RESUMO
Biochar prepared from crop straw is an economical method for adsorbing bromocresol green (BCG) from textile industrial wastewater. However, there is limited research on the adsorption mechanism of biochar for the removal of BCG. This study utilized cucumber straw as raw material to prepare biochar with good adsorption potential and characterized its physicochemical properties. Through adsorption experiments, the effects of solution pH, biochar dosage, and initial dye concentration on adsorption performance were examined. The adsorption mechanism of cucumber straw biochar (CBC) for BCG was elucidated at the molecular level using adsorption kinetics, adsorption isotherm models, and density functional theory (DFT) calculations. Results show that the specific surface area of the CBC is 101.58 m2/g, and it has a high degree of carbonization, similar to the structure of graphite crystals. The presence of aromatic rings, -OH groups, and -COOH groups in CBC provides abundant adsorption sites for BCG. The adsorption process of CBC for BCG is influenced by both physical and chemical adsorption, and can be described by the Langmuir isotherm model, indicating a monolayer adsorption process. The theoretical maximum monolayer adsorption capacity (qm) of BCG at 298 K was calculated to be 99.18 mg/g. DFT calculations reveal interactions between BCG and CBC involving electrostatic interactions, van der Waals forces, halogen-π interactions, π-π interactions, and hydrogen bonds. Additionally, the interaction of hydrogen bonds between BCG and the -COOH group of biochar is stronger than that between BCG and the -OH group. These findings provide valuable insights into the preparation and application of efficient organic dye adsorbents.
Assuntos
Carvão Vegetal , Cucumis sativus , Carvão Vegetal/química , Adsorção , Cucumis sativus/química , Cinética , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Concentração de Íons de Hidrogênio , Purificação da Água/métodos , Água/química , Águas Residuárias/química , SoluçõesRESUMO
The growing interest in commercial Inland saline aquaculture has taken momentum across the globe due to the available technologies for aquaculture and the abundant resources of saline groundwater. However, the critical problems in inland saline ponds are degraded soil and imbalanced or deficient nutrients. To address these issues, a 75-day experiment was conducted to explore the effects of Paddy Straw Biochar (PSB) as a sediment amendment on sediment quality, water characteristics, growth parameters, and the well-being of Penaeus vannamei reared in inland saline environments. PSB was applied to the nursery ponds at 1 ton/hectare (Treatment, T1) and 2 ton/hectare (Treatment, T2). The findings of water quality parameters showed a significant increase in K+ and Mg++ with a decrease in ammonia-N levels in biochar-applied ponds. Similarly, the addition of biochar to ponds (T2) resulted in improved sediment characteristics with enhanced water holding capacity (24.75%), increased soil organic carbon content (77.94%), pH levels (0.37 units), cation exchange capacity (43.15%), available potassium (16.3%), and lower bulk density (12.61%) compared to ponds subjected to control conditions at the end of the experiment. Over the experiment, improvements in sediment and water quality parameters followed the T2 > T1 > control trend. Growth characteristics showed a significant rise in the percentage of weight gain (12.398 ± 0.12), SGR (11.80 ± 0.01% day-1) and PER (2.39 ± 0.01) with reduced FCR (1.19 ± 0.00) in biochar-treated ponds (T2), followed by T1 and control. The digestive enzyme activity (amylase) and metabolic enzymes like hepatopancreatic alanine aminotransferase (ALT) and muscle ALT activities were significantly higher in shrimps raised in the biochar-applied ponds. On the other hand, the oxidative stress enzyme superoxide dismutase (SOD) in gills, muscles, and hepatopancreas (HP) exhibited lower values, suggesting reduced oxidative stress due to the biochar amendment of the pond sediment. Overall, the study recommends incorporating PSB at a rate of 2 t/ha into nursery pond sediment to enhance water quality, physiological status, and the growth of P. vannamei juveniles. Moreover, this approach improves soil and water characteristics in saline soils, making it an effective culture practice in degraded environments.
RESUMO
The absorption and transport of selenium (Se) in rice depend on the shared transport proteins and channels with other elements. However, the interactions between Se and other elements within the soil-rice system and their relationship with Se-enriched rice are still not well understood. Hence, we conducted pot experiments to investigate the transformation of Se forms in soil and the absorption and enrichment of Se in rice, which varied with other elements influenced by straw and straw biochar returning in Se-rich red paddy soil. Partial least squares path modeling (PLS-PM) analysis was carried out to reveal the interaction between Se and other elements and the crucial processes in Se enrichment in rice grains. The results showed that the incorporation of straw and straw biochar into the fields increased the content of soil-soluble Se (SOL-Se) but significantly decreased the content of iron-manganese oxide-bound Se (FMO-Se) and organic matter-bound Se (OM-Se). Moreover, the rise in the soil-bioavailable Se was mainly attributed to the activation of FMO-Se and OM-Se. Compared with the NPK treatment, the contents of Se in rice grain were increased by 69.22% and 38.09%, under straw and biochar returning, respectively. However, the contents of Se in the leaves decreased. Variation partitioning analysis (VPA) indicated that the migration of Se in rice plants was significantly influenced by differences in rice tissues and their interactions with other nutrients [nitrogen (N), phosphorus (P), potassium (K), and Se], explaining 51.5% and 35.3% of the variations in Se content in different rice parts, respectively. The PLS-PM analysis demonstrated that the absorption of Se by rice roots and its transportation from the leaves to grains were crucial processes affecting Se enrichment in rice. However, these processes were modulated by the interaction between soil properties and root nutrients (N, P, and Se) induced by straw and straw biochar incorporation. The present study provides further understanding of the main factors and key processes in regulating Se absorption and transformation in the soil-rice system to more efficiently utilize Se-rich paddy fields through agricultural management measures.
RESUMO
A 28 days pesticide degradation experiment was conducted for broccoli (Brassica oleracea L. var. italica Planch) and pakchoi (Brassica chinensis L.) with three pesticides (chlorantraniliprole (CAP), haloxyfop-etotyl (HPM), and indoxacarb (IXB)) to explore the effects of biochar on pesticide environmental fate and rhizosphere soil diversity. Rice straw biochar (RB) was applied to soil at a 25.00 t ha-1 dosage under greenhouse conditions, and its effects on the degradation of three pesticides in vegetables and in soil were investigated individually. Overall, RB application effectively facilitated CAP and HPM degradation in broccoli by 13.51-39.42% and in broccoli soil by 23.80-74.10%, respectively. RB application slowed the degradation of CAP, HPM and IXB in pakchoi by 0.00-57.17% and slowed the degradation of CAP in pakchoi by 37.32-43.40%. The results showed that the effect of RB application on pesticide degradation in crops and soil was related to biochar properties, pesticide solubility, plant growth status, and soil characteristics. Rhizosphere soil microorganisms were also investigated, and the results showed that biochar application may be valuable for altering bacterial richness and diversity. The effect of biochar application on pesticide residues in crops and soil was influenced by the vegetable variety first, and the second was pesticide characteristics. RB applied to soil at a 25.00 t ha-1 dosage under greenhouse conditions is recommended for broccoli production to ensure food safety. Our results suggested that biochar application in soil could reduce pesticide non-point source pollution, especially for highly soluble pesticides, and could affect soil microorganisms.
Assuntos
Carvão Vegetal , Praguicidas , Rizosfera , Microbiologia do Solo , Poluentes do Solo , Verduras , Carvão Vegetal/química , Praguicidas/metabolismo , Verduras/metabolismo , Verduras/química , Brassica/metabolismo , Solo/química , Biodegradação Ambiental , Bactérias/metabolismo , Bactérias/efeitos dos fármacosRESUMO
Arbuscular mycorrhizal fungi (AMF) have been shown to effectively mitigate the detrimental effects of heavy metal stress on their plant hosts. Nevertheless, the biological activities of AMF were concurrently compromised. Biochar (BC), as an abiotic factor, had the potential compensate for this limitation. To elucidate the synergistic effects of biotic and abiotic factors, a pot experiment was conducted to assess the impact of biochar and AMF on the growth, physiological traits, and genetic expression in rice plants subjected to Cd stress. The results demonstrated that biochar significantly increased the mycorrhizal colonization rate by 22.19 %, while the combined application of biochar and AMF led to a remarkable enhancement of rice root biomass by 42.2 %. This resulted in a shift in spatial growth patterns that preferentially promoted enhanced underground development. Biochar effectively mitigated the stomatal limitations imposed by Cd on photosynthetic processes. The decrease in IBRv2 (Integrated Biomarker Response version 2) values suggested that the antioxidant system was experiencing a state of remission. An increase of Cd content within the rice root systems was observed, ranging from 33.71 % to 48.71 %, accompanied by a reduction in Cd bioavailability and mobility curtailed its translocation to the aboveground tissues. Under conditions of low soil Cd concentration (Cd ≤ 1 mg·kg-1), the Cd content in rice seeds from the group subjected to the combined treatment remained below the national standard (Cd ≤ 0.2 mg·kg-1). Furthermore, the combined treatment modulated the uptake of Fe and Zn by rice, while simultaneously suppressing the expression of genes associated with Cd transport. Collectively, the integration of biological and abiotic factors provided a novel perspective and methodological framework for safe in-situ utilization of soils with low Cd contamination.
Assuntos
Cádmio , Carvão Vegetal , Micorrizas , Oryza , Poluentes do Solo , Oryza/microbiologia , Micorrizas/fisiologia , Cádmio/metabolismo , Carvão Vegetal/farmacologia , Solo/química , Microbiologia do SoloRESUMO
In order to solve the problem of the low treatment efficiency of wastewater containing heavy metals in mining areas, straw biochar and graphene oxide enhanced external pressure ultrafiltration (SGU) was used to treat wastewater containing high concentrations of Pb2+. The operation parameters such as pH and temperature were optimized, and the removal efficiency of CODCr, NH3-N, turbidity and Pb2+ via SGU, straw biochar ultrafiltration (SU), ultrafiltration (UF), and conventional treatment (CT) were systematically investigated. The results showed that the pH and temperature of polluted water were 4.8-5.2 and 21-30 °C, respectively, the average removal rates of CODCr, NH3-N, turbidity and Pb2+ by SGU reached 91%, 97%, 98% and 95%, respectively, and the removal effect was better than that of other processes. In addition, under the backwash conditions of clean water, weak acid, and weak alkali, the membrane flux recovered 65%, 88%, and 89% of the new membrane, respectively. This study provides scientific and theoretical support for the advanced treatment of polluted water in mining areas.
RESUMO
The emergence of microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant threats to soil ecosystems. Given the widespread contamination of ecosystems by various types of MPs, including polystyrene (PS), polyvinyl chloride (PVC), and polyethylene (PE), it is crucial to understand their effects on agricultural productivity. The present study was conducted to investigate the effects of different types of MPs (PS, PVC, and PE) on various aspects of sunflower (Helianthus annuus L.) growth with the addition of rice straw biochar (RSB). This study aimed to examine plant growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress indicators, and the response of various antioxidants (enzymatic and non-enzymatic) and their specific gene expression, proline metabolism, the AsA-GSH cycle, cellular fractionation in the plants and post-harvest soil properties. The research outcomes indicated that elevated levels of different types of MPs in the soil notably reduced plant growth and biomass, photosynthetic pigments, and gas exchange attributes. Different types of MPs also induced oxidative stress, which caused an increase in various enzymatic and non-enzymatic antioxidant compounds, gene expression and sugar content; notably, a significant increase in proline metabolism, AsA-GSH cycle, and pigmentation of cellular components was also observed. Favorably, the addition of RSB significantly increased plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and relevant gene expression while decreasing oxidative stress. In addition, RSB amendment decreased proline metabolism and AsA-GSH cycle in H. annuus plants, thereby enhancing cellular fractionation and improving post-harvest soil properties. These results open new avenues for sustainable agriculture practices and show great potential for resolving the urgent issues caused by microplastic contamination in agricultural soils.
Assuntos
Antioxidantes , Carvão Vegetal , Helianthus , Microplásticos , Oryza , Solo , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/efeitos dos fármacos , Antioxidantes/metabolismo , Carvão Vegetal/farmacologia , Helianthus/metabolismo , Helianthus/efeitos dos fármacos , Helianthus/crescimento & desenvolvimento , Solo/química , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Biomassa , Metabolismo Secundário , Prolina/metabolismoRESUMO
Sandy soil covers a significant portion of Egypt's total land area, representing a crucial agricultural resource for future food security and economic growth. This research adopts the hypothesis of maximizing the utilization of secondary products for soil improvement to reduce ecosystem pollution. The study focuses on assessing the impact of combining phosphogypsum and modified biochar as environmentally friendly soil amendments on loamy sand soil quality parameters such as soil organic carbon, cation exchange capacity, nutrient levels, and wheat yield. The treatments were T1: the recommended NPK fertilizer (control); T2: 2.5 kg phosphogypsum m-2 soil; T3: 2.5 kg rice straw biochar m-2 soil; T4: 2.5 kg cotton stalk biochar m-2 soil; T5: 2.5 kg rice-straw-modified biochar m-2 soil; T6: 2.5 kg cotton-stalk-modified biochar m-2 soil; and T7 to T10: mixed phosphogypsum and biochar treatments. The results revealed that the combined use of phosphogypsum and modified cotton stalk biochar (T10) significantly enhanced soil organic carbon (SOC) by 73.66% and 99.46% in both seasons, the soil available N both seasons by 130.12 and 161.45%, the available P by 89.49% and 102.02%, and the available K by 39.84 and 70.45% when compared to the control treatment. Additionally, this treatment led to the highest grain yield of wheat (2.72 and 2.92 Mg ha-1), along with a significant increase in straw yield (52.69% and 59.32%) compared to the control treatment. Overall, the findings suggest that the combined use of phosphogypsum and modified biochar, particularly cotton-stalk biochar, holds promise for improving loamy sand-soil quality and wheat productivity.
RESUMO
Using KOH-modified wheat straw as the precursor, wheat straw biochar was produced through carbonization at 500 °C. Subsequently, a synthetic material containing nano-zero-valent iron (nZVI) was prepared via liquid phase reduction (nZVI-WSPC). To enhance its properties, chitosan (CTS) was used by crosslinking to form the new adsorbent named CTS@nZVI-WSPC. The impact of CTS on parameters such as mass ratio, initial pH value, and adsorbent dosage on the adsorption efficiency of Cr(VI) in solution was investigated through one-factor experiments. Isotherm adsorption and thermodynamic analysis demonstrated that the adsorption of Cr(VI) by CTS@nZVI-WSPC conforms to the Langmuir model, with a maximum adsorption capacity of 147.93 mg/g, and the adsorption process is endothermic. Kinetic analysis revealed that the adsorption process follows a pseudo-second-order kinetic model. The adsorption mechanism, as elucidated by SEM, FTIR, XPS, and XRD, suggests that the process may involve multiple mechanisms, including pore adsorption, electrostatic adsorption, chemical reduction, and surface chelation. The adsorption capacity of Cr(VI) by CTS@nZVI-WSPC remains high after five cycles. The adsorbent is simple to operate, economical, efficient, and reusable, making it a promising candidate for the treatment of Cr(VI) in water.
RESUMO
Nitrogen (N) and phosphorus (P) are vital for crop growth. However, most agricultural systems have limited inherent ability to supply N and P to crops. Biochars (BCs) are strongly advocated in agrosystems and are known to improve the availability of N and P in crops through different chemical transformations. Herein, a soil-biochar incubation experiment was carried out to investigate the transformations of N and P in two different textured soils, namely clay loam and loamy sand, on mixing with rice straw biochar (RSB) and acacia wood biochar (ACB) at each level (0, 0.5, and 1.0% w/w). Ammonium N (NH4-N) decreased continuously with the increasing incubation period. The ammonium N content disappeared rapidly in both the soils incubated with biochars compared to the unamended soil. RSB increased the nitrate N (NO3-N) content significantly compared to ACB for the entire study period in both texturally divergent soils. The nitrate N content increased with the enhanced biochar addition rate in clay loam soil until 15 days after incubation; however, it was reduced for the biochar addition rate of 1% compared to 0.5% at 30 and 60 days after incubation in loamy sand soil. With ACB, the net increase in nitrate N content with the biochar addition rate of 1% remained higher than the 0.5% rate for 60 days in clay loam and 30 days in loamy sand soil. The phosphorus content remained consistently higher in both the soils amended with two types of biochars till the completion of the experiment.
Assuntos
Compostos de Amônio , Poluentes do Solo , Solo/química , Fósforo , Areia , Argila , Nitratos , Nitrogênio , Carvão Vegetal/química , Poluentes do Solo/análiseRESUMO
In recent years, cadmium pollution in water environment has become an environmental problem that could not be ignored. As a porous carbon rich solid material, biochar is an environment-friendly new material because of its ultra-high adsorption capacity and strong chemical stability. In this study, rice straw biochar (RS-Biochar) was successfully prepared at different temperatures for removal of Cd(II) from aqueous solution. Through a series of characterization and adsorption experiments, the adsorption principle of Cd(II) by RS-Biochar was deeply studied. The results showed that RS-Biochar prepared at 600 °C (BioC600) has high specific surface area (232.6 m2/g) and shows high Cd(II) removal rate of 91.23% with the maximum Cd(II) adsorption capacity of 8.62 mg/g. The Langmuir model fit well to describe the adsorption process of Cd(II) on the BioC600. The mechanism analysis showed that hydroxyl and carboxyl groups on the biochar surface were concerned in the removal of Cd(II). The formation of CdCO3 in the adsorption process was also be proven. Importantly, RS-Biochar could be conveniently produced with needed scale, displaying a promising approach for remediating Cd(II)-contaminated water environment and a huge application potential.
Assuntos
Oryza , Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/análise , Oryza/química , Cádmio/análise , Purificação da Água/métodos , Água , Carvão Vegetal/química , Adsorção , CinéticaRESUMO
The effects of individual biochar constituents and natural environmental media on the immobilization behaviors and chemical activities of toxic heavy metals are still poorly understood. In this work, the physicochemical properties of raw corn straw (CS) and CS-derived biochar materials as well as their sorption abilities and retention mechanisms for lead (Pb) and cadmium (Cd) were evaluated by combining batch experiments and spectral approaches. According to the spectral analysis results and single variable principle, the setting of biochars after soaking in solution as the control group was suggested when evaluating their retention mechanisms for Pb and Cd. The rising of ionic strength did not apparently affect the immobilization of Pb by biochar prepared at 500 °C (i.e., CB500) and Pb/Cd by water-soluble organic matter (WSOM)-free CB500 (i.e., DCB500), while slightly inhibited the sorption of Cd by CB500. Pb and Cd exhibited a mutual inhibition effect on their sorption trends with a higher sorption preference of Pb. The dominant fixation mechanism of Pb by CB500 and DCB500 was identified to be mineral precipitation. In contrast, the main sorption mechanism of Cd changed from mineral precipitation in the single-metal system to surface complexation in the binary-metal system. The sorption ratios of Pb and Cd on CB500 were comparable to those on DCB500 with the coexistence of mixed natural organic matters (NOM) and ferrihydrite. The current experimental findings suggested that DCB500 was a suitable remediation agent for regulating the migration behaviors of toxic Pb and Cd in acidic and NOM-rich soil and water systems.
RESUMO
Microalgae play a significant impact in the biogeochemical cycle of Mn(II) in the aquatic ecosystem. Meanwhile, the inflow of biochar into the water bodies is bound to impact the aquatic organisms. However, the influence of biochar on the manganese transformation in algae-rich water has not drawn much attention. Thus, we studied the effects of rice straw biochar on manganese enrichment and oxidation by a common type of algae in freshwater (Scenedesmus quadricauda). The results showed that Mn(II) was absorbed intracellularly and adsorbed extracellularly by active algal cells. A significant portion of enriched Mn(II) was oxidized to amorphous precipitates MnO2, MnOOH, and Mn2O3. Moreover, the extracellular bound Mn(II) content in the coexistent system of algae and biochar increased compared with the pure Scenedesmus quadricauda system. Nevertheless, the intracellular Mn content was continually lowered as the biochar dose rose from an initial 0.2 to 2.0 g·L-1, suggesting that Mn assimilation of the cell was suppressed. It was calculated that the total enrichment ability of Scenedesmus quadricauda in the algae-biochar coexistent system was 0.31- 15.32 mg Mn/g biomass, more than that in the pure algae system. More importantly, with biochar in the algae system, the amount of generated MnOx increased, and more Mn(II) was oxidized into highly-charged Mn(IV). This was probably because the biochar could relieve the stress of massive Mn(II) on algae and support the MnOx precipitates. In brief, moderate biochar promoted the Mn(II) accumulation by algal cells and its oxidation activity. This study offers deeper insight into the bioconversion of Mn(II) by algae and the potential impact of biochar application to the aquatic system.
Assuntos
Carvão Vegetal , Microalgas , Scenedesmus , Ecossistema , Manganês/metabolismo , Compostos de Manganês , Óxidos , Água/metabolismoRESUMO
The pollution control of tetracycline antibiotics in the environment has become a hot topic, and biochar adsorption has become an important technology to remove organic pollutants. Pyrolytic biochars (BC400, BC500, and BC600) were prepared from corn straw and then were modified by KOH to obtain KBC400, KBC500, and KBC600. Among them, KBC400 was selected for secondary pyrolysis activation at 400-600â to obtain AKBC400, AKBC500, and AKBC600. The structure characteristics and surface properties of AKBC were also characterized. The adsorption kinetics and thermodynamic characteristics of oxytetracycline hydrochloride (OTC) in the solution by AKBC were investigated using batch experiments. Compared to that of BC400, the specific surface area and pore structure of AKBC were significantly improved, and the aromaticity was also enhanced, resulting in the notable enhancement of the adsorption capacities for OTC. The pseudo-second-order kinetics model could better fit the adsorption process, and AKBC500 had the largest adsorption rate constant and capacity. Both the intraparticle diffusion and film diffusion were the rate-limiting steps. The Langmuir, Freundlich, and Temkin models could fit the adsorption isotherms perfectly. The adsorption of OTC on AKBC was a spontaneous, endothermic, and entropy-increasing process by both physisorption and chemisorption. The pH values in the range of 3.0-7.0 were favorable for the adsorption of OTC by AKBC. The adsorption capacity decreased with the humic acid concentration over 10 mg·L-1. The adsorption mechanism of OTC by AKBC involved pore filling, hydrogen bonding, π-π conjugation, cation-π bond, and strong electrostatic effect. AKBC still had good reusability for OTC removal after five times of regeneration. The obtained AKBC is a potential adsorbent for OTC removal from water due to the good pore structure, high adsorption capacity, and stable adsorption effect.
Assuntos
Oxitetraciclina , Poluentes Químicos da Água , Zea mays , Água , Adsorção , Antibacterianos , Carvão Vegetal/química , Cinética , Poluentes Químicos da Água/análiseRESUMO
Despite the well-documented role of biochar in promoting soil quality and crop productivity, the underlying biological mechanisms remain poorly understood. Here, we explored the effects of straw biochar on soil microbiome in the rhizosphere from wheat using metagenomic sequencing. Our results showed that straw return decreased the yields of wheat, while the straw biochar return increased the wheat yields. Further, both the richness and community composition confirmed different effects of the straw return and straw biochar return. The straw biochar return also resulted in greater rhizosphere effects from wheat, represented by resource availability, including soil organic carbon, soil total nitrogen, available phosphorus, and available potassium. The rhizosphere effects from wheat, represented by microbial metabolism genes involved in carbon, nitrogen, phosphorus, and potassium cycling, however, were decreased by straw biochar returning. In addition, the rhizosphere effects from nitrogen content and the nitrogen cycling genes showed negative relationships with wheat yields. Together, these results revealed that straw biochar enhanced soil resource availability but suppressed microbial metabolism genes in the rhizosphere from wheat, supporting the idea that straw biochar serves as a nutrient pool for crops.
RESUMO
In arable soils, anthropogenic activities such as fertilizer applications have intensified soil acidification in recent years. This has resulted in frequent environmental problems such as aluminum (Al) and H+ stress, which negatively impact crop yields and quality in acidic soils. Biochar, as a promising soil conditioner, has attracted much attention globally. The present study was conducted in a greenhouse by setting up 2% biochar rate to investigate how biochar relieves Al3+ hazards in acidic soil by affecting soil quality, soil environment, and soil microbiomes. The addition of biochar significantly improved soil fertility and enzyme activities, which were attributed to its ability to enhance the utilization of soil carbon sources by influencing the activity of soil microorganisms. Moreover, the Al3+ contents were significantly decreased by 66.61-88.83% compared to the C0 level (without biochar treatment). In particular, the results of the 27Al NMR suggested that forms of AlVI (Al(OH)2+, Al(OH)+ 2, and Al3+) were increased by 88.69-100.44% on the surface of biochar, reducing the Al3+ stress on soil health. The combination of biochar and nitrogen (N) fertilizer contributed to the augmentation of bacterial diversity. The application of biochar and N fertilizer increased the relative abundance of the majority of bacterial species. Additionally, the application of biochar and N fertilizer had a significant impact on soil microbial metabolism, specifically in the biosynthesis of secondary metabolites (lipids and organic acids) and carbon metabolic ability. In conclusion, biochar can enhance soil microbial activity and improve the overall health of acidic soil by driving microbial metabolism. This study offers both theoretical and technical guidance for enhancing biochar in acidified soil and promoting sustainable development in farmland production.
Assuntos
Alumínio , Solo , Solo/química , Fertilizantes , Carvão Vegetal/química , Carbono , Ácidos , Nitrogênio/análiseRESUMO
In recent years, the improvement of soil cadmium (Cd) contamination remediation effect of biochar by modification has received wide attention. However, the effect of combined modification on biochar performance in soil Cd contamination remediation and the mechanism are still unclear. In this study, cotton straw biochar and maize straw biochar were co-modified by KOH (0, 3, 5 mol L-1), K3PO4, and urea. Then, two modified biochars with high Cd adsorption capacity were selected to test the soil Cd contamination remediation effect through a pot experiment. The results showed that the combined modification by using KOH, K3PO4, and urea significantly increased the specific surface area and nitrogen (N) and phosphorus (P) contents of biochar, providing more adsorption sites for Cd. Among the modified biochar, the cotton straw biochar modified with KOH (3 mol L-1), K3PO4, and urea (m3-CSB) had the highest adsorption capacity (111.25 mg g-1), which was 7.86 times that of cotton straw biochar (CSB). The m3-CSB for adsorption isotherm and kinetics of Cd conformed to the Langmuir model and Pseudo-second-order kinetic equation, respectively. In the pot experiment, under different exogenous Cd levels (0 (Cd0), 4 (Cd4), and 8 (Cd8) mg kg-1), m3-CSB treatment decreased soil available Cd content the most (51.68%-63.4%) compared with other biochar treatments. Besides, m3-CSB treatment significantly promoted the transformation of acid-soluble Cd to reducible, oxidizable, and residual Cd, reducing the bioavailability of Cd. At the Cd4 level, the application of m3-CSB significantly reduced cotton Cd uptake compared to CK, and the maximum reduction of Cd content in cotton fibers was as high as 81.95%. Therefore, cotton straw biochar modified with KOH (3 mol L-1), K3PO4, and urea has great potential in the remediation of soil Cd contamination.
RESUMO
The application of straw biochar to chicken manure composting mitigated nitrogen loss. However, the impact of biochar derived from different types of straw on nitrogen fixation in chicken manure composting is discrepant, and the specific pathways remain unclear. Therefore, this study aimed to clarify the specific pathways of maize straw biochar (M) and rice straw biochar (R) to improve nitrogen fixation during chicken manure composting. The nitrogen losses in control (no addition, CK), M, and R composting were 51.84 %, 33.47 %, and 38.24 %, respectively, suggesting that adding straw biochar effectively improved nitrogen fixation. Microbial community analysis suggested that inhibiting denitrification and NH4+-N transformation by microorganisms was the primary means of improving nitrogen fixation. Meanwhile, biochar addition reduced the number of bacteria participating in nitrogen transformation and strengthened the NO3--N and total organic nitrogen transformation processes, among which the effect of M composting was stronger. The stronger effect was attributed to the significant role of the core microorganisms in M composting in shifting the transformation processes of the nitrogen components (P < 0.05). Therefore, the function of different straw biochar was determined by its different impacts on the microbial community, highlighting the important role of microbial community variability.
Assuntos
Compostagem , Microbiota , Animais , Galinhas , Esterco , Fixação de Nitrogênio , Solo , Carvão Vegetal , NitrogênioRESUMO
Over the past few years, there has been a rising interest in employing biochar (BC) and biofertilizers (BF) as a means of restoring soils that have been polluted by heavy metals. The primary objective of this study was to examine how the application of BC and BF affects the ability of cotton plants to withstand Pb toxicity at varying concentrations (0, 500, and 1000 mg/kg soil). The findings revealed that exposure to Pb stress, particularly at the 1000 mg/kg level, led to a decline in the growth and biomass of cotton plants. Pb toxicity triggered oxidative damage, impaired the photosynthetic apparatus, and diminished the levels of photosynthetic pigments. By increasing the expression of Rubisco-S, Rubisco-L, P5CR, and PRP5 genes and regulating proline metabolism, BC and BF increased the levels of proline and photosynthetic pigments and protected the photosynthetic apparatus. The application of BC and BF resulted in an upregulation of genes such as CuZnSOD, FeSOD, and APX1, as well as an increase in the activity of the glyoxalase system and antioxidant enzymes. These changes enhanced the antioxidant capacity of the plants and provided protection to membrane lipids from oxidative stress caused by Pb. The inclusion of BC and BF offered protection to photosynthesis and other essential intracellular processes in leaves by minimizing the transfer of Pb to leaves and promoting the accumulation of thiol compounds. This protective effect helped mitigate the negative impact of the toxic metal Pb on leaf function. By improving plant tolerance, reducing metal transfer, strengthening the antioxidant defense system, and enhancing the level of protective substances, these amendments show promise as valuable tools in tackling heavy metal pollution.
RESUMO
This study aims to examine the effects of biochar on fungal dynamics during food waste composting. The different dosage of wheat straw biochar from 0 to 15% (0%, 2.5%, 5%, 7.5%, 10%, and 15%) were used as an additive to composting and examined for 42 days. The results showed that Ascomycota (94.64%) and Basidiomycota (5.36%) were the most dominant phyla. The most common fungal genera were Kluyveromyces (3.76%), Candida (5.34%), Trichoderma (2.30%), Fusarium (0.46%), Mycothermus-thermophilus (5.67%), Trametes (0.46%), and Trichosporon (3.38%). The average number of operational taxonomic units were 469, with the greatest abundance seen in the 7.5% and 10% treatments. Redundancy analysis revealed that different concentrations of biochar applied treatments have significantly distinct fungal communities. Additionally, correlation analyses of fungal interactions with environmental elements, performed through a heatmap, also indicate a distinct difference among the treatments. The study clearly demonstrates that 15% of biochar has a positive impact on fungal diversity and improves the food waste composting.