Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.511
Filtrar
1.
Plant Physiol Biochem ; 215: 108976, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39094482

RESUMO

Despite intense research towards the understanding of abiotic stress adaptation in tomato, the physiological adjustments and transcriptome modulation induced by combined salt and low nitrate (low N) conditions remain largely unknown. Here, three traditional tomato genotypes were grown under long-term single and combined stresses throughout a complete growth cycle. Physiological, molecular, and growth measurements showed extensive morphophysiological modifications under combined stress compared to the control, and single stress conditions, resulting in the highest penalty in yield and fruit size. The mRNA sequencing performed on both roots and leaves of genotype TRPO0040 indicated that the transcriptomic signature in leaves under combined stress conditions largely overlapped that of the low N treatment, whereas root transcriptomes were highly sensitive to salt stress. Differentially expressed genes were functionally interpreted using GO and KEGG enrichment analysis, which confirmed the stress and the tissue-specific changes. We also disclosed a set of genes underlying the specific response to combined conditions, including ribosome components and nitrate transporters, in leaves, and several genes involved in transport and response to stress in roots. Altogether, our results provide a comprehensive understanding of above- and below-ground physiological and molecular responses of tomato to salt stress and low N treatment, alone or in combination.

2.
BMC Genom Data ; 25(1): 65, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956460

RESUMO

OBJECTIVE: The fresh-market tomato (Solanum lycopersicum) is bred for direct human consumption. It is selected for specific traits to meet market demands and production systems, and unique genetic variations underlying fresh-market tomato yields have been recently identified. However, DNA sequence variant-trait associations are not yet fully examined even for major traits. To provide a rich genome sequence resource for various genetics and breeding goals for fresh-market tomato traits, we report whole genome sequence data of a pool of contemporary U.S. fresh-market tomatoes. DATA DESCRIPTION: Eighty-one tomatoes were nominated by academic tomato breeding programs in the U.S. Of the 81 tomatoes, 68 were contemporary fresh-market tomatoes, whereas the remaining 13 were relevant fresh-market tomato breeding and germplasm accessions. Whole genome sequencing (WGS) of the 81 tomatoes was conducted using the Illumina next-generation sequencing technology. The polymerase chain reaction (PCR)-free, paired-end sequencing libraries were sequenced on an average depth per sequenced base of 24 × for each tomato. This data note enhances visibility and potential for use of the more diverse, freely accessible whole genome sequence data of contemporary fresh-market tomatoes.


Assuntos
Genoma de Planta , Solanum lycopersicum , Sequenciamento Completo do Genoma , Solanum lycopersicum/genética , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala
3.
Plant Cell Environ ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953693

RESUMO

To understand whether domestication had an impact on susceptibility and responsiveness to arbuscular mycorrhizal fungi (AMF) in tomato (Solanum lycopersicum), we investigated two tomato cultivars ("M82" and "Moneymaker") and a panel of wild relatives including S. neorickii, S. habrochaites and S. pennellii encompassing the whole Lycopersicon clade. Most genotypes revealed good AM colonisation levels when inoculated with the AMF Funneliformis mosseae. By contrast, both S. pennellii accessions analysed showed a very low colonisation, but with normal arbuscule morphology, and a negative response in terms of root and shoot biomass. This behaviour was independent of fungal identity and environmental conditions. Genomic and transcriptomic analyses revealed in S. pennellii the lack of genes identified within QTLs for AM colonisation, a limited transcriptional reprogramming upon mycorrhization and a differential regulation of strigolactones and AM-related genes compared to tomato. Donor plants experiments indicated that the AMF could represent a cost for S. pennellii: F. mosseae could extensively colonise the root only when it was part of a mycorrhizal network, but a higher mycorrhization led to a higher inhibition of plant growth. These results suggest that genetics and functional traits of S. pennellii are responsible for the limited extent of AMF colonisation.

4.
Front Plant Sci ; 15: 1394223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966147

RESUMO

Salt stress is one of the dominant abiotic stress conditions that cause severe damage to plant growth and, in turn, limiting crop productivity. It is therefore crucial to understand the molecular mechanism underlying plant root responses to high salinity as such knowledge will aid in efforts to develop salt-tolerant crops. Alternative splicing (AS) of precursor RNA is one of the important RNA processing steps that regulate gene expression and proteome diversity, and, consequently, many physiological and biochemical processes in plants, including responses to abiotic stresses like salt stress. In the current study, we utilized high-throughput RNA-sequencing to analyze the changes in the transcriptome and characterize AS landscape during the early response of tomato root to salt stress. Under salt stress conditions, 10,588 genes were found to be differentially expressed, including those involved in hormone signaling transduction, amino acid metabolism, and cell cycle regulation. More than 700 transcription factors (TFs), including members of the MYB, bHLH, and WRKY families, potentially regulated tomato root response to salt stress. AS events were found to be greatly enhanced under salt stress, where exon skipping was the most prevalent event. There were 3709 genes identified as differentially alternatively spliced (DAS), the most prominent of which were serine/threonine protein kinase, pentatricopeptide repeat (PPR)-containing protein, E3 ubiquitin-protein ligase. More than 100 DEGs were implicated in splicing and spliceosome assembly, which may regulate salt-responsive AS events in tomato roots. This study uncovers the stimulation of AS during tomato root response to salt stress and provides a valuable resource of salt-responsive genes for future studies to improve tomato salt tolerance.

5.
Heliyon ; 10(11): e32545, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961955

RESUMO

The production and consumption of vegetables, such as tomatoes, have been growing in recent years, due to the combination of several factors, such as market demand, investment in research, education and awareness about health benefits, as well as government incentives and improvements in cultivation technology. The combination of these factors results in an increasing demand for products that offer health benefits, such as tomatoes rich in antioxidants, which help combat free radicals in cells. To maintain most of the nutritional and sensory properties characteristic of the fresh product, it is important to identify the parameters that will help in maintenance. Thus, the study aims to characterize the influence of different packages and storage times with the variables of tomato. The experiment examined the storage of two tomato derivatives (atomized tomato and chips) using various packaging types and storage durations. It utilized a factorial design (2 × 4) with an extra control treatment, comprising 3 replications. Packaging options included low-density polyethylene plastic bags and laminated plastic bags with aluminum foil, while storage durations ranged from 10 to 40 days. Parameters related to color (°Hue and chroma), flavor (pH, titratable acidity, soluble solids, and maturation index), and bioactive compounds (lycopene and ß-carotene) of two tomato derivatives (atomized tomato and chips) were analyzed. After the analyzes, it was observed that the transparent package was the one that allowed the best conservation among the studied variables of the atomized tomato derivative, the same happened for the laminated packaging for the derivative chips. Regarding storage time, 20 days showed the best results regarding the conservation of flavor and bioactive compounds.

6.
Plants (Basel) ; 13(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39065456

RESUMO

Tomato (Solanum lycopersicum L.) plants, wild type Ailsa Craig, and carotenoid mutant tangerine that accumulates prolycopene instead of all-trans-lycopene were exposed to a combined treatment by low light and low temperature for 5 days. The ability of plants to recover from the stress after development for 3 days at control conditions was followed as well. The suffered oxidative stress was evaluated by the extent of pigment content, lipid peroxidation, membrane stability, and H2O2 generation. The level of MDA content under combined treatment in tangerine implies that the mutant demonstrates lower sensitivity to stress in comparison with Ailsa Craig. The oxidative protective strategy of plants was estimated by following the antioxidant and antiradical activity of phenolic metabolites, including anthocyanins, as well as the activities of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT). Presented results revealed that the oxidative stress was much stronger expressed after exposure of both types of plants to low light combined with low temperature compared to that after treatment with only low light. The most significant antioxidant protection was provided by phenolic substances, including anthocyanins. The lower sensitivity of tangerine plants to low light can be attributed to the higher activity of the antioxidant enzyme CAT.

7.
Plants (Basel) ; 13(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065531

RESUMO

The need to increase agricultural production to feed a steadily growing population may clash with the more environmentally friendly but less efficient production methods required. Therefore, it is important to try to reduce the use of chemical inputs without compromising production. In this scenario, natural biostimulants have become one of the most sought-after and researched technologies. In the present study, the results of a greenhouse experiment on hydroponic tomatoes (Solanum lycopersicum L.) are presented, which involved comparing the use of ordinary NPK fertilizer (Cerbero®) with the use of NPK fertilizers enriched with 0.5% protein hydrolysate of plant origin (Cerbero Green®) at both standard (100%) and reduced (70%) fertilization rates. The results highlight how the use of Cerbero Green® fertilizers improves the production performance of tomatoes. More specifically, they show that the use of Cerbero Green® leads to higher marketable yields, especially under reducing fertilizer use, ensuring a positive net change in profit for the grower. In addition, carbon footprint analysis has revealed that the use of Cerbero Green® reduces the environmental impact of hydroponic tomato growing practices by up to 8%. The observed higher yield of hydroponically grown tomatoes even with reduced fertilization rates underlines once again the key role of natural biostimulants in increasing both the economic and environmental sustainability of horticultural production.

8.
Proc Natl Acad Sci U S A ; 121(28): e2400737121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968127

RESUMO

In recent years, the exploration of genome three-dimensional (3D) conformation has yielded profound insights into the regulation of gene expression and cellular functions in both animals and plants. While animals exhibit a characteristic genome topology defined by topologically associating domains (TADs), plants display similar features with a more diverse conformation across species. Employing advanced high-throughput sequencing and microscopy techniques, we investigated the landscape of 26 histone modifications and RNA polymerase II distribution in tomato (Solanum lycopersicum). Our study unveiled a rich and nuanced epigenetic landscape, shedding light on distinct chromatin states associated with heterochromatin formation and gene silencing. Moreover, we elucidated the intricate interplay between these chromatin states and the overall topology of the genome. Employing a genetic approach, we delved into the role of the histone modification H3K9ac in genome topology. Notably, our investigation revealed that the ectopic deposition of this chromatin mark triggered a reorganization of the 3D chromatin structure, defining different TAD-like borders. Our work emphasizes the critical role of H3K9ac in shaping the topology of the tomato genome, providing valuable insights into the epigenetic landscape of this agriculturally significant crop species.


Assuntos
Epigenoma , Histonas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Histonas/metabolismo , Histonas/genética , Epigênese Genética , Genoma de Planta , Cromatina/metabolismo , Cromatina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Heterocromatina/metabolismo , Heterocromatina/genética , Código das Histonas/genética
9.
Sci Total Environ ; 948: 174860, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038668

RESUMO

The Mediterranean basin is highly susceptible to climate change, with soil salinization and the increase in average temperatures being two of the main factors affecting crop productivity in this region. Following our previous studies on describing the detrimental effects of heat and salt stress co-exposure on tomato plants, this study aimed to understand if substrate supplementation with a combination of arbuscular mycorrhizal fungi (AMF) and biochar could mitigate the negative consequences of these stresses. Upon 21 days of exposure, stressed tomato plants grown under supplemented substrates showed increased tolerance to heat (42 °C for 4 h/day), salt (100 mM NaCl), and their combination, presenting increased biomass and flowering rate. The beneficial effects of AMF and biochar were associated with a better ionic balance (i.e. lower sodium accumulation and higher uptake of calcium and magnesium) and increased photosynthetic efficiency. Indeed, these plants presented higher chlorophyll content and improved CO2 assimilation rates. Biochemical data further supported that tomato plants grown with AMF and biochar were capable of efficiently modulating their defence pathways, evidenced by the accumulation of proline, ascorbate, and glutathione, coupled with a lower dependency on energy-costly enzymatic antioxidant players. In summary, the obtained data strongly point towards a beneficial role of combined AMF and biochar as sustainable tools to improve plant growth and development under a climate change scenario, where soil salinization and heat peaks often occur together.

10.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39062938

RESUMO

Implementing sustainable crop protection practices is crucial to protect global harvests and ensure high-quality food supplies. While priming is an established method in seed production for the fortification of plants against various stresses, it is not yet a standard practice in transplant cultivation. Thus, we evaluated the long-term effects of thermopriming-a heat-based priming technique-on the growth, development, and fruit yield of tomato plants. Following a recovery period of about six weeks for thermoprimed plants without stress inducers, we subjected them to subsequent salt stress to ascertain the persistence of the priming effects. Additionally, we compared the efficacy of thermopriming with benzothiadiazole (BTH), a chemical elicitor, in enhancing plant resilience to abiotic stress. While BTH application negatively impacted both plant growth and fruit health, thermopriming showed no such adverse effects on these parameters. Instead, thermopriming initially enhanced the plant defense mechanisms by increasing the accumulation of protective phenols and flavonoids in the leaves. Interestingly, while thermopriming did not alter the response to salt stress, it notably strengthened the overall resilience of the plants. Our findings underscore both the potential and temporal constraints of thermopriming memory. Nonetheless, primed plants exhibited temporarily increased stress tolerance, offering a means to safeguard the offspring.


Assuntos
Agricultura , Produtos Agrícolas , Temperatura Alta , Estresse Salino , Solanum lycopersicum , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Estresse Salino/fisiologia , Tiadiazóis/farmacologia , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Frutas/química , Frutas/efeitos dos fármacos
11.
Ecotoxicol Environ Saf ; 282: 116715, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002378

RESUMO

Intercropping with hyperaccumulators can facilitate the safe utilization of cadmium-contaminated soil. However, the effectiveness of this approach is influenced by plant species and varieties, which necessitates research on optimal plant consortia. In this study, 8 tomato varieties (3 cherry tomatoes and 5 common large-fruit tomatoes) were intercropped with Sedum alfredii in a moderately Cd-contaminated vegetable field. The results showed that the Cd concentration in the fruits of common large-fruit tomato varieties under monoculture was 1.03-1.50 mg/kg, while that in the fruits of cherry tomato varieties was 0.67-0.71 mg/kg. After intercropping with S. alfredii, the fruit Cd concentrations of Hangza 501, Hangza 503, and Hangza 108 decreased by 16.42 %, 19.72 %, and 6.76 %, respectively, while those of the other varieties significantly increased, except for those of Hangza 8. In contrast, the shoot Cd concentration of cherry tomatoes was greater than that of large-fruit tomatoes under monoculture. Furthermore, a significant increase in the shoot Cd concentration was noted in the Hangza 501, Hangza 503 and Hangza 603 plants following intercropping. Additionally, intercropping with S. alfredii increased the concentration of soluble sugars in the fruits of Hangza 8, Hangza 501, Hangza 503 and Hangza 603 by 4.66 %, 17.91 %, 10.60 % and 17.88 %, respectively. Intercropping with tomatoes resulted in a decrease in both the biomass and Cd uptake of S. alfredii. Interestingly, the inhibitory effect on S. alfredii was less pronounced when intercropped with cherry tomatoes than when intercropped with large-fruit tomatoes. Among the intercropping treatments, S. alfredii exhibited the greatest total Cd accumulation (0.06 mg/plant) when intercropped with Hangza 503. In conclusion, the cherry tomato variety Hangza 503 was the most suitable for intercropping with S. alfredii and can be used safely for vegetable production and simultaneous phytoremediation of polluted soil. Our findings suggest that strategic selection of tomato varieties can optimize the effectiveness of "phytoextraction coupled with agro-safe production" technology for managing soil Cd concentrations.

12.
Plant Sci ; 347: 112207, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39084492

RESUMO

Carotenoids play a pivotal role in plant. Tagetes erecta, commonly called marigold, has increasing nutritional and economic value due to its high level of carotenoids in flower. However, the functional genes in the carotenoid biosynthesis of T. erecta have not been studied. In this work, three T. erecta varieties with flowers of yellow, yellow-orange and orange color, respectively, were examined for carotenoids composition and corresponding expression profiling of biosynthetic genes at four developmental stages. The results indicated that the varieties with higher lutein content, orange-flower 'Juwang' and yellow-orange 'Taishan', exhibited significant upregulation of genes in the upstream biosynthesis pathway, especially PDS (phytoene desaturase), PSY (phytoene synthase) and ZDS (zeta-carotene desaturase), whereas downstream carotenoid cleavage genes CCD (carotenoid cleavage dioxygenase) were markedly downregulated throughout flower development in the highest lutein containing variety 'Juwang'. Furthermore, marigold TePDS, TePSYS3 and TeZDS were isolated and transformed into tomato. Overexpression of TePDS or TeZDS resulted in the promotion of fruit ripening and accumulation of carotenoids in the transgenic lines. On the other hand, marigold TePSYS3 showed multiple effects, not only on fruit carotenogenesis but also on pigmentation patterns in vegetative tissues and plant growth. Taken together, the variations in expression profiles of the biosynthetic genes contribute to dynamic change in carotenoid levels and diversity of flower coloration in T. erecta. These functional genes of T. erecta were verified in tomato and provide targets for genetic improvement of fruit carotenoids accumulation.

13.
Plant Physiol ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074178

RESUMO

Type 2C protein phosphatases (PP2Cs) constitute a large family in most plant species but relatively few of them have been implicated in immunity. To identify and characterize PP2C phosphatases that affect tomato (Solanum lycopersicum) immunity, we used CRISPR/Cas9 to generate loss-of-function mutations in 11 PP2C-encoding genes whose expression is altered in response to immune elicitors or pathogens. We report that two closely related PP2C phosphatases, Pic3 (PP2C immunity-associated candidate 3) and Pic12, are involved in regulating resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Loss-of-function mutations in Pic3 led to enhanced resistance to Pst in older but not younger leaves, whereas such mutations in Pic12 resulted in enhanced resistance in both older and younger leaves. Overexpression of Pic3 and Pic12 proteins in leaves of Nicotiana benthamiana inhibited resistance to Pst, and this effect was dependent on Pic3/12 phosphatase activity and an N-terminal palmitoylation motif associated with localization to the cell periphery. Pic3, but not Pic12, had a slight negative effect on flagellin-associated reactive oxygen species generation, although their involvement in the response to Pst appeared independent of flagellin. RNA-sequencing analysis of Rio Grande (RG)-PtoR wild-type plants and two independent RG-pic3 mutants revealed that the enhanced disease resistance in RG-pic3 older leaves is associated with increased transcript abundance of multiple defense related genes. RG-pic3/RG-pic12 double mutant plants exhibited stronger disease resistance than RG-pic3 or RG-pic12 single mutants. Together, our results reveal that Pic3 and Pic12 negatively regulate tomato immunity in an additive manner through flagellin-independent pathways.

14.
Plant Physiol Biochem ; 214: 108881, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968842

RESUMO

Seed germination is a critical phase for the life cycle and propagation of higher plants. This study explores the role of SlWRKY37, a WRKY transcription factor in tomato, in modulating seed germination. We discovered that SlWRKY37 expression is markedly downregulated during tomato seed germination. Through CRISPR/Cas9-mediated editing, we demonstrate that SlWRKY37 knockout enhances germination, while its overexpression results in a delay compared to the wild type. Transcriptome analysis revealed 679 up-regulated and 627 down-regulated genes in Slwrky37-CRISPR deletion mutants relative to the wild type. Gene ontology (GO) enrichment analysis indicated these differentially expressed genes are linked to seed dormancy, abscisic acid homeostasis, and protein phosphorylation pathways. Bioinformatics and biochemical assays identified SlABI5-like7 and SlLEA2 as key transcriptional targets of SlWRKY37, integral to tomato seed dormancy regulation. Additionally, SlWRKY37 was found to be post-translationally phosphorylated at Ser65, a modification crucial for its transcriptional activation. Our findings elucidate the regulatory role of SlWRKY37 in seed dormancy, suggesting its potential as a target for gene editing to reduce seed dormancy in tomato breeding programs.


Assuntos
Regulação da Expressão Gênica de Plantas , Germinação , Proteínas de Plantas , Sementes , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Germinação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Dormência de Plantas/genética
15.
Plant Mol Biol ; 114(4): 85, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995464

RESUMO

Phenylpropanoids, a class of specialized metabolites, play crucial roles in plant growth and stress adaptation and include diverse phenolic compounds such as flavonoids. Phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) are essential enzymes functioning at the entry points of general phenylpropanoid biosynthesis and flavonoid biosynthesis, respectively. In Arabidopsis, PAL and CHS are turned over through ubiquitination-dependent proteasomal degradation. Specific kelch domain-containing F-Box (KFB) proteins as components of ubiquitin E3 ligase directly interact with PAL or CHS, leading to polyubiquitinated PAL and CHS, which in turn influences phenylpropanoid and flavonoid production. Although phenylpropanoids are vital for tomato nutritional value and stress responses, the post-translational regulation of PAL and CHS in tomato remains unknown. We identified 31 putative KFB-encoding genes in the tomato genome. Our homology analysis and phylogenetic study predicted four PAL-interacting SlKFBs, while SlKFB18 was identified as the sole candidate for the CHS-interacting KFB. Consistent with their homolog function, the predicted four PAL-interacting SlKFBs function in PAL degradation. Surprisingly, SlKFB18 did not interact with tomato CHS and the overexpression or knocking out of SlKFB18 did not affect phenylpropanoid contents in tomato transgenic lines, suggesting its irreverence with flavonoid metabolism. Our study successfully discovered the post-translational regulatory machinery of PALs in tomato while highlighting the limitation of relying solely on a homology-based approach to predict interacting partners of F-box proteins.


Assuntos
Aciltransferases , Proteínas F-Box , Regulação da Expressão Gênica de Plantas , Fenilalanina Amônia-Liase , Filogenia , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fenilalanina Amônia-Liase/metabolismo , Fenilalanina Amônia-Liase/genética , Aciltransferases/metabolismo , Aciltransferases/genética , Flavonoides/metabolismo , Flavonoides/biossíntese , Plantas Geneticamente Modificadas , Propanóis/metabolismo
16.
Heliyon ; 10(13): e33498, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027518

RESUMO

Molybdenum (Mo) is a crucial microelement for both, humans and plants. The use of agronomic biofortification techniques can be an alternative method to enhance Mo content in vegetables. Concomitantly, arbuscular mycorrhizal fungi (AMF) application is a valuable strategy to enhance plant performances and overcome plant abiotic distresses such as microelement overdose. The aim of this research was to estimate the direct and/or indirect effects of Mo supply at four doses [0.0, 0.5 (standard dose), 2.0 or 4.0 µmol L-1], alone or combined with AMF inoculation, on plant performances. In particular, plant height and first flower truss emission, productive features (total yield, marketable yield and average marketable fruit weight) and fruit qualitative characteristics (fruit dry matter, soluble solids content, titratable acidity, ascorbic acid, lycopene, polyphenol, nitrogen, copper, iron and molybdenum) of an established cherry tomato genotype cultivated in soilless conditions were investigated. Moreover, proline and malondialdehyde concentrations, as well as Mo hazard quotient (HQ) in response to experimental treatments were determined. A split-plot randomized experimental block design with Mo dosages as plots and +AMF or -AMF as sub-plots was adopted. Data revealed that AMF inoculation enhanced marketable yield (+50.0 %), as well as some qualitative traits, such as fruit soluble solids content (SSC) (+9.9 %), ascorbic acid (+7.3 %), polyphenols (+2.3 %), and lycopene (+2.5 %). Molybdenum application significantly increased SSC, polyphenols, fruit Mo concentration (+29.0 % and +100.0 % in plants biofortified with 2.0 and 4.0 µmol Mo L-1 compared to those fertigated with the standard dose, respectively) and proline, whereas it decreased N (-25.0 % and -41.6 % in plants biofortified with 2.0 and 4.0 µmol Mo L-1 compared to those fertigated with the standard dose, respectively). Interestingly, the application of AMF mitigated the detrimental effect of high Mo dosages (2.0 or 4.0 µmol L-1). A pronounced advance in terms of plant height 45 DAT, fruit lycopene concentration and fruit Fe, Cu and Mo concentrations was observed when AMF treatment and Mo dosages (2.0 or 4.0 µmol Mo L-1) were combined. Plants inoculated or not with AMF showed an improvement in the hazard quotient (HQ) in reaction to Mo application. However, the HQ - for a consumption of 200 g day-1 of biofortified cherry tomato - remained within the safety level for human consumption. This study suggests that Mo-implementation (at 2.0 or 4.0 µmol L-1) combined with AMF inoculation could represent a viable cultivation protocol to enhance yield, produce premium quality tomato fruits and, concomitantly, improve Mo dose in human diet. In the light of our findings, further studies on the interaction between AMF and microelements in other vegetable crops are recommended.

17.
Front Plant Sci ; 15: 1411825, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027668

RESUMO

Considering the stricter European regulations for chemical pesticides (e.g. abolishment of the use of chemical soil fumigation products, such as methyl bromide), the need for more sustainable plant protection products is strongly increasing. In this research, Product X, an innovative mixture of bio-nematicidal compounds was developed and evaluated for efficacy. Product X showed a direct nematicidal effect against the root-knot nematode Meloidogyne incognita. In pot trials with tomato plants infected with M. incognita, Product X treatment lead to a significant reduction in nematode-induced gall formation. mRNA-sequencing indicated alterations in phytohormone levels and ROS-metabolism in tomato roots upon treatment with Product X, which was subsequently biochemically validated. Increased levels of abscisic acid and peroxidase activity seem to be the main factors in the response of tomato plants to Product X. Long-term administration of Product X did not yield negative effects on tomato growth or yield. In conclusion, Product X provides a new interesting mix of bio-active compounds in the combat against root-knot nematodes.

18.
Plant J ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032095

RESUMO

Type 2C protein phosphatases (PP2Cs) are emerging as important regulators of plant immune responses, although little is known about how they might impact nucleotide-binding, leucine-rich repeat (NLR)-triggered immunity (NTI). We discovered that expression of the PP2C immunity-associated candidate 14 gene (Pic14) is induced upon activation of the Pto/Prf-mediated NTI response in tomato. Pto/Prf recognizes the effector AvrPto translocated into plant cells by the pathogen Pseudomonas syringae pv. tomato (Pst) and activate a MAPK cascade and other responses which together confer resistance to bacterial speck disease. Pic14 encodes a PP2C with an N-terminal kinase-interacting motif (KIM) and a C-terminal phosphatase domain. Upon inoculation with Pst-AvrPto, Pto/Prf-expressing tomato plants with loss-of-function mutations in Pic14 developed less speck disease, specifically in older leaves, compared to wild-type plants. Transient expression of Pic14 in leaves of Nicotiana benthamiana and tomato inhibited cell death typically induced by Pto/Prf and the MAPK cascade members M3Kα and Mkk2. The cell death-suppressing activity of Pic14 was dependent on the KIM and the catalytic phosphatase domain. Pic14 inhibited M3Kα- and Mkk2-mediated activation of immunity-associated MAPKs and Pic14 was shown to be an active phosphatase that physically interacts with and dephosphorylates Mkk2 in a KIM-dependent manner. Together, our results reveal Pic14 as an important negative regulator of Pto/Prf-triggered immunity by interacting with and dephosphorylating Mkk2.

19.
BMC Plant Biol ; 24(1): 693, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039437

RESUMO

Climate change is one of the biggest challenges to the world at present. Tomato is also suffered from devastating yield loss due to climate change. The domesticated tomato (Solanum lycopersicum) is presumed to be originated from the wild tomato (S. pimpinellifolium). In this study, we compared the climate data of S. pimpinellifollium with the domesticated tomato, predicted the suitable regions of S. pimpinellifollium in China using MaxEnt model and assessed their tolerance to drought stress. We found that the predicted suitable regions of wild tomato are highly consistent with the current cultivated regions of domesticated tomato, suggesting that the habitat demand of domesticated tomato descended largely from its ancestor, hence the habitat information of wild tomato could provide a reference for tomato cultivation. We further predicted suitable regions of wild tomato in the future in China. Finally, we found that while average drought tolerance between wild and domesticated tomato accessions shows no difference, tolerance levels among wild tomato accessions exhibit higher variation, which could be used for future breeding to improve drought resistance. To summarize, our study shows that suitable regions of wild tomato provide insights into domesticated tomato cultivation in China.


Assuntos
Domesticação , Secas , Solanum lycopersicum , Solanum lycopersicum/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , China , Mudança Climática , Ecossistema , Produtos Agrícolas/crescimento & desenvolvimento
20.
Mol Plant Pathol ; 25(7): e13491, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961768

RESUMO

Root-knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode. RKN parasitism is facilitated by the secretion in planta of effector molecules, mostly proteins that hijack host cellular processes. We describe here a conserved RKN-specific effector, effector 12 (EFF12), that is synthesized exclusively in the oesophageal glands of the nematode, and we demonstrate its function in parasitism. In the plant, MiEFF12 localizes to the endoplasmic reticulum (ER). A combination of RNA-sequencing analysis and immunity-suppression bioassays revealed the contribution of MiEFF12 to the modulation of host immunity. Yeast two-hybrid, split luciferase and co-immunoprecipitation approaches identified an essential component of the ER quality control system, the Solanum lycopersicum plant bap-like (PBL), and basic leucine zipper 60 (BZIP60) proteins as host targets of MiEFF12. Finally, silencing the PBL genes in Nicotiana benthamiana decreased susceptibility to Meloidogyne incognita infection. Our results suggest that EFF12 manipulates PBL function to modify plant immune responses to allow parasitism.


Assuntos
Retículo Endoplasmático , Tylenchoidea , Animais , Retículo Endoplasmático/metabolismo , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Imunidade Vegetal , Nicotiana/parasitologia , Nicotiana/imunologia , Nicotiana/genética , Solanum lycopersicum/parasitologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Raízes de Plantas/parasitologia , Raízes de Plantas/imunologia , Interações Hospedeiro-Parasita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...