Overall, the rice-mushroom rotation model improved soil nutrients and rice yields, enriched beneficial microorganisms and maintained microbial diversity. This study provides new insights into the use of S. rugosoannulata cultivation substrates in the sustainable development of agroecosystems.

14.
Sci Total Environ ; 951: 175754, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39182786

RESUMO

Terracing is widely recognized as an effective strategy for mitigating soil erosion and preserving soil quality. This study aimed to evaluate the variations in soil aggregate C, N, and P composition, as well as the soil quality index (SQI), in subtropical citrus orchards of different plantation ages (PA) and across various terrace positions (TP). Surface soil samples (0-20 cm) were collected from four TP categories: terrace wall (TW), slub ditch (SD), under grove (UG), and between grove (BG), across varying PA (5, 15, 25, 35, and 45 years). The results showed the C, N, and P concentrations in most soil aggregates, along with the SQI of the slub ditch and under grove, increased significantly with plantation age. Compared to the 5-year-old plantations, the SQI of the slub ditch and under grove increased by 84 % and 66 % at 45 years, respectively. The aggregate stability and SQI of BG generally trended upwards but declined at 25 and 35 years. By 45 years, the SQI of the terrace wall was significantly lower than that of other positions, being 58 %, 61 %, and 39 % lower compared to the slub ditch, under grove, and between grove, respectively. Additionally, the C/P and N/P ratios of the terrace wall were higher than those of other positions, indicating phosphorus limitation in TW. Path analysis revealed plantation ages had greater effects on SQI. Aggregate stability and soil properties showed significant positive impacts on SQI. Overall, as plantation age increased, the differences in SQI among the slub ditch, under grove, and between grove decreased, while the terrace wall exhibited the weakest erosion resistance. Therefore, efforts should be made to restore the ecological function of the terrace wall, such as by colonizing it with moss. Additionally, reasonable tillage plans, including appropriate fertilization, should be formulated to enhance orchard soil quality.


Assuntos
Agricultura , Citrus , Solo , Citrus/crescimento & desenvolvimento , Solo/química , Agricultura/métodos , Fósforo/análise , Monitoramento Ambiental , Nitrogênio/análise , China , Carbono/análise
15.
Sci Rep ; 14(1): 20022, 2024 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198681

RESUMO

Different vegetation restoration methods have improved soil quality to varying degrees. This study, focused on the forest-grassland-desert transition zone in the Hebei-Inner Mongolia border region, and employed a systematic grid sampling method to establish fixed monitoring plots in the Saihanba Mechanized Forest Farm and the Ulan Buh Grassland. The differences in soil quality evolution across various vegetation restoration methods under the same climatic and soil historical conditions were analyzed, elucidating the roles of these vegetation restoration methods in degraded forest ecosystems, with the aim of providing a reference for ecological restoration under similar land conditions. This study used a grid method to establish sample points in the forest-grassland-desert transitional zone and assessed five methods of vegetation restoration sites: artificial forest composed of native species of Larix principis-rupprechtii (FL), artificial forest composed of exotic Pinus sylvestris var. mongolica (FP), natural secondary broad-leaved forest (FN), open grassland (GO), and enclosed grassland (GC). The differences in soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkaline hydrolysis nitrogen (AN), rapidly available phosphorus (AP) and rapidly available potassium (AK) among the different vegetation restoration sites were compared via variance analysis, and the soil quality index (SQI) was calculated to assess the soil quality at the sample points. The SOC, TN, and AN contents of forest soil were significantly greater than those of grassland, and the TN, TP, AN, AK, and SOC contents of FL, FN, and GC were significantly greater than those of FP and GO. Among them, the TN, TP, and SOC contents were the highest in the FL, reaching 2.74, 0.39, and 47.27 g kg-1, respectively. In terms of ecological stoichiometric characteristics, the average N:P ratio in the study area was 6.68, indicating a serious lack of N in the study area. Among the different types of restoration sites, the effect was stronger in the FP than in the FL, and the TN and AN contents were only 1.48 g kg-1 and 116.69 mg kg-1, respectively. The SQI in the FL was not significantly different from that in the FN or GC, but it was significantly greater than that in the FP and GO. These findings indicate that native tree species restoration in degraded forest ecosystems significantly improved soil quality, while the introduction of exotic tree species for afforestation had a minimal effect on improving soil quality.


Assuntos
Florestas , Solo , Árvores , Solo/química , Nitrogênio/análise , Conservação dos Recursos Naturais/métodos , Fósforo/análise , Ecossistema , Carbono/análise , Pradaria , China
16.
Interface Focus ; 14(4): 20230078, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39165392

RESUMO

Anthropogenic activities around local villages in mesic savanna landscapes of West Africa have resulted in soil improvement and forest establishment outside their climatic zones. Such unique 'forest islands' have been reported to provide ecosystem services including biodiversity conservation. However, the science underpinning their formations is limitedly studied. In 2015 and with funding support from the Royal Society-DFID (now FCDO), we set out to investigate the biogeochemistry of the forest islands in comparison with adjacent natural savanna and farmlands across 11 locations in Burkina Faso, Ghana and Nigeria. Our results showed that the forest islands do not differ significantly from the adjoining ecosystems in soil mineralogy implying that their formation was anthropogenically driven. We observed greater soil organic carbon and nutrient distributions in the forest islands, which also had more stable macro (>500 µm) and meso-aggregates (500-250 µm) than the adjoining agricultural lands. We found that soil micro-aggregate (250-53 µm) stability was climate (precipitation) driven in the West African ecosystems while meso- and macro-aggregate stability was land-use driven. In one of the unique forest islands we studied in the Mole National Park of Ghana, we found its mineral-associated organic carbon over 40% greater than the adjoining natural savanna with potential implications for the achievement of the global initiative of the '4p1000' in West Africa. We conclude that the North-South-South research collaboration has established clearly, the science underlying the age-long West African forest island phenomenon and has, among many successes, led to capacity building of young scientists driving cutting-edge research in climate change adaptation and food systems transformation in the sub-region.

17.
Sci Rep ; 14(1): 18669, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134660

RESUMO

γ-polyglutamic acid (γ-PGA), as an environmentally sustainable material, is extensive applied in agriculture for enhancing water and fertilizer utilization efficiency, augmenting crop yield, and ameliorating soil conditions. However, the effect of γ-PGA in conjunction with sesame cake fertilizer on the soil environment remains uncertain.The aim of this study is to investigate the effect of γ-PGA on soil nutrients, water use efficiency (WUE) and nitrogen use efficiency (NUE), and maize yield across various levels of sesame cake fertilizer. Additionally, the study seeks to identify the optimal ratio to establish a theoretical and practical foundation for sustainable agricultural development and the promotion of ecological agriculture. Through field experiments, nine treatments were established, comprising three levels of sesame cake fertilizer application rates (B1 = 900 kg/hm2 for low fertility, B2 = 1100 kg/hm2 for medium fertility, and B3 = 1300 kg/hm2 for high fertility) and three levels of γ-PGA application rates (R1 = 200 kg/hm2, R2 = 400 kg/hm2, and R3 = 600 kg/hm2). The results can be outlined as follows: (1) When γ-PGA application rate increased, total nitrogen (TN) exhibited a synergistic effect under B1 treatment, but an antagonistic effect under B2 and B3 treatments. At the 6-leaf stage (V6), 12-leaf stage (V12), and tasseling stage (VT), available phosphorus (AP) exhibited antagonistic effects. However, at the filling stage (R2) and maturity stage (R6), AP in B1 and B2 treatments at various depths underwent partial transformation into a synergistic effect. The levels of available potassium exhibited a notable antagonistic effect, leading to a decrease in harvest index (HI). B2 treatment demonstrated superior results compared to the B1 and B3 treatments, with the highest levels observed under B2R1 treatment; (2) TN content in the 0-40 cm soil layer increased during the filling period, and it was uniformly distributed in the 40-60 cm soil layer. When the soil AP was located in the 0-60 cm soil layer, there was an increase in AP content during the mature period. Following the tasseling period, different treatments exhibited varying patterns of increase in response to the presence of potassium within the 0-60 cm soil layer. Consequently, in cases where the sesame cake fertilizer content is low, the interaction between γ-PGA can compensate for the deficiency of fertilizer, thereby enhancing water and nitrogen utilization efficiency. The optimal fertilization strategy for enhancing soil nutrient distribution, WUE and NUE, and yield is proposed to be the application of 1100 kg/hm2 sesame cake fertilizer and 200 kg/hm2 γ-PGA.

18.
Front Plant Sci ; 15: 1430027, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170792

RESUMO

Specific leaf area (SLA) and leaf dry matter content (LDMC) are key leaf functional traits often used to reflect plant resource utilization strategies and predict plant responses to environmental changes. In general, grassland plants at different elevations exhibit varying survival strategies. However, it remains unclear how grassland plants adapt to changes in elevation and their driving factors. To address this issue, we utilized SLA and LDMC data of grassland plants from 223 study sites at different elevations in China, along with climate and soil data, to investigate variations in resource utilization strategies of grassland plants along different elevational gradients and their dominant influencing factors employing linear mixed-effects models, variance partitioning method, piecewise Structural Equation Modeling, etc. The results show that with increasing elevation, SLA significantly decreases, and LDMC significantly increases (P < 0.001). This indicates different resource utilization strategies of grassland plants across elevation gradients, transitioning from a "faster investment-return" at lower elevations to a "slower investment-return" at higher elevations. Across different elevation gradients, climatic factors are the main factors affecting grassland plant resource utilization strategies, with soil nutrient factors also playing a non-negligible coordinating role. Among these, mean annual precipitation and hottest month mean temperature are key climatic factors influencing SLA of grassland plants, explaining 28.94% and 23.88% of SLA variation, respectively. The key factors affecting LDMC of grassland plants are mainly hottest month mean temperature and soil phosphorus content, with relative importance of 24.24% and 20.27%, respectively. Additionally, the direct effect of elevation on grassland plant resource utilization strategies is greater than its indirect effect (through influencing climatic and soil nutrient factors). These findings emphasize the substantive impact of elevation on grassland plant resource utilization strategies and have important ecological value for grassland management and protection under global change.

19.
Front Microbiol ; 15: 1404633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027108

RESUMO

Overgrazing and climate change are the main causes of grassland degradation, and grazing exclusion is one of the most common measures for restoring degraded grasslands worldwide. Soil fungi can respond rapidly to environmental stresses, but the response of different grassland types to grazing control has not been uniformly determined. Three grassland types (temperate desert, temperate steppe grassland, and mountain meadow) that were closed for grazing exclusion for 9 years were used to study the effects of grazing exclusion on soil nutrients as well as fungal community structure in the three grassland types. The results showed that (1) in the 0-5 cm soil layer, grazing exclusion significantly affected the soil water content of the three grassland types (P < 0.05), and the pH, total phosphorous (TP), and nitrogen-to-phosphorous ratio (N/P) changed significantly in all three grassland types (P < 0.05). Significant changes in soil nutrients in the 5-10 cm soil layer after grazing exclusion occurred in the mountain meadow grasslands (P < 0.05), but not in the temperate desert and temperate steppe grasslands. (2) For the different grassland types, Archaeorhizomycetes was most abundant in the montane meadows, and Dothideomycetes was most abundant in the temperate desert grasslands and was significantly more abundant than in the remaining two grassland types (P < 0.05). Grazing exclusion led to insignificant changes in the dominant soil fungal phyla and α diversity, but significant changes in the ß diversity of soil fungi (P < 0.05). (3) Grazing exclusion areas have higher mean clustering coefficients and modularity classes than grazing areas. In particular, the highest modularity class is found in temperate steppe grassland grazing exclusion areas. (4) We also found that pH is the main driving factor affecting soil fungal community structure, that plant coverage is a key environmental factor affecting soil community composition, and that grazing exclusion indirectly affects soil fungal communities by affecting soil nutrients. The above results suggest that grazing exclusion may regulate microbial ecological processes by changing the soil fungal ß diversity in the three grassland types. Grazing exclusion is not conducive to the recovery of soil nutrients in areas with mountain grassland but improves the stability of soil fungi in temperate steppe grassland. Therefore, the type of degraded grassland should be considered when formulating suitable restoration programmes when grazing exclusion measures are implemented. The results of this study provide new insights into the response of soil fungal communities to grazing exclusion, providing a theoretical basis for the management of degraded grassland restoration.

20.
Front Microbiol ; 15: 1415726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044951

RESUMO

Introduction: In recent years, the frequency and intensity of anthropogenic wildfires have drastically increased, significantly altering terrestrial ecosystems worldwide. These fires not only devastate vegetative cover but also impact soil environments and microbial communities, affecting ecosystem structure and function. The extent to which fire severity, soil depth, and their interaction influence these effects remains unclear, particularly in Pinus tabulaeformis forests. Methods: This study investigated the impact of wildfire intensity and soil stratification on soil physicochemical properties and microbial diversity within P. tabulaeformis forests in North China. Soil samples were collected from different fire severity zones (Control, Light, Moderate, High) and depths (topsoil: 0-10 cm; subsoil: 10-20 cm). Analyses included measurements of soil pH, organic carbon (SOC), total nitrogen (TN), and other nutrients. Microbial diversity was assessed using 16S rRNA gene sequencing. Results: Our findings revealed significant variations in soil pH, SOC, TN, and other nutrients with fire severity and soil depth, profoundly affecting microbial community composition and diversity. Soil pH emerged as a critical determinant, closely linked to microbial α-diversity and community structure. We found that fire severity significantly altered soil pH (p = 0.001), pointing to noteworthy changes in acidity linked to varying severity levels. Topsoil microbial communities primarily differentiated between burned and unburned conditions, whereas subsoil layers showed more pronounced effects of fire severity on microbial structures. Analysis of bacterial phyla across different fire severity levels and soil depths revealed significant shifts in microbial communities. Proteobacteria consistently dominated across all conditions, indicating strong resilience, while Acidobacteriota and Actinobacteriota showed increased abundances in high-severity and light/moderate-severity areas, respectively. Verrucomicrobiota were more prevalent in control samples and decreased significantly in fire-impacted soils. Chloroflexi and Bacteroidota displayed increased abundance in moderate and high-severity areas, respectively. Correlation analyses illustrated significant relationships between soil environmental factors and dominant bacterial phyla. Soil organic carbon (SOC) showed positive correlations with total nitrogen (TN) and alkaline hydrolysable nitrogen (AN). Soil pH exhibited a negative correlation with multiple soil environmental factors. Soil pH and available phosphorus (AP) significantly influenced the abundance of the phylum Myxococcota. Soil water content (WC) significantly affected the abundances of Acidobacteriota and Actinobacteriota. Additionally, ammonium nitrogen (NH4 +-N) and nitrate nitrogen (NO3 --N) jointly and significantly impacted the abundance of the phylum Chloroflexi. Discussion: This study highlights the significant long-term effects of anthropogenic wildfires on soil microenvironment heterogeneity and bacterial community structure in P. tabulaeformis forests in North China, 6 years post-fire. Our findings demonstrate that fire severity significantly influences soil pH, which in turn affects soil nutrient dynamics and enhances microbial diversity. We observed notable shifts in the abundance of dominant bacterial phyla, emphasizing the critical role of soil pH and nutrient availability in shaping microbial communities. The results underscore the importance of soil stratification, as different soil layers showed varying responses to fire severity, highlighting the need for tailored management strategies. Future research should focus on long-term monitoring to further elucidate the temporal dynamics of soil microbial recovery and nutrient cycling following wildfires. Studies investigating the roles of specific microbial taxa in ecosystem resilience and their functional contributions under varying fire regimes will provide deeper insights. Additionally, exploring soil amendments and management practices aimed at optimizing pH and nutrient availability could enhance post-fire recovery processes, supporting sustainable ecosystem recovery and resilience.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...