Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124997, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39173322

RESUMO

Polylactic acid (PLA) straws hold eco-friendly potential; however, residual diisocyanates used to enhance the mechanical strength can generate carcinogenic primary aromatic amines (PAAs), posing health risks. Herein, we present a rapid, comprehensive strategy to detecting PAAs in 18 brands of food-grade PLA straws and assessing their migration into diverse food simulants. Surface-enhanced Raman spectroscopy was conducted to rapidly screen straws for PAAs. Subsequently, qualitative determination of migrating PAAs into various food simulants (4 % acetic acid, 10 % ethanol, 50 % ethanol) occurred at 70 °C for 2 h using liquid chromatography-mass spectrometry. Three PAAs including 4,4'-methylenedianiline, 2,4'-methylenedianiline, and 2,4-diaminotoluene were detected in all straws. Specifically, 2,4-diaminotoluene in 50 % ethanol exceeded specific migration limit of 2 µg/kg, raising safety concerns. Notably, PAAs migration to 10 % and 50 % ethanol surpassed that to 4 % acetic acid within a short 2-hour period. Moreover, PLA straws underwent varying degrees of shape changes before and after migration. Straws with poly(butylene succinate) resisted deformation compared to those without, indicating enhanced heat resistance, while poly(butyleneadipate-co-terephthalate) improved hydrolysis resistance. Importantly, swelling study unveiled swelling effect wasn't the primary factor contributing to the increased PAAs migration in ethanol food simulant, as there was no significant disparity in swelling degrees across different food simulants. FT-IR and DSC analysis revealed higher PAAs content in 50 % ethanol were due to highly concentrated polar ethanol disrupting hydrogen bonds and van der Waal forces holding PLA molecules together. Overall, minimizing contact between PLA straws and alcoholic foods is crucial to avoid potential safety risks posed by PAAs.

2.
Int J Nanomedicine ; 19: 8271-8284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161360

RESUMO

Purpose: Development of SERS-based Raman nanoprobes can detect the misfolding of Amyloid beta (Aß) 42 peptides, making them a viable diagnostic technique for Alzheimer's disease (AD). The detection and imaging of amyloid peptides and fibrils are expected to help in the early identification of AD. Methods: Here, we propose a fast, easy-to-use, and simple scheme based on the selective adsorption of Aß42 molecules on SERS active gold nanoprobe (RB-AuNPs) of diameter 29 ± 3 nm for Detection of Alzheimer's Disease Biomarkers. Binding with the peptides results in a spectrum shift, which correlates with the target peptide. We also demonstrated the possibility of using silver nanoparticles (AgNPs) as precursors for the preparation of a SERS active nanoprobe with carbocyanine (CC) dye and AgNPs known as silver nanoprobe (CC-AgNPs) of diameter 25 ± 4 nm. Results: RB-AuNPs probe binding with the peptides results in a spectrum shift, which correlates with the target peptide. Arginine peak appears after the conjugation confirms the binding of Aß 42 with the nanoprobe. Tyrosine peaks appear after conjugated Aß42 with CC-AgNPs providing binding of the peptide with the probe. The nanoprobe produced a strong, stable SERS signal. Further molecular docking was utilized to analyse the interaction and propose a structural hypothesis for the process of binding the nanoprobe to Aß42 and Tau protein. Conclusion: This peptide-probe interaction provides a general enhancement factor and the molecular structure of the misfolded peptides. Secondary structural information may be obtained at the molecular level for specific residues owing to isotope shifts in the Raman spectra. Conjugation of the nanoprobe with Aß42 selectively detected AD in bodily fluids. The proposed nanoprobes can be easily applied to the detection of Aß plaques in blood, saliva, and sweat samples.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Ouro , Nanopartículas Metálicas , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos , Prata , Análise Espectral Raman , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Análise Espectral Raman/métodos , Peptídeos beta-Amiloides/análise , Peptídeos beta-Amiloides/química , Nanopartículas Metálicas/química , Ouro/química , Prata/química , Humanos , Biomarcadores/análise , Adsorção , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química
3.
Appl Spectrosc ; : 37028241267898, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39094008

RESUMO

Noninvasive detection of surface-enhanced Raman spectroscopy (SERS) signals from deep within tissue represents a common challenge in many biological and clinical applications including disease diagnosis and therapy monitoring. Such signals are typically weak and not readily discernible from often much larger Raman and fluorescence background signals (e.g., from surrounding tissue). Consequently, suboptimal sensitivity in the detection of SERS signals is often achieved in these situations. Similar issues can arise in SERS measurements in other diffusely scattering samples and complex matrices. Here, we propose a novel concept, active SERS, for the efficient retrieval of SERS signals from deep within complex matrices such as biological tissues that mitigates these issues. It relies on applying an external perturbation to the sample to alter the SERS signal from nanoparticles (NPs) deep inside the matrix. A measurement with and without, or before and after, such perturbation then can provide powerful contrasting data enabling an effective elimination of the matrix signals to reveal more clearly the desired SERS signal without the interfering background and associated artifacts. The concept is demonstrated using ultrasound (US) as an external source of perturbation and SERS NPs inserted deep within a heterogeneous tissue phantom mimicking a cluster of NPs accumulated within a small target lesion. The overall SERS signal intensity induced by the applied US perturbation decreased by ∼21% and the SERS signal contrast was considerably improved by eliminating subtraction artifacts present in a conventional measurement performed at a neighboring spatial location in a heterogeneous tissue sample. Although the technique was demonstrated with SERS gold NPs with a standard Raman label, it is envisaged that active SERS NPs (both the nanoscale metal geometry and Raman label) could be specifically designed to deliver an augmented response to the external stimulus to further enhance the achievable SERS signal contrast and yield even greater improvement in detection sensitivity. The method was demonstrated using transmission Raman spectroscopy; however, it is also applicable to other Raman implementations including spatially offset Raman spectroscopy and conventional Raman spectroscopy performed both at depth and at surfaces of complex matrices.

4.
ACS Sens ; 9(8): 4154-4165, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39101767

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for discrimination of bimolecules in complex systems. However, its practical applications face challenges such as complicated manufacturing procedures and limited scalability of SERS substrates, as well as poor reproducibility during detection which compromises the reliability of SERS-based analysis. In this study, we developed a convenient method for simultaneous fabrication of massive SERS substrates with an internal standard to eliminate the substrate-to-substrate differences. We first synthesized Au@CN@Au nanoparticles (NPs) which contain embedded internal standard molecules with a single characteristic peak in the Raman-silent region, and then deposited the NPs on 6 mm glass wafers in a 96-well plate simply by centrifugation for 3 min. The one-time obtained 96 SERS substrates have excellent intrasubstrate uniformity and intersubstrate repeatability for SERS detection by using the internal standard (relative standard deviation = 10.47%), and were able to detect both charged and neutral molecules (crystal violet and triphenylphosphine) at a concentration of 10-9 M. Importantly, cells can be directly cultured on glass wafers in the 96-well plate, enabling real time monitoring of the secretes and metabolism change in response to external stimulation. We found that the release of nucleic acids, amino acids and lipids by MDA-MB-231 cells significantly increased under hypoxic conditions. Overall, our approach enables fast and large-scale production of Au@CN@Au NPs-coated glass wafers as SERS substrates, which are homogeneous and highly sensitive for monitoring trace changes of biomolecules.


Assuntos
Vidro , Ouro , Nanopartículas Metálicas , Análise Espectral Raman , Ouro/química , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Humanos , Vidro/química , Linhagem Celular Tumoral
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124991, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39163773

RESUMO

The contamination of mycotoxins poses a serious threat to global food security, hence the urgent need for simultaneous detection of multiple mycotoxins. Herein, two SERS nanoprobes were synthesized by embedded SERS tags (4-mercaptopyridine, 4MPy; 4-mercaptobenzonitrile, TBN) into the Au and Ag core-shell structure, and each was coupled with the aptamers specific to ochratoxin A (OTA) and zearalenone (ZEN). Meanwhile, a rigid enhanced substrate Indium tin oxide glass/AuNPs/Graphene oxide (ITO/AuNPs/GO) was combined with aptamer functionalized Au@AgNPs via π-π stacking interactions between the aptamer and GO to construct a surface-enhanced Raman spectroscopy (SERS) aptasensor, thereby inducing a SERS enhancement effect for the effective and swift simultaneous detection of both OTA and ZEN. The presence of OTA and ZEN caused signal probes dissociation, resulting in an inverse correlation between Raman signal intensity (1005 cm-1 and 2227 cm-1) and the concentrations of OTA and ZEN, respectively. The SERS aptasensor exhibited wide linear detection ranges of 0.001-20 ng/mL for OTA and 0.1-100 ng/mL for ZEN, with low detection limits (LOD) of 0.94 pg/mL for OTA and 59 pg/mL for ZEN. Furthermore, the developed SERS aptasensor demonstrated feasible applicability in the detection of OTA and ZEN in maize, showcasing its substantial potential for practical implementation.

6.
Nano Lett ; 24(33): 10139-10147, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39109658

RESUMO

Surface-enhanced Raman scattering (SERS) offers a promising, cost-effective alternative for the rapid, sensitive, and quantitative analysis of potential biomarkers in exhaled gases, which is crucial for early disease diagnosis. However, a major challenge in SERS is the effective detection of gaseous analytes, primarily due to difficulties in enriching and capturing them within the substrate's "hotspot" regions. This study introduces an advanced gas sensor combining mesoporous gold (MesoAu) and metal-organic frameworks (MOFs), exhibiting high sensitivity and rapid detection capabilities. The MesoAu provides abundant active sites and interconnected mesopores, facilitating the diffusion of analytes for detection. A ZIF-8 shell enveloping MesoAu further enriches target molecules, significantly enhancing sensitivity. A proof-of-concept experiment demonstrated a detection limit of 0.32 ppb for gaseous benzaldehyde, indicating promising prospects for the rapid diagnosis of early stage lung cancer. This research also pioneers a novel approach for constructing hierarchical plasmonic nanostructures with immense potential in gas sensing.


Assuntos
Testes Respiratórios , Gases , Ouro , Estruturas Metalorgânicas , Análise Espectral Raman , Estruturas Metalorgânicas/química , Testes Respiratórios/métodos , Ouro/química , Gases/análise , Gases/química , Humanos , Análise Espectral Raman/métodos , Porosidade , Nanoestruturas/química , Benzaldeídos/química , Limite de Detecção , Nanopartículas Metálicas/química
7.
Curr Pharm Des ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39161144

RESUMO

Cancer is the leading cause of mortality worldwide, requiring continuous advancements in diagnosis and treatment. Traditional methods often lack sensitivity and specificity, leading to the need for new methods. 3D printing has emerged as a transformative tool in cancer diagnosis, offering the potential for precise and customizable nanosensors. These advancements are critical in cancer research, aiming to improve early detection and monitoring of tumors. In current times, the usage of the 3D printing technique has been more prevalent as a flexible medium for the production of accurate and adaptable nanosensors characterized by exceptional sensitivity and specificity. The study aims to enhance early cancer diagnosis and prognosis by developing advanced 3D-printed nanosensors using 3D printing technology. The research explores various 3D printing techniques, design strategies, and functionalization strategies for cancer-specific biomarkers. The integration of these nanosensors with detection modalities like fluorescence, electrochemical, and surface-enhanced Raman spectroscopy is also evaluated. The study explores the use of inkjet printing, stereolithography, and fused deposition modeling to create nanostructures with enhanced performance. It also discusses the design and functionalization methods for targeting cancer indicators. The integration of 3D-printed nanosensors with multiple detection modalities, including fluorescence, electrochemical, and surface-enhanced Raman spectroscopy, enables rapid and reliable cancer diagnosis. The results show improved sensitivity and specificity for cancer biomarkers, enabling early detection of tumor indicators and circulating cells. The study highlights the potential of 3D-printed nanosensors to transform cancer diagnosis by enabling highly sensitive and specific detection of tumor biomarkers. It signifies a pivotal step forward in cancer diagnostics, showcasing the capacity of 3D printing technology to produce advanced nanosensors that can significantly improve early cancer detection and patient outcomes.

8.
Food Chem ; 460(Pt 3): 140731, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39106757

RESUMO

17ß-E2 is used in animal growth regulation and agricultural fertilizer, and even ng L-1 mass concentration levels can show biological effects. In this work, Ag NPs was used as surface-enhanced Raman spectroscopy (SERS) source and WS2 was synthesized by a simple method to provide a uniform distribution platform for Ag NPs. The MIP was the shell, which can selectively enrich the target molecule, pull the distance between the target molecule and SERS source, and protect Ag NPs. A cyclable SERS substrate with high sensitivity for detecting 17ß-E2 in food was constructed. The optimized WS2/Ag@MIP as SERS substrate has the advantages of high Enhanced Factor (EF = 2.78 × 109), low detection limit (LOD = 0. 0958 pM), strong anti-interference ability, and good recycling performance. Moreover, the detection of 17ß-E2 in real samples still has good accuracy. This work provides a new possibility for the trace detection of 17ß-E2 in food.

9.
Sci Total Environ ; 950: 175301, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111428

RESUMO

Two-dimensional layered semiconductor materials as a distinctive class of materials are comprehensively explored for widespread applications due to narrow bandgap, controllable morphology, and tunable metal cation composition. Herein, we constructed a sensing platform of surface enhanced Raman spectroscopy (SERS) by combination of nickel­cobalt layered double hydroxide (NiCo-LDH) microurchins and plasmonic silver nanoparticles (Ag NPs) for fungicide detection of thiabendazole (TBZ). The NiCo-LDHs/Ag-NPs microcomposites consist of NiCo-LDHs microurchins having a large number of nanoneedles deposited with photoreduced Ag NPs. The SERS platform with NiCo-LDHs/Ag-NPs shows an excellent SERS performance for TBZ detection, including an ultra-low detection limit of 1.49 × 10-11 M, a sublime enhancement factor of 1.71 × 109, high uniformity, good reproducibility, and long-term storage stability. The ultrahigh SERS activity of NiCo-LDH/Ag-NPs can be attributed to strong electromagnetic enhancement in the nanoscale gaps between Ag NPs, massive charge transfer through large-area NiCo-LDH/Ag-NPs interfaces, and the synergistic action of electromagnetic and charge transfer mechanisms. Besides, the unique morphology of NiCo-LDHs/Ag-NPs microcomposite provides a broad surface area for adsorption of TBZ molecules for further Raman signal enhancement. The practicability of the proposed SERS platform is confirmed by detecting TBZ in the real samples of apple juice and river water. The exceptional self-cleaning capability of the NiCo-LDHs/Ag-NPs microcomposite with an retention rate of 81.97 % even after the fifth degradation cycle underscores its impressive sustainable reusability and cost-effectiveness. The findings in this work lay the foundation for the development of high-performance SERS platforms to ensure food safety and environmental protection.

10.
Artigo em Inglês | MEDLINE | ID: mdl-39134960

RESUMO

As the potential adverse health and environmental effects of nanoscale pollutants have garnered significant attention, the demand for monitoring and capturing ultrafine particulate matter has been growing. With the rise in ultrafine dust emissions, this issue has become increasingly important. However, submicron particles require advanced strategies to be captured because of their limited inertial effect. For example, electrostatic air filters have been investigated for their improved performance in the fine particle regime. On the other hand, Raman spectroscopy was proposed as a promising analytical strategy for aerosol particles because it can be used to conveniently detect analytes in a label-free manner. Thus, the synergistic integration of these strategies can open new applications for addressing environment-related challenges. This study presents a multifunctional approach for achieving both air filtration and surface-enhanced Raman scattering (SERS) for analyte identification. We propose a nanoporous membrane composed of a thin gold layer, copper, and copper oxide to provide the desired functions. The structures are produced by performing scalable electrodeposition and subsequent electron-beam evaporation, attaining an excellent filtration efficiency of 95.9% with an applied voltage of 5 kV for 300 nm KCl particles and a pressure drop of 121 Pa. Raman intensity measurements confirm that the nanodendritic surface of the membrane intensifies the Raman signals and allows for the detection of 10 µL of nanoplastic particle dispersion with a concentration of 50 µg/mL. Rhodamine 6G aerosol stream with an approximate particle deposition rate of 0.040 × 106 mm-2·min-1 is also identified in a minimum detectable time of 50 s. The membrane is shown to be recyclable owing to its structural robustness in organic solvents. In addition, the fatigue resistance of the structure is evaluated through 22,000 iterative loading cycles at a pressure of 177 kPa. No performance degradation is observed after the fatigue loading.

11.
Anal Chim Acta ; 1320: 343034, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142776

RESUMO

BACKGROUND: Bacillus cereus (B. cereus) is a widespread conditional pathogen that affects food safety and human health. Conventional methods such as bacteria culture and polymerase chain reaction (PCR) are difficult to use for rapid identification of bacterial spores because of the relatively long analysis times. From a human health perspective, there is an urgent need to develop an ultrasensitive, rapid, and accurate method for the detection of B. cereus spores. RESULTS: The study proposed a new method for rapidly and sensitively detecting the biomarkers of bacterial spores via surface-enhanced Raman spectroscopy (SERS) combined with electrochemical enrichment. The 2,6-Pyridinedicarboxylic acid (DPA) was used as the model analyte to acts as a biomarker of B. cereus spores. The SERS substrate was developed via the in-situ generation of Ag nanoparticles (AgNPs) in a cuttlebone-derived organic matrix (CDOM). Because of the depletion of chitin reduction sites on the CDOM, the pores of the porous channels expanded. The pores diameter of the AgNPs/CDOM porous channel was found to be in the range of 0.7-1.3 nm through molecular diffusion experiments. Based on the porosity of AgNPs/CDOM substrates and the high sensitivity of SERS substrates, the sensor can rapidly and accurately electronically enrich DPA in 40 s with the limit of detection (LOD) of 0.3 nM. SIGNIFICANCE: The results demonstrate that electrochemically assisted SERS substrates can be served as a high sensitivity electrochemical-enrichment device for the rapid and sensitive detection of bacterial spores with minimal interference from potentially coexisting species in biological samples. In this study, it opens up a platform to explore the application of porous channels in natural bio-derived materials in the field of food safety.


Assuntos
Bacillus cereus , Biomarcadores , Prata , Análise Espectral Raman , Esporos Bacterianos , Bacillus cereus/isolamento & purificação , Bacillus cereus/metabolismo , Análise Espectral Raman/métodos , Esporos Bacterianos/isolamento & purificação , Esporos Bacterianos/química , Prata/química , Porosidade , Biomarcadores/análise , Nanopartículas Metálicas/química , Ácidos Picolínicos/análise , Ácidos Picolínicos/química , Limite de Detecção , Propriedades de Superfície
12.
Talanta ; 280: 126685, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137661

RESUMO

Protein amyloid fibrillation is linked to a wide range of neurodegenerative diseases. Protein oligomer is an intermediate substance in the process of fibrillation, which is neurotoxic and formed by the aggregation of protein molecules under physiological stress. Early detection of protein oligomers could make timely intervention of protein fibrillation related diseases. Therefore, it is crucial to develop efficient inhibitors and probes for monitoring amyloid fibril formation. In this study, we developed a novel amyloid inhibitor quinoline yellow (QY), which was proved to be effective in inhibiting insulin protein fibrillation as demonstrated by fluorescence, morphology characterization and circular dichroism. When QY binds to insulin, it exerts inhibitory effects on the nucleation process and effectively impedes the formation of fibrillar fibrils. In addition, we present the application of surface-enhanced Raman spectroscopy (SERS) as an extremely sensitive technique for identifying amyloid oligomers. The investigation employed the probe QY, which demonstrated a linear reaction for identifying oligomers in the concentration range of 1.0-58.0 µM. Impressively, it showcased an exceptionally sensitive detection threshold of 0.2 µM. And also illustrating the binding sites and interaction mechanisms between small molecules of QY and insulin by SERS. The aforementioned methodology was also employed for the identification of insulin oligomers in human serum samples. Thereby, the proposed approach presenting a promising avenue with extensive implications in the realms of pharmaceutical exploration and disease diagnosis.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124921, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39126866

RESUMO

The integration of Pickering emulsion as a versatile template facilitates the assembly of nanoscale and microscale NPs, leading to the formation of intricate 3D superstructures. These superstructures exhibit collective properties, including optical, electric, and catalytic functionalities, surpassing individual building block. This review comprehensively explores the design and engineering principles behind the creation of these multifaceted superstructures. The exploration begins with the fundamental aspects of surface chemistry governing nanoparticles, a crucial factor in directing their assembly behavior at the curved liquid-liquid emulsion interface. Emphasis is placed on understanding emulsion stability, a pivotal element guiding the formation of stable 3D architectures. The discussion extends to unraveling the underlying mechanisms promoting the formation of these 3D superstructures. The focus lies in elucidating the optical functionalities of these superstructures, particularly in the context of surface-enhanced Raman spectroscopy application. The surveyed literature showcases diverse Pickering emulsion-based strategies employed in the assembly of plasmonic nanoparticles into intricate superstructures, offering controlled architectures and unlocking unique potentials for chemical and biochemical sensing.

14.
Nano Lett ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116042

RESUMO

Single-molecule surface-enhanced Raman spectroscopy (SM-SERS) holds great potential to revolutionize ultratrace quantitative analysis. However, achieving quantitative SM-SERS is challenging because of strong intensity fluctuation and blinking characteristics. In this study, we reveal the relation P = 1 - e-α between the statistical SERS probability P and the microscopic average molecule number α in SERS spectra, which lays the physical foundation for a statistical route to implement SM-SERS quantitation. Utilizing SERS probability calibration, we achieve quantitative SERS analysis with batch-to-batch robustness, extremely wide detection range of concentration covering 9 orders of magnitude, and ultralow detection limit far below the single-molecule level. These results indicate the physical feasibility of robust SERS quantitation through statistical route and certainly open a new avenue for implementing SERS as a practical analysis tool in various application scenarios.

15.
Talanta ; 279: 126640, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39128272

RESUMO

Surface Enhanced Raman Spectroscopy (SERS) technique is an effective analytical technique in which fingerprint information about analytes can be obtained, can provide detection limit performance at the single molecule level, and analyzes are performed in a single step without any intermediate steps. SERS technique offers additional benefits rather than other analytical techniques including high selectivity, ultrasensitive detection, uncomplicated protocols, in situ sampling, on-set capability and cost-effectiveness. As a result of the combination of developments in materials and nanotechnology science with the SERS analysis technique, this technique strengthens its use advantage day by day. The most important factor that limited the use of this technique was the fact that the solution containing the desired analyte(s) was dropped onto the SERS substrate and the same substrate could not be reused in subsequent analyses. To solve this problem, scientists have focused on developing reusable SERS substrates in recent years. In these studies, scientists basically used three SERS substrate cleaning applications (1) washing the SERS substrate with a suitable solvent that can elute the analyte from SERS surface after analysis, (2) cleaning the SERS substrate with catalytic degradation of analytes after analysis by modifying them with catalytic active materials and (3) Applying plasma cleaning procedure to SERS substrate after analysis and (4) applying adsorption and desorption procedure prior to SERS analysis. Herein, the aim of this review article is to evaluate the reusable SERS substrates-based methods based on their level of development and their potential to recycle. This review offers a coherent discussion on a wide range of sensing schemes employed in fabricating the SERS substrates. We utilized a critical approach in which elaborative examples were selected to highlight key shortcomings of various experimental configurations. In the same vein, there is a discussion of the advantages and limitations concerning the key instrumental advances and the expansion of the recent methods developed in this area.

16.
Foods ; 13(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39123554

RESUMO

Chlorpyrifos is one of the most widely used broad-spectrum insecticides in agriculture. Given its potential toxicity and residue in food (e.g., tea), establishing a rapid and reliable method for the determination of chlorpyrifos residue is crucial. In this study, a strategy combining surface-enhanced Raman spectroscopy (SERS) and intelligent variable selection models for detecting chlorpyrifos residue in tea was established. First, gold nanostars were fabricated as a SERS sensor for measuring the SERS spectra. Second, the raw SERS spectra were preprocessed to facilitate the quantitative analysis. Third, a partial least squares model and four outstanding intelligent variable selection models, Monte Carlo-based uninformative variable elimination, competitive adaptive reweighted sampling, iteratively retaining informative variables, and variable iterative space shrinkage approach, were developed for detecting chlorpyrifos residue in a comparative study. The repeatability and reproducibility tests demonstrated the excellent stability of the proposed strategy. Furthermore, the sensitivity of the proposed strategy was assessed by estimating limit of detection values of the various models. Finally, two-tailed paired t-tests confirmed that the accuracy of the proposed strategy was equivalent to that of gas chromatography-mass spectrometry. Hence, the proposed method provides a promising strategy for detecting chlorpyrifos residue in tea.

17.
Food Chem ; 458: 140231, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38959803

RESUMO

Aflatoxin B1 (AFB1), a pernicious constituent of the aflatoxin family, predominantly contaminates cereals, oils, and their derivatives. Acknowledged as a Class I carcinogen by the World Health Organization (WHO), the expeditious and quantitative discernment of AFB1 remains imperative. This investigation delineates that aluminum ions can precipitate the coalescence of iodine-modified silver nanoparticles, thereby engendering hot spots conducive for label-free AFB1 identification via Surface-Enhanced Raman Spectroscopy (SERS). This methodology manifests a remarkable limit of detection (LOD) at 0.47 fg/mL, surpassing the sensitivity thresholds of conventional survey techniques. Moreover, this method has good anti-interference ability, with a relative error of less than 10% and a relative standard deviation of less than 6% in quantitative results. Collectively, these findings illuminate the substantial application potential and viability of this approach in the quantitative analysis of AFB1, underpinning a significant advancement in food safety diagnostics.

18.
Molecules ; 29(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39064915

RESUMO

Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful technique for the detection and analysis of biomolecules due to its high sensitivity and selectivity. In recent years, SERS-based sensors have received significant attention for the detection of deoxyribonucleic acid (DNA) molecules, offering promising applications in fields such as medical diagnostics, forensic analysis, and environmental monitoring. This paper provides a concise overview of the principles, advancements, and potential of SERS-based sensors for DNA detection. First, the fundamental principles of SERS are introduced, highlighting its ability to enhance the Raman scattering signal by several orders of magnitude through the interaction between target molecules with metallic nanostructures. Then, the fabrication technologies of SERS substrates tailored for DNA detection are reviewed. The performances of SERS substrates previously reported for DNA detection are compared and analyzed in terms of the limit of detection (LOD) and enhancement factor (EF) in detail, with respect to the technical parameters of Raman spectroscopy (e.g., laser wavelength and power). Additionally, strategies for functionalizing the sensor surfaces with DNA-specific capture probes or aptamers are outlined. The collected data can be of help in selecting and optimizing the most suitable fabrication technology considering nucleotide sensing applications with Raman spectroscopy.


Assuntos
Técnicas Biossensoriais , DNA , Análise Espectral Raman , Análise Espectral Raman/métodos , DNA/análise , DNA/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Nanopartículas Metálicas/química , Limite de Detecção , Humanos
19.
Sensors (Basel) ; 24(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39065845

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is a promising and highly sensitive molecular fingerprint detection technology. However, the development of SERS nanocomposites that are label-free, highly sensitive, selective, stable, and reusable for gaseous volatile organic compounds (VOCs) detection remains a challenge. Here, we report a novel TiO2NTs/AuNPs@ZIF-8 nanocomposite for the ultrasensitive SERS detection of VOCs. The three-dimensional TiO2 nanotube structure with a large specific surface area provides abundant sites for the loading of Au NPs, which possess excellent local surface plasmon resonance (LSPR) effects, further leading to the formation of a large number of SERS active hotspots. The externally wrapped porous MOF structure adsorbs more gaseous VOC molecules onto the noble metal surface. Under the synergistic mechanism of physical and chemical enhancement, a better SERS enhancement effect can be achieved. By optimizing experimental conditions, the SERS detection limit for acetophenone, a common exhaled VOC, is as low as 10-11 M. And the relative standard deviation of SERS signal intensity from different points on the same nanocomposite surface is 4.7%. The acetophenone gas achieves a 1 min response and the signal reaches stability in 4 min. Under UV irradiation, the surface-adsorbed acetophenone can be completely degraded within 40 min. The experimental results demonstrate that this nanocomposite has good detection sensitivity, repeatability, selectivity, response speed, and reusability, making it a promising sensor for gaseous VOCs.

20.
Indian J Med Microbiol ; 51: 100694, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39074769

RESUMO

BACKGROUND: Aptamers are not so new a concept, however, it is scarcely discussed by medical fraternity. Aptamers are potent, new identification molecules set to rope in a new technique in the diagnostic arena. Aptamers have started almost a revolution in diagnostic assays since their discovery in the 90s. (Radu S. Current and previous disease outbreaks around the world, U.S. News & World Report. 2020 Mar 13 [cited 2024 Jun 17]. Available from: https://www.usnews.com/news/best-countries/slideshows/20-pandemic-and-epidemic-diseases-according-to-who) provides an overview of pandemics and epidemics as reported by the WHO. It is interesting to note that several endemic and epidemic diseases viz. Chikungunya, Cholera, Crimean-Congo haemorrhagic fever, Ebola virus disease, Hendra virus infection, Influenza, Lassa fever, Marburg virus disease, Meningitis, MERS-CoV (Middle East Respiratory Syndrome Corona Virus), Monkeypox, Nipah virus infection, Novel coronavirus, Plague, Rift Valley fever, SARS (Severe Acute Respiratory Syndrome), Smallpox, Tularaemia, Yellow fever, and Zika virus disease have been identified by the WHO and are being explored for applicability of aptamer technology in their identification. OBJECTIVES: One of the most important necessities to control epidemic or pandemic diseases is early diagnosis. However, the majority of the diagnostic tests for these diseases are available only in tertiary care centres. The objective of this review is to discuss the potential of aptamer technology to provide undemanding, simple, specific, sensitive, and cost-effective diagnostic assays that are useable in remote and field conditions. CONTENT: Here, we discuss recent advances and approaches in aptamer and aptamer engineering useful in the diagnosis of infectious and non-infectious conditions. This review also discusses a few sensing discoveries which are a gift of advanced engineering and technology using optical and electrochemical aptasensors. It's still a long way to go, and we need to take into account the technological challenges being faced by aptamer-aptasensor technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...