Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.057
Filtrar
1.
STAR Protoc ; 5(3): 103046, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959108

RESUMO

Here, we present a protocol for the in vitro phosphorylation of Src kinase domain (SrcKD), preparation of phospho-SrcKD in complex with the D1 domain of rPTP epsilon (rPTPεD1), and binding assays using biolayer interferometry (BLI). We describe steps for the in vitro phosphorylation of SrcKD and preparation of the phospho-SrcKD: rPTPεD1 complex for small-angle X-ray scattering (SAXS) experiments. We then detail instructions for the BLI binding assay to determine the binding affinity between phospho-SrcKD and rPTPεD1. For complete details on the use and execution of this protocol, please refer to EswarKumar et al.1.

2.
Subcell Biochem ; 104: 383-408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963493

RESUMO

Oxidoreductases facilitating electron transfer between molecules are pivotal in metabolic pathways. Flavin-based electron bifurcation (FBEB), a recently discovered energy coupling mechanism in oxidoreductases, enables the reversible division of electron pairs into two acceptors, bridging exergonic and otherwise unfeasible endergonic reactions. This chapter explores the four distinct FBEB complex families and highlights a decade of structural insights into FBEB complexes. In this chapter, we discuss the architecture, electron transfer routes, and conformational changes across all FBEB families, revealing the structural foundation that facilitate these remarkable functions.


Assuntos
Flavinas , Transporte de Elétrons , Flavinas/metabolismo , Flavinas/química , Oxirredutases/metabolismo , Oxirredutases/química , Conformação Proteica , Modelos Moleculares , Oxirredução
3.
Subcell Biochem ; 104: 549-563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963500

RESUMO

Within the highly diverse type four filament (TFF or T4F) superfamily, the machineries of type IVa pili (T4aP) and the type 2 secretion system (T2SS) in diderm bacteria exhibit a substantial sequence similarity despite divergent functions and distinct appearances: T4aP can extend micrometers beyond the outer membrane, whereas the endopili in the T2SS are restricted to the periplasm. The determination of the structure of individual components and entire filaments is crucial to understand how their structure enables them to serve different functions. However, the dynamics of these filaments poses a challenge for their high-resolution structure determination. This review presents different approaches that have been used to study the structure and dynamics of T4aP and T2SS endopili by means of integrative structural biology, cryo-electron microscopy (cryo-EM), and molecular dynamics simulations. Their conserved features and differences are presented. The non-helical stretch in the long-conserved N-terminal helix which is characteristic of all members of the TFF and the impact of calcium on structure, function, and dynamics of these filaments are discussed in detail.


Assuntos
Microscopia Crioeletrônica , Fímbrias Bacterianas , Sistemas de Secreção Tipo II , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Fímbrias Bacterianas/fisiologia , Microscopia Crioeletrônica/métodos , Sistemas de Secreção Tipo II/química , Sistemas de Secreção Tipo II/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/genética
4.
iScience ; 27(6): 110061, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947518

RESUMO

In vitro experiments and cryo-EM structures of p97 and its cofactor, Ufd1/Npl4 (UN), elucidated substrate processing. Yet, the structural transitions and the related ATPase cycle upon UN binding remain unresolved. We captured two discrete conformations: One in which D1 protomers are ATP bound, while the D2 subunits are in the ADP state, presumably required for substrate engagement with the D2 pore; and a heterologous nucleotide state within the D1 ring in which only two NTDs are in the "up" ATP state that favors UN binding. Further analysis suggests that initially, UN binds p97's non-symmetrical conformation, this association promotes a structural transition upon which five NTDs shift to an "up" state and are poised to bind ATP. The UBXL domain of Npl4 was captured bound to an NTD in the ADP state, demonstrating a conformation that may provide directionality to incoming substrate and introduce the flexibility needed for substrate processing.

5.
IUCrJ ; 11(Pt 4): 476-485, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958014

RESUMO

A series of events underscoring the significant advancements in micro-crystallization and in vivo crystallography were held during the 26th IUCr Congress in Melbourne, positioning microcrystallography as a pivotal field within structural biology. Through collaborative discussions and the sharing of innovative methodologies, these sessions outlined frontier approaches in macromolecular crystallography. This review provides an overview of this rapidly moving field in light of the rich dialogues and forward-thinking proposals explored during the congress workshop and microsymposium. These advances in microcrystallography shed light on the potential to reshape current research paradigms and enhance our comprehension of biological mechanisms at the molecular scale.


Assuntos
Cristalização , Cristalografia por Raios X/métodos , Cristalografia/métodos , Substâncias Macromoleculares/química
6.
J Virol ; : e0070724, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953655

RESUMO

Human norovirus was discovered more than five decades ago and is a widespread cause of outbreaks of acute gastroenteritis. There are no approved vaccines or antivirals currently available. However, norovirus inhibitors, including capsid-specific monoclonal antibodies (Mabs) and nanobodies, have recently shown promising results. Several Mabs and nanobodies were found to inhibit norovirus replication using a human intestinal enteroid (HIE) culture system and/or could block norovirus attachment to histo-blood group antigen (HBGA) co-factors. In our pursuit to develop a single broad-spectrum norovirus therapeutic, we continued our analysis and development of a cross-reactive and HBGA interfering nanobody (NB26). To improve NB26 binding capacity and therapeutic potential, we conjugated NB26 onto a human IgG Fc domain (Fc-NB26). We confirmed that Fc-NB26 cross-reacts with genetically diverse GII genotype capsid protruding (P) domains (GII.8, GII.14, GII.17, GII.24, GII.26, and GII.NA1) using a direct enzyme-linked immunosorbent assay. Furthermore, X-ray crystallography structures of these P domains and structures of other GII genotypes reveal that the NB26 binding site is largely conserved, validating its broad reactivity. We showed that Fc-NB26 has ~100-fold higher affinity toward the norovirus P domain compared to native NB26. We also found that both NB26 and Fc-NB26 neutralize human norovirus replication in the HIE culture system. Furthermore, the mode of inhibition confirmed that like NB26, Fc-NB26 caused norovirus particle disassembly and aggregation. Overall, these new findings demonstrate that structural modifications to nanobodies can improve their therapeutic potential.IMPORTANCEDeveloping vaccines and antivirals against norovirus remains a challenge, mainly due to the constant genetic and antigenic evolution. Moreover, re-infection with genetically related and/or antigenic variants is not uncommon. We further developed our leading norovirus nanobody (NB26) that indirectly interfered with norovirus binding to HBGAs, by converting NB26 into a dimeric Fc-linked Nanobody (Fc-NB26). We found that Fc-NB26 had improved binding affinity and neutralization capacity compared with native NB26. Using X-ray crystallography, we showed this nanobody engaged highly conserved capsid residues among genetically diverse noroviruses. Development of such broadly reactive potent therapeutic nanobodies delivered as a slow-releasing prophylactic could be of exceptional value for norovirus outbreaks, especially for the prevention or treatment of severe acute gastroenteritis in high-risk groups such as the young, elderly, and immunocompromised.

7.
Elife ; 132024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984715

RESUMO

The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38984904

RESUMO

The Azotobacter vinelandii FeSII protein forms an oxygen-resistant complex with the nitrogenase MoFe and Fe proteins. FeSII is an adrenodoxin-type ferredoxin that forms a dimer in solution. Previously, the crystal structure was solved [Schlesier et al. (2016), J. Am. Chem. Soc. 138, 239-247] with five copies in the asymmetric unit. One copy is a normal adrenodoxin domain that forms a dimer with its crystallographic symmetry mate. The other four copies are in an `open' conformation with a loop flipped out exposing the 2Fe-2S cluster. The open and closed conformations were interpreted as oxidized and reduced, respectively, and the large conformational change in the open configuration allowed binding to nitrogenase. Here, the structure of FeSII was independently solved in the same crystal form. The positioning of the atoms in the unit cell is similar to the earlier report. However, the interpretation of the structure is different. The `open' conformation is interpreted as the product of a crystallization-induced domain swap. The 2Fe-2S cluster is not exposed to solvent, but in the crystal its interacting helix is replaced by the same helix residues from a crystal symmetry mate. The domain swap is complicated, as it is unusual in being in the middle of the protein rather than at a terminus, and it creates arrangements of molecules that can be interpreted in multiple ways. It is also cautioned that crystal structures should be interpreted in terms of the contents of the entire crystal rather than of one asymmetric unit.

9.
iScience ; 27(6): 110086, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947516

RESUMO

The intracellular loops of G protein-coupled receptors (GPCRs) have been shown to play a key role in G protein coupling and selectivity. We recently showed that the intrinsically disordered third intracellular loop (ICL3) of ß2-adrenergic receptor is dynamic and equilibrates between open and closed conformations to regulate the G protein coupling. In this study, using the extensive molecular dynamics simulations in multi-lipid bilayer models, we show that the lipid phosphatidylinositol 4,5-bisphosphate (PIP2) stabilizes the active state of ß2-adrenergic receptor by keeping ICL3 in an open conformation. This stabilization results in a tilt of the receptor within the membrane. Additionally, the ganglioside lipid, GM3 interacts with extracellular loops, impacting the ligand binding site allosterically. This demonstrates the active role of the chemistry of lipids in stabilizing specific GPCR conformations.

11.
Angew Chem Int Ed Engl ; : e202411171, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022920

RESUMO

The marine Bacteroidota Zobellia galactanivorans has a polysaccharide utilization locus dedicated to the catabolism of the red algal cell wall galactan carrageenan and its unique and industrially important α-3,6-anhydro-D-galactose (ADG) monosaccharide. Here we present the first analysis of the specific molecular interactions the exo-(α-1,3)-3,6-anhydro-D-galactosidase ZgGH129 uses to cope with the strict steric restrictions imposed by its bicyclic ADG substrate - which is ring flipped relative to D-galactose. Crystallographic snapshots of key catalytic states obtained with the natural substrate and novel chemical tools designed to mimic species along the reaction coordinate, together with quantum mechanics/molecular mechanics (QM/MM) metadynamics methods and kinetic studies, demonstrate a retaining mechanism where the second step is rate limiting. The conformational landscape of the constrained 3,6-anhydro-D-galactopyranose ring proceeds through enzyme glycosylation B1,4 → [E4]‡ → E4/1C4 and deglycosylation E4/1C4 → [E4]‡ → B1,4 itineraries limited to the Southern Hemisphere of the Cremer-Pople sphere. These results demonstrate the conformational changes throughout catalysis in a non-standard, sterically restrained, bicyclic monosaccharide and provide a molecular framework for mechanism-based inhibitor design for anhydro-type carbohydrate-processing enzymes and for future applications involving carrageenan degradation. In addition, it provides a rare example of distinct niche-based conformational itineraries within the same carbohydrate-active enzyme family.

12.
Biochem Soc Trans ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023851

RESUMO

Rho GTPases are a family of highly conserved G proteins that regulate numerous cellular processes, including cytoskeleton organisation, migration, and proliferation. The 20 canonical Rho GTPases are regulated by ∼85 guanine nucleotide exchange factors (GEFs), with the largest family being the 71 Diffuse B-cell Lymphoma (Dbl) GEFs. Dbl GEFs promote GTPase activity through the highly conserved Dbl homology domain. The specificity of GEF activity, and consequently GTPase activity, lies in the regulation and structures of the GEFs themselves. Dbl GEFs contain various accessory domains that regulate GEF activity by controlling subcellular localisation, protein interactions, and often autoinhibition. This review focuses on the two phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3)-dependent Rac exchangers (P-Rex), particularly the structural basis of P-Rex1 autoinhibition and synergistic activation. First, we discuss structures that highlight the conservation of P-Rex catalytic and phosphoinositide binding activities. We then explore recent breakthroughs in uncovering the structural basis for P-Rex1 autoinhibition and detail the proposed minimal two-step model of how PI(3,4,5)P3 and Gßγ synergistically activate P-Rex1 at the membrane. Additionally, we discuss the further layers of P-Rex regulation provided by phosphorylation and P-Rex2-PTEN coinhibitory complex formation, although these mechanisms remain incompletely understood. Finally, we leverage the available data to infer how cancer-associated mutations in P-Rex2 destabilise autoinhibition and evade PTEN coinhibitory complex formation, leading to increased P-Rex2 GEF activity and driving cancer progression and metastasis.

13.
Nature ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987332
14.
Methods Mol Biol ; 2780: 107-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987466

RESUMO

An exponential increase in the number of publications that address artificial intelligence (AI) usage in life sciences has been noticed in recent years, while new modeling techniques are constantly being reported. The potential of these methods is vast-from understanding fundamental cellular processes to discovering new drugs and breakthrough therapies. Computational studies of protein-protein interactions, crucial for understanding the operation of biological systems, are no exception in this field. However, despite the rapid development of technology and the progress in developing new approaches, many aspects remain challenging to solve, such as predicting conformational changes in proteins, or more "trivial" issues as high-quality data in huge quantities.Therefore, this chapter focuses on a short introduction to various AI approaches to study protein-protein interactions, followed by a description of the most up-to-date algorithms and programs used for this purpose. Yet, given the considerable pace of development in this hot area of computational science, at the time you read this chapter, the development of the algorithms described, or the emergence of new (and better) ones should come as no surprise.


Assuntos
Algoritmos , Biologia Computacional , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Proteínas , Proteínas/química , Proteínas/metabolismo , Simulação de Acoplamento Molecular/métodos , Biologia Computacional/métodos , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Humanos , Conformação Proteica , Software
15.
Artigo em Inglês | MEDLINE | ID: mdl-38990054

RESUMO

Preparation of biomacromolecules for structural biology studies is a complex and time-consuming process. The goal is to produce a highly concentrated, highly pure product that is often shipped to large facilities with tools to prepare the samples for crystallization trials or for measurements at synchrotrons and cryoEM centers. The aim of this article is to provide guidance and to discuss general considerations for shipping biomacromolecular samples. Details are also provided about shipping samples for specific experiment types, including solution- and cryogenic-based techniques. These guidelines are provided with the hope that the time and energy invested in sample preparation is not lost due to shipping logistics.

16.
Elife ; 132024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984616

RESUMO

The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.


Assuntos
Proteínas Quinases , Regulação Alostérica , Humanos , Proteínas Quinases/metabolismo , Proteínas Quinases/química , Proteínas Quinases/genética , Fosfotransferases/metabolismo , Fosfotransferases/química
18.
Nature ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38982255
19.
Cell Rep ; 43(8): 114511, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39024101

RESUMO

Bombesin receptor subtype-3 (BRS3) is an important orphan G protein-coupled receptor that regulates energy homeostasis and insulin secretion. As a member of the bombesin receptor (BnR) family, the lack of known endogenous ligands and high-resolution structure has hindered the understanding of BRS3 signaling and function. We present two cryogenic electron microscopy (cryo-EM) structures of BRS3 in complex with the heterotrimeric Gq protein in its active states: one bound to the pan-BnR agonist BA1 and the other bound to the synthetic BRS3-specific agonist MK-5046. These structures reveal the architecture of the orthosteric ligand pocket underpinning molecular recognition and provide insights into the structural basis for BRS3's selectivity and low affinity for bombesin peptides. Examination of conserved micro-switches suggests a shared activation mechanism among BnRs. Our findings shed light on BRS3's ligand selectivity and signaling mechanisms, paving the way for exploring its therapeutic potential for diabetes, obesity, and related metabolic disorders.

20.
J Mol Graph Model ; 132: 108818, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39025021

RESUMO

Specific amino acid (AA) binding by aminoacyl-tRNA synthetases (aaRSs) is necessary for correct translation of the genetic code. Sequence and structure analyses have revealed the main specificity determinants and allowed a partitioning of aaRSs into two classes and several subclasses. However, the information contributed by each determinant has not been precisely quantified, and other, minor determinants may still be unidentified. Growth of genomic data and development of machine learning classification methods allow us to revisit these questions. This work considered the subclass IIb, formed by the three enzymes aspartyl-, asparaginyl-, and lysyl-tRNA synthetase (LysRS). Over 35,000 sequences from the Pfam database were considered, and used to train a machine-learning model based on ensembles of decision trees. The model was trained to reproduce the existing classification of each sequence as AspRS, AsnRS, or LysRS, and to identify which sequence positions were most important for the classification. A few positions (5-8 depending on the AA substrate) sufficed for accurate classification. Most but not all of them were well-known specificity determinants. The machine learning models thus identified sets of mutations that distinguish the three subclass members, which might be targeted in engineering efforts to alter or swap the AA specificities for biotechnology applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...