Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Front Neural Circuits ; 17: 1235181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701071

RESUMO

Although sympathetic autonomic systems are activated in parallel with locomotion, the neural mechanisms mediating this coordination are incompletely understood. Sympathetic preganglionic neurons (SPNs), primarily located in the intermediate laminae of thoracic and upper lumbar segments (T1-L2), increase activation of tissues and organs that provide homeostatic and metabolic support during movement and exercise. Recent evidence suggests integration between locomotor and autonomic nuclei occurs within the brainstem, initiating both descending locomotor and sympathetic activation commands. However, both locomotor and sympathetic autonomic spinal systems can be activated independent of supraspinal input, in part due to a distributed network involving propriospinal neurons. Whether an intraspinal mechanism exists to coordinate activation of these systems is unknown. We hypothesized that ascending spinal neurons located in the lumbar region provide synaptic input to thoracic SPNs. Here, we demonstrate that synaptic contacts from locomotor-related V3 interneurons (INs) are present in all thoracic laminae. Injection of an anterograde tracer into lumbar segments demonstrated that 8-20% of glutamatergic input onto SPNs originated from lumbar V3 INs and displayed a somatotopographical organization of synaptic input. Whole cell patch clamp recording in SPNs demonstrated prolonged depolarizations or action potentials in response to optical activation of either lumbar V3 INs in spinal cord preparations or in response to optical activation of V3 terminals in thoracic slice preparations. This work demonstrates a direct intraspinal connection between lumbar locomotor and thoracic sympathetic networks and suggests communication between motor and autonomic systems may be a general function of the spinal cord.


Assuntos
Interneurônios , Região Lombossacral , Neurônios , Medula Espinal , Locomoção
2.
Anat Rec (Hoboken) ; 306(9): 2264-2275, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-35717590

RESUMO

Along with well-known data on the neurochemical mechanisms of nociceptor activation, there are still no clear data regarding changes in the cellular composition and morphological characteristics of spinal preganglionic neurons (SPN) after capsaicin treatment. The mechanism of capsaicin toxicity differs in developing and mature nerve cells. This study aimed to determine the number of SPN in the autonomic nuclei on spinal cord (SC) sections and their cross-sectional area, the localization, percentage, and profile area of SPN containing neuronal nitric oxide synthase (nNOS) and calbindin (CB) in the thoracic SC of rats of different ages (from birth to 1-year-old) after capsaicin treatment. Neonatal capsaicin treatment generally decreased the cross-sectional area of the SPN pericarya. However, the cross-sectional area of the CB-immunoreactive (IR) SPN increased in the central autonomic area in rats aged 10-30 days old after capsaicin treatment. The number of SPN decreased only in the central autonomic area of rats aged <20 days. The proportion of nNOS-IR neurons remained steady and did not change during development. The cross-sectional area of nNOS-IR SPN in capsaicin-treated rats was less than that in control rats. The results obtained will promote further studies on the mechanisms of sensory processing in the SC and the development of the sympathetic nervous system.


Assuntos
Capsaicina , Neurônios , Ratos , Animais , Óxido Nítrico Sintase Tipo I/metabolismo , Capsaicina/farmacologia , Capsaicina/metabolismo , Calbindinas/metabolismo , Neurônios/metabolismo , Sistema Nervoso Simpático/fisiologia , Medula Espinal , Fibras Autônomas Pré-Ganglionares/metabolismo
3.
J Integr Neurosci ; 20(3): 561-571, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34645089

RESUMO

Location and distribution of spinal sympathetic preganglionic neurons projecting to the superior cervical ganglion were investigated in a rodent model organism for photoperiodic regulation, the Djungarian hamster (Phodopus sungorus). Upon unilateral injection of Fluoro-Gold into the superior cervical ganglia, retrograde neuronal tracing demonstrated labeled neurons ipsilateral to the injection site. They were seen in spinal segments C8 to Th5 of which the segments Th1 to Th3 contained about 98% of the labeled cells. Neurons were found in the spinal cord predominantly in the intermediolateral nucleus pars principalis and pars funicularis. At the same time, the central autonomic area and the intercalated region contained only very few labeled cells. In the intermediolateral nucleus, cells often were arranged in clusters, of which several were seen in each spinal segment. Selected sections were exposed to antibodies directed against arginine-vasopressin, neuronal nitric oxide synthase, neuropeptide Y, neurotensin, oxytocin or substance P. It was found that about two-thirds of sympathetic preganglionic neurons produced the gaseous neuroactive substance nitric oxide and that few contained small amounts of neuropeptide Y. Fibers of putative supraspinal origin immunopositive for either arginine-vasopressin, neuronal nitric oxide synthase, neuropeptide Y, neurotensin, oxytocin or, in particular, substance P were found in the vicinity of labeled sympathetic preganglionic neurons. These results demonstrate the location of relay neurons for autonomic control of cranial and cardial structures and provide further knowledge on neurochemical properties of sympathetic preganglionic neurons and related structures.


Assuntos
Vias Autônomas/fisiologia , Interneurônios/fisiologia , Fotoperíodo , Medula Espinal/fisiologia , Animais , Vias Autônomas/citologia , Vias Autônomas/metabolismo , Cricetinae , Interneurônios/citologia , Interneurônios/metabolismo , Masculino , Técnicas de Rastreamento Neuroanatômico , Medula Espinal/citologia , Medula Espinal/metabolismo
4.
Cell Mol Neurobiol ; 41(2): 309-326, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32335774

RESUMO

Following the transection of peripheral sympathetic preganglionic axons comprising the cervical sympathetic trunk (CST), we observe robust glial and neuronal plasticity at 1 week post-injury in the rat spinal cord intermediolateral cell column (IML), which houses the injured parent neuronal cell bodies. This plasticity contributes to neuroprotection, as no neuronal loss in the IML is present at 16 weeks post-injury. Here, we administered the antibiotic minocycline or vehicle (VEH) daily for 1 week after CST transection to investigate the role of activated microglia in IML glial and neuronal plasticity and subsequent neuronal survival. At 1 week post-injury, minocycline treatment did not alter microglia number in the IML, but led to a dampened microglia activation state. In addition, the increases in oligodendrocyte (OL) lineage cells and activated astrocytes following injury in VEH rats were attenuated in the minocycline-treated rats. Further, the normal downregulation of choline acetyltransferase (ChAT) in the injured neurons was blunted. At 16 weeks post-injury, fewer ChAT+ neurons were present in the minocycline-treated rats, suggesting that activated microglia together with the glial and neuronal plasticity at 1 week post-injury contribute to the long-term survival of the injured neurons. These results provide evidence for beneficial crosstalk between activated microglia and neurons as well as other glial cells in the cord following peripheral axon injury, which ultimately leads to neuroprotection. The influences of microglia activation in promoting neuronal survival should be considered when developing therapies to administer minocycline for the treatment of neurological pathologies.


Assuntos
Axônios/patologia , Microglia/patologia , Plasticidade Neuronal , Medula Espinal/patologia , Fator 3 Ativador da Transcrição/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Axônios/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colina O-Acetiltransferase/metabolismo , Feminino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Minociclina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Ratos Sprague-Dawley , Fatores de Tempo
5.
Am J Physiol Regul Integr Comp Physiol ; 319(3): R282-R287, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579387

RESUMO

The control of sympathetic vasomotor activity involves a complex network within the brain and spinal circuits. An extensive range of studies has indicated that sympathoexcitation is a common feature in several cardiovascular diseases and that strategies to reduce sympathetic vasomotor overactivity in such conditions can be beneficial. In the present mini-review, we present evidence supporting the spinal cord as a potential therapeutic target to mitigate sympathetic vasomotor overactivity in cardiovascular diseases, focusing mainly on the actions of spinal angiotensin II on the control of sympathetic preganglionic neuronal activity.


Assuntos
Pressão Sanguínea/fisiologia , Neurônios/fisiologia , Medula Espinal/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Frequência Cardíaca/fisiologia , Interneurônios/fisiologia
6.
Exp Neurol ; 327: 113235, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32044331

RESUMO

Spinal cord injury (SCI) disrupts the supraspinal vasomotor pathways to sympathetic preganglionic neurons (SPNs) leading to impaired blood pressure (BP) control that often results in episodes of autonomic dysreflexia and orthostatic hypotension. The physiological cardiovascular consequences of SCI are largely attributed to the plastic changes in spinal SPNs induced by their partial deafferentation. While multiple studies have investigated the morphological changes in SPNs following SCI with contrasting reports. Here we investigated the morphological changes in SPNs rostral and caudal to a high thoracic (T3) SCI at 1-, 4- and 8-weeks post injury. SPNs were identified using Nicotinamide adenine dinucleotide hydrogen phosphate-diaphorase (NADPH- diaphorase) staining and were quantified for soma size and various dendritic measurements. We show that rostral to the lesion, soma size was increased at 1 week along with increased dendritic arbor. The total dendritic length was also increased at chronic stage (8 weeks post SCI). Caudal to the lesion, the soma size or dendritic lengths did not change with SCI. However, dendritic branching was enhanced within a week post SCI and remained elevated throughout the chronic stages. These findings demonstrate that SPNs undergo significant structural changes form sub-acute to chronic stages post-SCI that likely determines their functional consequences. These changes are discussed in context of physiological cardiovascular outcomes post-SCI.


Assuntos
Neurônios/patologia , Traumatismos da Medula Espinal/patologia , Sistema Nervoso Simpático/patologia , Animais , Forma Celular/fisiologia , Dendritos/patologia , Ratos , Ratos Wistar , Vértebras Torácicas
7.
Front Cell Neurosci ; 13: 505, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31780900

RESUMO

Traumatic spinal cord injury (SCI) leads to disruption of sensory, motor and autonomic function, and triggers structural, physiological and biochemical changes that cause reorganization of existing circuits that affect functional recovery. Propriospinal neurons (PN) appear to be very plastic within the inhibitory microenvironment of the injured spinal cord by forming compensatory circuits that aid in relaying information across the lesion site and, thus, are being investigated for their potential to promote locomotor recovery after experimental SCI. Yet the role of PN plasticity in autonomic dysfunction is not well characterized, notably, the disruption of supraspinal modulatory signals to spinal sympathetic neurons after SCI at the sixth thoracic spinal segment or above resulting in autonomic dysreflexia (AD). This condition is characterized by unmodulated sympathetic reflexes triggering sporadic hypertension associated with baroreflex mediated bradycardia in response to noxious yet unperceived stimuli below the injury to reduce blood pressure. AD is frequently triggered by pelvic visceral distension (bowel and bladder), and there are documented structural relationships between injury-induced sprouting of pelvic visceral afferent C-fibers. Their excitation of lumbosacral PN, in turn, sprout and relay noxious visceral sensory stimuli to rostral disinhibited thoracic sympathetic preganglionic neurons (SPN) that manifest hypertension. Herein, we review evidence for maladaptive plasticity of PN in neural circuits mediating heightened sympathetic reflexes after complete high thoracic SCI that manifest cardiovascular dysfunction, as well as contemporary research methodologies being employed to unveil the precise contribution of PN plasticity to the pathophysiology underlying AD development.

8.
J Anat ; 234(2): 263-273, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30468248

RESUMO

The present study was designed to (1) ascertain the distribution and immunohistochemical characteristics of sympathetic preganglionic neurons supplying the caudal mesenteric ganglion (CaMG) and (2) verify the existence of viscerofugal projections from the urinary bladder trigone intramural ganglia (UBT-IG) to the CaMG in female pigs (n = 6). Combined retrograde tracing and immunofluorescence methods were used. Injections of the neuronal tracer Fast Blue (FB) into the right CaMG revealed no retrogradely labelled (FB-positive; FB+ ) nerve cells in the intramural ganglia; however, many FB+ neurons were found in the spinal cord sympathetic nuclei. Double-labelling immunohistochemistry revealed that nearly all (99.4 ± 0.6%) retrogradely labelled neurons were cholinergic (choline acetyltransferase-positive; ChAT+ ) in nature. Many FB+ /ChAT+ perikarya stained positive for vesicular acetylcholine transporter (63.11 ± 5.34%), neuronal nitric oxide synthase (53.48 ± 9.62%) or cocaine- and amphetamine-regulated transcript peptide (41.13 ± 4.77%). A small number of the retrogradely labelled cells revealed immunoreactivity for calcitonin gene-related peptide (7.60 ± 1.34%) or pituitary adenylate cyclase-activating polypeptide (4.57 ± 1.43%). The present study provides the first detailed information on the arrangement and chemical features of preganglionic neurons projecting to the porcine CaMG and, importantly, strong evidence suggesting the absence of viscerofugal projections from the UBT-IG.


Assuntos
Gânglios Autônomos/anatomia & histologia , Bexiga Urinária/inervação , Animais , Feminino , Suínos
9.
Cell Tissue Res ; 375(2): 345-357, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30267140

RESUMO

To gain a better understanding of the neuroplasticity of sympathetic neurons during postnatal ontogenesis, the distribution of neuronal nitric oxide synthase (nNOS) immunoreactivity was studied in sympathetic preganglionic neurons (SPN) in the spinal cord (Th2 segment) of female Wistar rats at different ages (newborn, 10-, 20-, 30-day-old; 2-, 6-month-old; 3-year-old). In all age groups, the majority of nNOS-immunoreactive (IR) neurons was observed in the nucleus intermediolateralis thoracolumbalis pars principalis. In the first month, the proportion of nNOS-IR neurons decreased significantly from 92 ± 3.4% in newborn to 55 ± 4.6% in 1-month-old, while the number of choline acetyltransferase (ChAT)-IR neurons increased from 74 ± 4.2% to 99 ± 0.3% respectively. Decreasing nNOS expression in the first 10 days of life was also confirmed by western blot analysis. Some nNOS-IR SPN also colocalized calbindin (CB) and cocaine and amphetamine-regulated transcript (CART). The percentage of NOS(+)/CB(-) SPN increased from 23 ± 3.6% in 10-day-old to 36 ± 4.2% in 2-month-old rats. Meanwhile, the proportion of NOS(+)/CART(-) neurons decreased from 82 ± 4.7% in newborn to 53 ± 6.1% in 1-month-old rats. The information provided here will also serve as a basis for future studies investigating the mechanisms of autonomic neuron development.


Assuntos
Fibras Autônomas Pré-Ganglionares/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Sistema Nervoso Simpático/citologia , Vértebras Torácicas/citologia , Animais , Animais Recém-Nascidos , Calbindinas/metabolismo , Colina O-Acetiltransferase/metabolismo , Feminino , Proteínas do Tecido Nervoso/metabolismo , Ratos Wistar , Corno Lateral da Medula Espinal/metabolismo
10.
Exp Neurol ; 309: 119-133, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30056160

RESUMO

Olfactory ensheathing cells (OECs) are unique glia that support axon outgrowth in the olfactory system, and when used as cellular therapy after spinal cord injury, improve recovery and axon regeneration. Here we assessed the effects of combining OEC transplantation with another promising therapy, epidural electrical stimulation during a rehabilitative motor task. Sprague-Dawley rats received a mid-thoracic transection and transplantation of OECs or fibroblasts (FBs) followed by lumbar stimulation while climbing an inclined grid. We injected pseudorabies virus (PRV) into hindlimb muscles 7 months post-injury to assess connectivity across the transection. Analyses showed that the number of serotonergic (5-HT) axons that crossed the rostral scar border and the area of neurofilament-positive axons in the injury site were both greater in OEC- than FB-treated rats. We detected PRV-labeled cells rostral to the transection and remarkable evidence of 5-HT and PRV axons crossing the injury site in 1 OEC- and 1 FB-treated rat. The axons that crossed suggested either axon regeneration (OEC) or small areas of probable tissue sparing (FB). Most PRV-labeled thoracic neurons were detected in laminae VII or X, and ~25% expressed Chx10, a marker for V2a interneurons. These findings suggest potential regeneration or sparing of circuits that connect thoracic interneurons to lumbar somatic motor neurons. Despite evidence of axonal connectivity, no behavioral changes were detected in this small-scale study. Together these data suggest that when supplemented with epidural stimulation and climbing, OEC transplantation can increase axonal growth across the injury site and may promote recovery of propriospinal circuitry.


Assuntos
Axônios/fisiologia , Transplante de Células/métodos , Terapia por Estimulação Elétrica/métodos , Neuroglia/fisiologia , Bulbo Olfatório/citologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Animais , Modelos Animais de Doenças , Espaço Epidural/fisiologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Neuroglia/transplante , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Transdução Genética
11.
Auton Neurosci ; 201: 17-23, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27574816

RESUMO

Autonomic dysreflexia is a common complication after high level spinal cord injury and can be life-threatening. We have previously shown that the acute transplantation of olfactory ensheathing cells into the lesion site of rats transected at the fourth thoracic spinal cord level reduced autonomic dysreflexia up to 8weeks after spinal cord injury. This beneficial effect was correlated with changes in the morphology of sympathetic preganglionic neurons despite the olfactory cells surviving no longer than 3weeks. Thus the transitory presence of olfactory ensheathing cells at the injury site initiated long-term functional as well as morphological changes in the sympathetic preganglionic neurons. The primary aim of the present study was to evaluate whether olfactory ensheathing cells survive after transplantation within the parenchyma close to sympathetic preganglionic neurons and whether, in this position, they still reduce the duration of autonomic dysreflexia and modulate sympathetic preganglionic neuron morphology. The second aim was to quantify the density of synapses on the somata of sympathetic preganglionic neurons with the hypothesis that the reduction of autonomic dysreflexia requires synaptic changes. As a third aim, we evaluated the cell type-specificity of olfactory ensheathing cells by comparing their effects with a control group transplanted with fibroblasts. Animals transplanted with OECs had a faster recovery from hypertension induced by colorectal distension at 6 and 7weeks but not at 8weeks after T4 spinal cord transection. Olfactory ensheathing cells survived for at least 8weeks and were observed adjacent to sympathetic preganglionic neurons whose overall number of primary dendrites was reduced and the synaptic density on the somata increased, both caudal to the lesion site. Our results showed a long term cell type-specific effects of olfactory ensheathing cells on sympathetic preganglionic neurons morphology and on the synaptic density on their somata, and a transient cell type-specific reduction of autonomic dysreflexia.


Assuntos
Disreflexia Autonômica/terapia , Fibroblastos/transplante , Neuroglia/transplante , Animais , Disreflexia Autonômica/patologia , Disreflexia Autonômica/fisiopatologia , Pressão Sanguínea/fisiologia , Sobrevivência Celular , Modelos Animais de Doenças , Fibroblastos/patologia , Fibroblastos/fisiologia , Frequência Cardíaca/fisiologia , Masculino , Neuroglia/patologia , Neuroglia/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Mucosa Olfatória/patologia , Mucosa Olfatória/fisiologia , Mucosa Olfatória/transplante , Ratos Wistar , Transplante de Pele , Sistema Nervoso Simpático/patologia , Sistema Nervoso Simpático/fisiopatologia
12.
Am J Physiol Heart Circ Physiol ; 311(3): H555-62, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27371683

RESUMO

The sympathetic preganglionic neurons (SPN) in the thoracic spinal cord regulate vasomotor tone via norepinephrine released from sympathetic terminals and adrenal medulla. We assessed the hypothesis that nitric oxide synthase I (NOS I)- and NOS II-derived nitric oxide (NO) in the thoracic spinal cord differentially modulate sympathetic outflow and that the adrenal medulla may be involved in those modulatory actions. In Sprague-Dawley rats, NOS I immunoreactivity was distributed primarily in the perikaryon, proximal dendrites, or axons of SPN, and small clusters of NOS II immunoreactivity impinged mainly on the circumference of SPN. Intrathecal administration of 7-nitroindazole (7-NI), a specific NOS I antagonist, into the thoracic spinal cord significantly reduced arterial pressure, heart rate, and basal or baroreflex-mediated sympathetic vasomotor tone. On the other hand, intrathecal application of S-methylisothiourea (SMT), a specific NOS II antagonist, elevated arterial pressure with a transient reduction of heart rate, induced a surge of plasma norepinephrine, and reduced baroreflex-mediated but not basal sympathetic vasomotor tone. Bilateral adrenalectomy significantly exacerbated the cardiovascular responses to 7-NI but antagonized those to SMT. We conclude that both NOS I and NOS II are present in the thoracic spinal cord and are tonically active under physiological conditions. Furthermore, the endogenous NO generated by NOS I-containing SPN exerts a tonic excitatory action on vasomotor tone mediated by norepinephrine released from the adrenal medulla and sympathetic nerve terminals. On the other hand, NO derived from NOS II exerts a tonic inhibitory action on sympathetic outflow from the SPN that targets primarily the blood vessels.


Assuntos
Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Norepinefrina/metabolismo , Medula Espinal/metabolismo , Sistema Nervoso Simpático/metabolismo , Sistema Vasomotor/metabolismo , Medula Suprarrenal/metabolismo , Adrenalectomia , Animais , Axônios , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiologia , Dendritos , Inibidores Enzimáticos/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Indazóis/farmacologia , Isotiurônio/análogos & derivados , Isotiurônio/farmacologia , Masculino , Neurônios , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/fisiologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/fisiologia , Ratos , Ratos Sprague-Dawley , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia , Vértebras Torácicas , Sistema Vasomotor/fisiologia
13.
Brain Res ; 1604: 25-34, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25662772

RESUMO

Hypotensive drugs have been used to identify central neurons that mediate compensatory baroreceptor reflex responses. Such drugs also increase blood glucose. Our aim was to identify the neurochemical phenotypes of sympathetic preganglionic neurons (SPN) and adrenal chromaffin cells activated following hydralazine (HDZ; 10mg/kg) administration in rats, and utilize this and SPN target organ destination to ascribe their function as cardiovascular or glucose regulating. Blood glucose was measured and adrenal chromaffin cell activation was assessed using c-Fos immunoreactivity (-ir) and phosphorylation of tyrosine hydroxylase, respectively. The activation and neurochemical phenotype of SPN innervating the adrenal glands and celiac ganglia were determined using the retrograde tracer cholera toxin B subunit, in combination with in situ hybridization and immunohistochemistry. Blood glucose was elevated at multiple time points following HDZ administration but little evidence of chromaffin cell activation was seen suggesting non-adrenal mechanisms contribute to the sustained hyperglycemia. 16±0.1% of T4-T11 SPN contained c-Fos and of these: 24.3±1.4% projected to adrenal glands and 29±5.5% projected to celiac ganglia with the rest innervating other targets. 62.8±1.4% of SPN innervating adrenal glands were activated and 29.9±3.3% expressed PPE mRNA whereas 53.2±8.6% of SPN innervating celiac ganglia were activated and 31.2±8.8% expressed PPE mRNA. CART-ir SPN innervating each target were also activated and did not co-express PPE mRNA. Neurochemical coding reveals that HDZ administration activates both PPE+SPN, whose activity increase glucose mobilization causing hyperglycemia, as well as CART+SPN whose activity drive vasomotor responses mediated by baroreceptor unloading to raise vascular tone and heart rate.


Assuntos
Anti-Hipertensivos/administração & dosagem , Fibras Autônomas Pré-Ganglionares/efeitos dos fármacos , Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Gânglios Simpáticos/efeitos dos fármacos , Glucose/metabolismo , Hidralazina/farmacologia , Neurônios/efeitos dos fármacos , Medula Suprarrenal/inervação , Animais , Anti-Hipertensivos/farmacologia , Fibras Autônomas Pré-Ganglionares/metabolismo , Glicemia/metabolismo , Células Cromafins/efeitos dos fármacos , Células Cromafins/enzimologia , Células Cromafins/metabolismo , Gânglios Simpáticos/citologia , Gânglios Simpáticos/metabolismo , Masculino , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Acute Med Surg ; 2(3): 169-175, 2015 07.
Artigo em Inglês | MEDLINE | ID: mdl-29123716

RESUMO

Aim: We aimed to show the status of intracellular elements in sympathetic preganglionic neurons in an autopsy case of a 55-year-old woman with severe sepsis and cardiac dysfunction with anorexia nervosa. Methods: Our methods include a case report and pathological examinations of autopsied tissues using synchrotron-generated microbeam X-ray fluorescence analysis. Results: A case report of severe sepsis and myocardial dysfunction. The patient had sudden short cardiac arrest without arrhythmia and sequelae, and echocardiogram showed negative inotropic change. The X-ray fluorescence analysis of autopsied tissues indicated an unusually high concentration of cytosolic calcium in sympathetic preganglionic neurons. However, there were no significant pathological findings of damage in the heart or the cardiovascular autonomic nuclei in the central nervous system. Conclusion: The data indicate that dysfunction of the sympathetic preganglionic neurons exists in a patient of severe sepsis and cardiac dysfunction with anorexia nervosa.

15.
Acta Histochem ; 116(8): 1399-406, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25265879

RESUMO

Little is known about the spinal sympathetic organization in the caecilian amphibians. We examined for the first time the location of sympathetic preganglionic neurons (SPNs) in the spinal cord using a panel of specific markers expressed in SPNs. The SPNs of anuran amphibians form two cell columns segregated mainly in the lateral and medial marginal areas of the central gray matter. In the caecilian Typhlonectes natans immunoreactivity for galanin and ChAT is found in most laterally arranged neurons lying in spinal segments 2-7. They are encircled by TH- and nNOS-immunoreactive nerve fibers. These neurons might project specifically to a population of adrenergic sympathetic postganglionic neurons in paravertebral ganglia and/or non-adrenergic sympathetic postganglionic neurons in the celiac ganglia. However the segmental restriction and target specificity of the neurons of the species studied are not known. As mucous and granular glands in the dermis may represent one of the peripheral targets of the adrenergic ganglion cells and reflect the prominent preganglionic cell columns, an immunohistochemical study was done also on these glands. Retrograde-tracing studies are, however, needed to study the segmental localization of the preganglionic neurons and their projections to the postganglionic neurons in sympathetic ganglia.


Assuntos
Anfíbios/metabolismo , Microscopia Confocal/métodos , Neurônios/citologia , Medula Espinal/citologia , Animais , Gânglios Simpáticos/citologia , Imuno-Histoquímica
16.
Clinics ; 66(8): 1407-1412, 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-598396

RESUMO

INTRODUCTION: Results from our laboratory have demonstrated that intracerebroventricular administration of sildenafil to conscious rats promoted a noticeable increase in both lumbar sympathetic activity and heart rate, with no change in the mean arterial pressure. The intracerebroventricular administration of sildenafil may have produced the hemodynamic effects by activating sympathetic preganglionic neurons in the supraspinal regions and spinal cord. It is well documented that sildenafil increases intracellular cGMP levels by inhibiting phosphodiesterase type 5 and increases cAMP levels by inhibiting other phosphodiesterases. OBJECTIVE: To examine and compare, in conscious rats, the hemodynamic response following the intrathecal administration of sildenafil, 8-bromo-cGMP (an analog of cGMP), forskolin (an activator of adenylate cyclase), or dibutyryl-cAMP (an analog of cAMP) in order to elucidate the possible role of the sympathetic preganglionic neurons in the observed hemodynamic response. RESULTS: The hemodynamic responses observed following intrathecal administration of the studied drugs demonstrated the following: 1) sildenafil increased the mean arterial pressure and heart rate in a dose-dependent manner, 2) increasing doses of 8-bromo-cGMP did not alter the mean arterial pressure and heart rate, 3) forskolin did not affect the mean arterial pressure but did increase the heart rate and 4) dibutyryl-cAMP increased the mean arterial pressure and heart rate, similar to the effect observed following the intrathecal injection of the highest dose of sildenafil. CONCLUSION: Overall, the findings of the current study suggest that the cardiovascular response following the intrathecal administration of sildenafil to conscious rats involves the inhibition of phosphodiesterases other than phosphodiesterase type 5 that increase the cAMP level and the activation of sympathetic preganglionic neurons.


Assuntos
Animais , Masculino , Ratos , Pressão Sanguínea/efeitos dos fármacos , Bucladesina/farmacologia , GMP Cíclico/análogos & derivados , Colforsina/administração & dosagem , Frequência Cardíaca/efeitos dos fármacos , Piperazinas/administração & dosagem , Sulfonas/administração & dosagem , Vasodilatadores/administração & dosagem , Bucladesina/administração & dosagem , GMP Cíclico/administração & dosagem , Injeções Espinhais , Purinas/administração & dosagem , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...