Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1426584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101034

RESUMO

Sulfur oxidizing bacteria (SOB) play a key role in sulfur cycling in mine tailings impoundment (TI) waters, where sulfur concentrations are typically high. However, our understanding of SOB sulfur cycling via potential S oxidation pathways (sox, rdsr, and S4I) in these globally ubiquitous contexts, remains limited. Here, we identified TI water column SOB community composition, metagenomics derived metabolic repertoires, physicochemistry, and aqueous sulfur concentration and speciation in four Canadian base metal mine, circumneutral-alkaline TIs over four years (2016 - 2019). Identification and examination of genomes from nine SOB genera occurring in these TI waters revealed two pH partitioned, metabolically distinct groups, which differentially influenced acid generation and sulfur speciation. Complete sox (csox) dominant SOB (e.g., Halothiobacillus spp., Thiomonas spp.) drove acidity generation and S2O3 2- consumption via the csox pathway at lower pH (pH ~5 to ~6.5). At circumneutral pH conditions (pH ~6.5 to ~8.5), the presence of non-csox dominant SOB (hosting the incomplete sox, rdsr, and/or other S oxidation reactions; e.g. Thiobacillus spp., Sulfuriferula spp.) were associated with higher [S2O3 2-] and limited acidity generation. The S4I pathway part 1 (tsdA; S2O3 2- to S4O6 2-), was not constrained by pH, while S4I pathway part 2 (S4O6 2- disproportionation via tetH) was limited to Thiobacillus spp. and thus circumneutral pH values. Comparative analysis of low, natural (e.g., hydrothermal vents and sulfur hot springs) and high (e.g., Zn, Cu, Pb/Zn, and Ni tailings) sulfur systems literature data with these TI results, reveals a distinct TI SOB mining microbiome, characterized by elevated abundances of csox dominant SOB, likely sustained by continuous replenishment of sulfur species through tailings or mining impacted water additions. Our results indicate that under the primarily oxic conditions in these systems, S2O3 2- availability plays a key role in determining the dominant sulfur oxidation pathways and associated geochemical and physicochemical outcomes, highlighting the potential for biological management of mining impacted waters via pH and [S2O3 2-] manipulation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38749209

RESUMO

Sox transcription factors are vital in numerous fundamental biological processes. In this study, nine Sox gene family members were discovered in the Ruditapes philippinarum genome, classified into the SoxB1, SoxB2, SoxC, SoxD, SoxE, and SoxF groups, marking the first genome-wide identification of this gene family in R. philippinarum. Analyses of phylogeny, exon-intron structures, and domains bolster the support for their categorization and annotation. Furthermore, transcriptomic analyses across various developmental stages revealed that RpSox4, RpSox5, RpSox9, and RpSox11 were significantly expressed in the D-larval stage. Additionally, investigations into transcriptomes of clams with different shell colors indicated that most sox genes exhibited their highest expression levels in orange clams, followed by zebra, white zebra, and white clams, and the results of transcriptomes analysis in different tissues indicated that 8 Sox genes (except RpSox17) were highly expressed in the mantle tissue. Moreover, qPCR was used to detect the expression of Sox gene in R. philippinarum at different developmental periods, different shell colors and different tissues, and the results showed consistency with those of the transcriptomes. This study's findings lay the groundwork for additional exploration into the role of the Sox gene in melanin production in R. philippinarum shells.


Assuntos
Bivalves , Filogenia , Fatores de Transcrição SOX , Animais , Bivalves/genética , Bivalves/metabolismo , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Transcriptoma , Genoma , Perfilação da Expressão Gênica , Família Multigênica
3.
Biomedicines ; 12(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38672150

RESUMO

Astrocytes are the main homeostatic cells in the central nervous system, with the unique ability to transform from quiescent into a reactive state in response to pathological conditions by reacquiring some precursor properties. This process is known as reactive astrogliosis, a compensatory response that mediates tissue damage and recovery. Although it is well known that SOX transcription factors drive the expression of phenotype-specific genetic programs during neurodevelopment, their roles in mature astrocytes have not been studied extensively. We focused on the transcription factors SOX2 and SOX9, shown to be re-expressed in reactive astrocytes, in order to study the reactivation-related functional properties of astrocytes mediated by those proteins. We performed an initial screening of SOX2 and SOX9 expression after sensorimotor cortex ablation injury in rats and conducted gain-of-function studies in vitro using astrocytes derived from the human NT2/D1 cell line. Our results revealed the direct involvement of SOX2 in the reacquisition of proliferation in mature NT2/D1-derived astrocytes, while SOX9 overexpression increased migratory potential and glutamate uptake in these cells. Our results imply that modulation of SOX gene expression may change the functional properties of astrocytes, which holds promise for the discovery of potential therapeutic targets in the development of novel strategies for tissue regeneration and recovery.

4.
Dev Biol ; 506: 7-19, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995917

RESUMO

The evolutionary forces that allowed species adaptation to different terrestrial environments and led to great diversity in body shape and size required acquisition of innovative strategies of pattern formation during organogenesis. An extreme example is the formation of highly elongated viscera in snakes. What developmental patterning strategies allowed to overcome the space constraints of the snake's body to meet physiological demands? Here we show that the corn snake uses a Sox2-Sox9 developmental tool kit common to other species to generate and shape the lung in two phases. Initially Sox9 was found at low levels at the tip of the primary lung bud during outgrowth and elongation of the bronchial bud, without driving branching programs characteristic of mammalian lungs. Later, Sox9 induction is recapitulated in the formation of an extensive network of radial septae emerging along the elongated bronchial bud that generates the respiratory region. We propose that altogether these represent key patterning events for formation of both the respiratory faveolar and non-respiratory posterior compartments of the snake's lung.


Assuntos
Colubridae , Pulmão , Fatores de Transcrição SOX9 , Animais , Embrião não Mamífero , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Organogênese , Fatores de Transcrição SOX9/metabolismo , Colubridae/crescimento & desenvolvimento , Colubridae/metabolismo
5.
Animals (Basel) ; 13(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37508024

RESUMO

The Sox gene family constitutes transcription factors with a conserved high mobility group box (HMG) that regulate a variety of developmental processes, including sex differentiation, neural, cartilage, and early embryonic development. In this study, we systematically analyzed and characterized the 20 Sox genes from the whole buffalo genome, using comparative genomic and evolutionary analyses. All the buffalo Sox genes were divided into nine sub-groups, and each gene had a specific number of exons and introns, which contributed to different gene structures. Molecular phylogeny revealed more sequence similarity of buffalo Sox genes with those of cattle. Furthermore, evolutionary analysis revealed that the HMG domain remained conserved in the all members of the Sox gene family. Similarly, all the genes are under strong purifying selection pressure; seven segmental duplications occurred from 9.65 to 21.41 million years ago (MYA), and four potential recombination breakpoints were also predicted. Mutational analysis revealed twenty non-synonymous mutations with potential effects on physiological functions, including embryonic development and cell differentiation in the buffalo. The present study provides insights into the genetic architecture of the Sox gene family in buffalo, highlights the significance of mutations, and provides their potential utility for marker-assisted selection for targeted genetic improvement in buffalo.

6.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047365

RESUMO

Glioblastoma (GBM) continues to be the most devastating primary brain malignancy. Despite significant advancements in understanding basic GBM biology and enormous efforts in developing new therapeutic approaches, the prognosis for most GBM patients remains poor with a median survival time of 15 months. Recently, the interplay between the SOX (SRY-related HMG-box) genes and lncRNAs (long non-coding RNAs) has become the focus of GBM research. Both classes of molecules have an aberrant expression in GBM and play essential roles in tumor initiation, progression, therapy resistance, and recurrence. In GBM, SOX and lncRNAs crosstalk through numerous functional axes, some of which are part of the complex transcriptional and epigenetic regulatory mechanisms. This review provides a systematic summary of current literature data on the complex interplay between SOX genes and lncRNAs and represents an effort to underscore the effects of SOX/lncRNA crosstalk on the malignant properties of GBM cells. Furthermore, we highlight the significance of this crosstalk in searching for new biomarkers and therapeutic approaches in GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Glioblastoma/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Encefálicas/metabolismo
7.
Genes (Basel) ; 14(1)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672963

RESUMO

The SOX transcription factor family is pivotal in controlling aspects of development. To identify genotype-phenotype relationships of SOX proteins, we performed a non-biased study of SOX using 1890 open-reading frame and 6667 amino acid sequences in combination with structural dynamics to interpret 3999 gnomAD, 485 ClinVar, 1174 Geno2MP, and 4313 COSMIC human variants. We identified, within the HMG (High Mobility Group)- box, twenty-seven amino acids with changes in multiple SOX proteins annotated to clinical pathologies. These sites were screened through Geno2MP medical phenotypes, revealing novel SOX15 R104G associated with musculature abnormality and SOX8 R159G with intellectual disability. Within gnomAD, SOX18 E137K (rs201931544), found within the HMG box of ~0.8% of Latinx individuals, is associated with seizures and neurological complications, potentially through blood-brain barrier alterations. A total of 56 highly conserved variants were found at sites outside the HMG-box, including several within the SOX2 HMG-box-flanking region with neurological associations, several in the SOX9 dimerization region associated with Campomelic Dysplasia, SOX14 K88R (rs199932938) flanking the HMG box associated with cardiovascular complications within European populations, and SOX7 A379V (rs143587868) within an SOXF conserved far C-terminal domain heterozygous in 0.716% of African individuals with associated eye phenotypes. This SOX data compilation builds a robust genotype-to-phenotype association for a gene family through more robust ortholog data integration.


Assuntos
Proteínas de Grupo de Alta Mobilidade , Fatores de Transcrição SOX , Humanos , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Fatores de Transcrição SOX/genética , Sequência de Aminoácidos , Dimerização , Genótipo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Fatores de Transcrição SOXB2/genética , Fatores de Transcrição SOXB2/metabolismo , Fatores de Transcrição SOXE/genética
8.
Cell Rep ; 40(12): 111370, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130520

RESUMO

Communication in bilaterian nervous systems is mediated by electrical and secreted signals; however, the evolutionary origin and relation of neurons to other secretory cell types has not been elucidated. Here, we use developmental single-cell RNA sequencing in the cnidarian Nematostella vectensis, representing an early evolutionary lineage with a simple nervous system. Validated by transgenics, we demonstrate that neurons, stinging cells, and gland cells arise from a common multipotent progenitor population. We identify the conserved transcription factor gene SoxC as a key upstream regulator of all neuroglandular lineages and demonstrate that SoxC knockdown eliminates both neuronal and secretory cell types. While in vertebrates and many other bilaterians neurogenesis is largely restricted to early developmental stages, we show that in the sea anemone, differentiation of neuroglandular cells is maintained throughout all life stages, and follows the same molecular trajectories from embryo to adulthood, ensuring lifelong homeostasis of neuroglandular cell lineages.


Assuntos
Anêmonas-do-Mar , Transcriptoma , Animais , Linhagem da Célula/genética , Neurogênese/genética , Anêmonas-do-Mar/genética , Fatores de Transcrição/genética , Transcriptoma/genética
9.
Sex Dev ; 16(2-3): 80-91, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35760052

RESUMO

SOX genesare master regulatory genes controlling development and are fundamental to the establishment of sex determination in a multitude of organisms. The discovery of the master sex-determining gene SRY in 1990 was pivotal for the understanding of how testis development is initiated in mammals. With this discovery, an entire family of SOX factors were uncovered that play crucial roles in cell fate decisions during development. The importance of SOX genes in human reproductive development is evident from the various disorders of sex development (DSD) upon loss or overexpression of SOX gene function. Here, we review the roles that SOX genes play in gonad development and their involvement in DSD. We start with an overview of sex determination and differentiation, DSDs, and the SOX gene family and function. We then provide detailed information and discussion on SOX genes that have been implicated in DSDs, both at the gene and regulatory level. These include SRY, SOX9, SOX3, SOX8, and SOX10. This review provides insights on the crucial balance of SOX gene expression levels needed for gonad development and maintenance and how changes in these levels can lead to DSDs.


Assuntos
Transtornos do Desenvolvimento Sexual , Fatores de Transcrição SOX9 , Animais , Humanos , Masculino , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/metabolismo , Processos de Determinação Sexual/genética , Diferenciação Sexual , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Testículo/metabolismo
10.
Elife ; 112022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35029145

RESUMO

The ability to restore lost body parts following traumatic injury is a fascinating area of biology that challenges current understanding of the ontogeny of differentiation. The origin of new cells needed to regenerate lost tissue, and whether they are pluripotent or have de- or trans-differentiated, remains one of the most important open questions . Additionally, it is not known whether developmental gene regulatory networks are reused or whether regeneration specific networks are deployed. Echinoderms, including sea stars, have extensive ability for regeneration, however, the technologies for obtaining transgenic echinoderms are limited and tracking cells involved in regeneration, and thus identifying the cellular sources and potencies has proven challenging. In this study, we develop new transgenic tools to follow the fate of populations of cells in the regenerating larva of the sea star Patiria miniata. We show that the larval serotonergic nervous system can regenerate following decapitation. Using a BAC-transgenesis approach we show that expression of the pan ectodermal marker, sox2, is induced in previously sox2 minus cells , even when cell division is inhibited. sox2+ cells give rise to new sox4+ neural precursors that then proceed along an embryonic neurogenesis pathway to reform the anterior nervous systems. sox2+ cells contribute to only neural and ectoderm lineages, indicating that these progenitors maintain their normal, embryonic lineage restriction. This indicates that sea star larval regeneration uses a combination of existing lineage restricted stem cells, as well as respecification of cells into neural lineages, and at least partial reuse of developmental GRNs to regenerate their nervous system.


Assuntos
Larva/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Regeneração , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Estrelas-do-Mar/fisiologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Redes Reguladoras de Genes , Larva/crescimento & desenvolvimento , Neurogênese
11.
Biotechnol Rep (Amst) ; 30: e00607, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33936955

RESUMO

Common carp (Cyprinus carpio) is a commercial fish species valuable for nutritious components and plays a vital role in human healthy nutrition. The SOX (SRY-related genes systematically characterized by a high-mobility group HMG-box) encoded important gene regulatory proteins, a family of transcription factors found in a broad range of animal taxa and extensively known for its contribution in multiple developmental processes including contribution in sex determination across phyla. In our current study, we initially accomplished a genome-wide analysis to report the SOX gene family in common carp fish based on available genomic sequences of zebrafish retrieved from gene repository databases, we focused on the global identification of the Sox gene family in Common carp among wide range of vertebrates and teleosts based on bioinformatics tools and techniques and explore the evolutionary relationships. In our results, a total of 27 SOX (high-mobility group HMG-box) domain genes were identified in the C. carp genome. The full length sequences of SOX genes ranging from 3496 (SOX6) to 924bp (SOX17b) which coded with putative proteins series from 307 to 509 amino acids and all gene having exon number expect SOX9 and SOX13. All the SOX proteins contained at least one conserved DNA-binding HMG-box domain and two (SOX7 and SOX18) were found C terminal. The Gene ontology revealed SOX proteins maximum involvement is in metabolic process 49.796 %, average in biological regulation 45.188 %, biosynthetic process (19.992 %), regulation of cellular process 39.68, 45.508 % organic substance metabolic process, multicellular organismal process 23.23 %,developmental process 21.74 %, system development 16.59 %, gene expression 16.05 % and 14.337 % of RNA metabolic process. Chromosomal location and syntanic analysis show all SOX gene are located on different chromosomes and apparently does not fallow the unique pattern. The maximum linkage of chromosome is (2) on Unplaced Scaffold region. Finally, our results provide important genomic suggestion for upcoming studies of biochemical, physiological, and phylogenetic understanding on SOX genes among teleost.

12.
Mol Biol Evol ; 38(8): 3153-3169, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33755150

RESUMO

The Sox family of transcription factors regulates many processes during metazoan development, including stem cell maintenance and nervous system specification. Characterizing the repertoires and roles of these genes can therefore provide important insights into animal evolution and development. We further characterized the Sox repertoires of several arachnid species with and without an ancestral whole-genome duplication and compared their expression between the spider Parasteatoda tepidariorum and the harvestman Phalangium opilio. We found that most Sox families have been retained as ohnologs after whole-genome duplication and evidence for potential subfunctionalization and/or neofunctionalization events. Our results also suggest that Sox21b-1 likely regulated segmentation ancestrally in arachnids, playing a similar role to the closely related SoxB gene, Dichaete, in insects. We previously showed that Sox21b-1 is required for the simultaneous formation of prosomal segments and sequential addition of opisthosomal segments in P. tepidariorum. We studied the expression and function of Sox21b-1 further in this spider and found that although this gene regulates the generation of both prosomal and opisthosomal segments, it plays different roles in the formation of these tagmata reflecting their contrasting modes of segmentation and deployment of gene regulatory networks with different architectures.


Assuntos
Aracnídeos/genética , Evolução Molecular , Fatores de Transcrição SOX/genética , Animais , Aracnídeos/embriologia , Aracnídeos/metabolismo , Feminino , Masculino , Fatores de Transcrição SOX/metabolismo
13.
Semin Cancer Biol ; 67(Pt 1): 24-29, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31698089

RESUMO

Acute myeloid leukaemia (AML) is a heterogeneous group of diseases with diverse pathogenetic pathways. When treated uniformly with conventional chemotherapy and allogeneic haematopoietic stem cell transplantation (HSCT), it showed variable clinical outcome and prognosis. Members of the SOX [Sry-related high-mobility group (HMG) box] gene family are involved in diverse embryonic and oncogenic processes. The roles of SOX genes in AML are not entirely clear but emerging evidence, including that arising from studies in solid-cancers, showed that SOX genes can function as tumour suppressors or oncogenes and may be involved in key pathogenetic pathways in AML involving C/EBPα mutations, activation of ß-catenin/Wnt and Hedgehog pathways and aberrant TP53 signals. Recent data based on genomics and proteomics have identified key interactions between SOX genes and partnering proteins of pathogenetic significance. The observations illustrated the principles and feasibilities of developing lead molecules of potential therapeutic values. Studying the diverse pathogenetic roles of SOX genes in AML may shed lights to the heterogeneity of AML and generate information that can be translated into novel therapeutic strategies.


Assuntos
Antineoplásicos/uso terapêutico , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fatores de Transcrição SOX/antagonistas & inibidores , Animais , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Fatores de Transcrição SOX/genética , Transdução de Sinais
14.
Artigo em Inglês | MEDLINE | ID: mdl-30568848

RESUMO

The cerebellum, a derivative of the hindbrain, plays a crucial role in balance and posture as well as in higher cognitive and locomotive processes. Cerebellar development is initiated during the segmental phase of hindbrain formation. Here, we describe the phenotype, of a single surviving adult conditional mouse mutant mouse, in which Sox2 function is ablated in embryonic radial glial cells by means of hGFAP-CRE. The single Sox2RGINV/mosaic adult mutant mouse displays motor disability, microsomia, reduced Central Nervous System (CNS) size and cerebellar defects associated with human genetically related congenital abnormalities.

15.
BMC Evol Biol ; 18(1): 205, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30587109

RESUMO

BACKGROUND: The Sox family of transcription factors is an important part of the genetic 'toolbox' of all metazoans examined to date and is known to play important developmental roles in vertebrates and insects. However, outside the commonly studied Drosophila model little is known about the repertoire of Sox family transcription factors in other arthropod species. Here we characterise the Sox family in two chelicerate species, the spiders Parasteatoda tepidariorum and Stegodyphus mimosarum, which have experienced a whole genome duplication (WGD) in their evolutionary history. RESULTS: We find that virtually all of the duplicate Sox genes have been retained in these spiders after the WGD. Analysis of the expression of Sox genes in P. tepidariorum embryos suggests that it is likely that some of these genes have neofunctionalised after duplication. Our expression analysis also strengthens the view that an orthologue of vertebrate Group B1 genes, SoxNeuro, is implicated in the earliest events of CNS specification in both vertebrates and invertebrates. In addition, a gene in the Dichaete/Sox21b class is dynamically expressed in the spider segment addition zone, suggestive of an ancient regulatory mechanism controlling arthropod segmentation as recently suggested for flies and beetles. Together with the recent analysis of Sox gene expression in the embryos of other arthropods, our findings support the idea of conserved functions for some of these genes, including a potential role for SoxC and SoxD genes in CNS development and SoxF in limb development. CONCLUSIONS: Our study provides a new chelicerate perspective to understanding the evolution and function of Sox genes and how the retention of duplicates of such important tool-box genes after WGD has contributed to different aspects of spider embryogenesis. Future characterisation of the function of these genes in spiders will help us to better understand the evolution of the regulation of important developmental processes in arthropods and other metazoans including neurogenesis and segmentation.


Assuntos
Evolução Molecular , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Aranhas/embriologia , Aranhas/genética , Animais , Desenvolvimento Embrionário , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Organogênese , Filogenia , Fatores de Transcrição SOX/química
16.
Leuk Res ; 67: 32-38, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29428447

RESUMO

Aberrant expression of different SOX (SRY-related high mobility group (HMG) box) genes has been observed in number of tumors but, little is known about their expression patterns in hematological malignancies, especially in acute myeloid leukemia (AML). In this study we investigated SOX2, SOX3, SOX11, SOX14 and SOX18 gene expression in 50 de novo adult AML patients and correlated our findings with known clinical and molecular prognostic markers of the disease. We have found that these genes are overexpressed in 10-22% of patients and preliminary findings suggest that high expression level of these genes may have prognostic significance in AML patients. This is the first study focused on examining the expression level of SOX2, SOX3, SOX11, SOX14 and SOX18 genes in AML patients. Although this is a relatively limited study, initial findings indicate the need for further investigation of these genes, their potential roles in leukemia pathogenesis as well as prognosis in AML patients.


Assuntos
Perfilação da Expressão Gênica , Leucemia Mieloide Aguda/genética , Mutação , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB2/genética , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXF/genética , Adulto , Idoso , Biomarcadores Tumorais/genética , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Proteínas Nucleares/genética , Nucleofosmina , Prognóstico , Análise de Sobrevida , Adulto Jovem , Tirosina Quinase 3 Semelhante a fms/genética
17.
Semin Cell Dev Biol ; 63: 58-67, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27567710

RESUMO

The intestine has long been studied as a model for adult stem cells due to the life-long self-renewal of the intestinal epithelium through the proliferation of the adult intestinal stem cells. Recent evidence suggests that the formation of adult intestinal stem cells in mammals takes place during the thyroid hormone-dependent neonatal period, also known as postembryonic development, which resembles intestinal remodeling during frog metamorphosis. Studies on the metamorphosis in Xenopus laevis have revealed that many members of the Sox family, a large family of DNA binding transcription factors, are upregulated in the intestinal epithelium during the formation and/or proliferation of the intestinal stem cells. Similarly, a number of Sox genes have been implicated in intestinal development and pathogenesis in mammals. Futures studies are needed to determine the expression and potential involvement of this important gene family in the development of the adult intestinal stem cells. These include the analyses of the expression and regulation of these and other Sox genes during postembryonic development in mammals as well as functional investigations in both mammals and amphibians by using the recently developed gene knockout technologies.


Assuntos
Mucosa Intestinal/metabolismo , Intestinos/embriologia , Fatores de Transcrição SOX/metabolismo , Vertebrados/metabolismo , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Animais , Sequência de Bases , Humanos , Intestinos/patologia , Fatores de Transcrição SOX/genética , Hormônios Tireóideos/farmacologia
18.
Gene ; 575(2 Pt 2): 385-392, 2016 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-26361847

RESUMO

The ancient Sox gene family is a group of related transcription factors that perform a number of essential functions during embryonic development. During evolution, this family has undergone considerable expansion, particularly within the vertebrate lineage. In vertebrates SOX proteins are required for the specification, development and/or morphogenesis of most vertebrate innovations. Tunicates and lancelets are evolutionarily positioned as the closest invertebrate relatives to the vertebrate group. By identifying their Sox gene complement we can begin to reconstruct the gene set of the last common chordate ancestor before the split into invertebrates and vertebrate groups. We have identified core SOX family members from the genomes of six invertebrate chordates. Using phylogenetic analysis we determined their evolutionary relationships. We propose that the last common ancestor of chordates had at least seven Sox genes, including the core suite of SoxB, C, D, E and F as well as SoxH.


Assuntos
Cordados/classificação , Cordados/metabolismo , Fatores de Transcrição SOX/genética , Animais , Sequência de Bases , Cordados/genética , Sequência Conservada , Evolução Molecular , Invertebrados/genética , Invertebrados/metabolismo , Família Multigênica , Filogenia , Vertebrados/genética , Vertebrados/metabolismo
19.
Development ; 142(14): 2464-77, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26153233

RESUMO

Neurogenesis involves deeply conserved patterning molecules, such as the proneural basic helix-loop-helix transcription factors. Sox proteins and specifically members of the SoxB and SoxC groups are another class of conserved transcription factors with an important role in neuronal fate commitment and differentiation in various species. In this study, we examine the expression of all five Sox genes of the nematode C. elegans and analyze the effect of null mutant alleles of all members of the SoxB and SoxC groups on nervous system development. Surprisingly, we find that, unlike in other systems, neither of the two C. elegans SoxB genes sox-2 (SoxB1) and sox-3 (SoxB2), nor the sole C. elegans SoxC gene sem-2, is broadly expressed throughout the embryonic or adult nervous system and that all three genes are mostly dispensable for embryonic neurogenesis. Instead, sox-2 is required to maintain the developmental potential of blast cells that are generated in the embryo but divide only postembryonically to give rise to differentiated neuronal cell types. Moreover, sox-2 and sox-3 have selective roles in the terminal differentiation of specific neuronal cell types. Our findings suggest that the common themes of SoxB gene function across phylogeny lie in specifying developmental potential and, later on, in selectively controlling terminal differentiation programs of specific neuron types, but not in broadly controlling neurogenesis.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso/embriologia , Neurogênese/fisiologia , Neurônios/citologia , Fatores de Transcrição SOXB1/fisiologia , Alelos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Diferenciação Celular , Linhagem da Célula , Masculino , Neurônios Motores/metabolismo , Mutação , Fatores de Transcrição SOXC/fisiologia , Transdução de Sinais , Transgenes
20.
Front Physiol ; 5: 345, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309446

RESUMO

Precise control of self-renewal and differentiation of progenitor cells into the cranial neural crest (CNC) pool ensures proper head development, guided by signaling pathways such as BMPs, FGFs, Shh and Notch. Here, we show that murine Sox2 plays an essential role in controlling progenitor cell behavior during craniofacial development. A "Conditional by Inversion" Sox2 allele (Sox2(COIN) ) has been employed to generate an epiblast ablation of Sox2 function (Sox2(EpINV) ). Sox2 (EpINV/+(H)) haploinsufficient and conditional (Sox2(EpINV/mosaic) ) mutant embryos proceed beyond gastrulation and die around E11. These mutant embryos exhibit severe anterior malformations, with hydrocephaly and frontonasal truncations, which could be attributed to the deregulation of CNC progenitor cells during their epithelial to mesenchymal transition. This irregularity results in an exacerbated and aberrant migration of Sox10(+) NCC in the branchial arches and frontonasal process of the Sox2 mutant embryos. These results suggest a novel role for Sox2 as a regulator of the epithelial to mesenchymal transitions (EMT) that are important for the cell flow in the developing head.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...