Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.566
Filtrar
1.
Nanotechnology ; 35(45)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39127053

RESUMO

In pursuing advanced neuromorphic applications, this study introduces the successful engineering of a flexible electronic synapse based on WO3-x, structured as W/WO3-x/Pt/Muscovite-Mica. This artificial synapse is designed to emulate crucial learning behaviors fundamental to in-memory computing. We systematically explore synaptic plasticity dynamics by implementing pulse measurements capturing potentiation and depression traits akin to biological synapses under flat and different bending conditions, thereby highlighting its potential suitability for flexible electronic applications. The findings demonstrate that the memristor accurately replicates essential properties of biological synapses, including short-term plasticity (STP), long-term plasticity (LTP), and the intriguing transition from STP to LTP. Furthermore, other variables are investigated, such as paired-pulse facilitation, spike rate-dependent plasticity, spike time-dependent plasticity, pulse duration-dependent plasticity, and pulse amplitude-dependent plasticity. Utilizing data from flat and differently bent synapses, neural network simulations for pattern recognition tasks using the Modified National Institute of Standards and Technology dataset reveal a high recognition accuracy of ∼95% with a fast learning speed that requires only 15 epochs to reach saturation.


Assuntos
Redes Neurais de Computação , Plasticidade Neuronal , Óxidos , Tungstênio , Tungstênio/química , Plasticidade Neuronal/fisiologia , Óxidos/química , Sinapses Elétricas/fisiologia , Titânio/química , Aprendizagem , Sinapses/fisiologia
2.
Cell Mol Life Sci ; 81(1): 353, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39154297

RESUMO

The morphology of dendritic spines, the postsynaptic compartment of most excitatory synapses, decisively modulates the function of neuronal circuits as also evident from human brain disorders associated with altered spine density or morphology. Actin filaments (F-actin) form the backbone of spines, and a number of actin-binding proteins (ABP) have been implicated in shaping the cytoskeleton in mature spines. Instead, only little is known about the mechanisms that control the reorganization from unbranched F-actin of immature spines to the complex, highly branched cytoskeleton of mature spines. Here, we demonstrate impaired spine maturation in hippocampal neurons upon genetic inactivation of cyclase-associated protein 1 (CAP1) and CAP2, but not of CAP1 or CAP2 alone. We found a similar spine maturation defect upon overactivation of inverted formin 2 (INF2), a nucleator of unbranched F-actin with hitherto unknown synaptic function. While INF2 overactivation failed in altering spine density or morphology in CAP-deficient neurons, INF2 inactivation largely rescued their spine defects. From our data we conclude that CAPs inhibit INF2 to induce spine maturation. Since we previously showed that CAPs promote cofilin1-mediated cytoskeletal remodeling in mature spines, we identified them as a molecular switch that control transition from filopodia-like to mature spines.


Assuntos
Proteínas do Citoesqueleto , Espinhas Dendríticas , Forminas , Hipocampo , Proteínas dos Microfilamentos , Espinhas Dendríticas/metabolismo , Animais , Camundongos , Forminas/metabolismo , Forminas/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Hipocampo/metabolismo , Hipocampo/citologia , Células Cultivadas , Neurônios/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Camundongos Knockout , Humanos , Proteínas de Transporte
3.
Adv Sci (Weinh) ; : e2406401, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166499

RESUMO

The human retina perceives and preprocesses the spectral information of incident light, enabling fast image recognition and efficient chromatic adaptation. In comparison, it is reluctant to implement parallel spectral preprocessing and temporal information fusion in current complementary metal-oxide-semiconductor (CMOS) image sensors, requiring intricate circuitry, frequent data transmission, and color filters. Herein, an active-matrix synaptic phototransistor array (AMSPA) is developed based on organic/inorganic semiconductor heterostructures. The AMSPA provides wavelength-dependent, bidirectional photoresponses, enabling dynamic imaging and in-sensor spectral preprocessing functions. Specifically, near-infrared light induces inhibitory photoresponse while UV light results in exhibitory photoresponse. With rational structural design of the organic/inorganic hybrid heterostructures, the current dynamic range of phototransistor is improved to over 90 dB. Finally, a 32 × 64 AMSPA (128 pixels per inch) is demonstrated with one-switch-transistor and one-synaptic phototransistor (1-T-1-PT) structure, achieving spatial chromatic enhancement and temporal trajectory imaging. These results reveal the feasibility of AMSPA for constructing artificial vision systems.

4.
Anim Cells Syst (Seoul) ; 28(1): 392-400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139398

RESUMO

This study investigates the effect of Licochalcone A (Lico-A), a flavonoid from licorice roots known for its anti-inflammatory, anti-cancer, and antioxidant properties, on NMDA-induced neurotoxicity in primary cultured rat hippocampal neurons. The study measured cell survival following NMDA and Lico-A exposure, revealing that Lico-A at a 2.5 µg/ml significantly improved cell viability, countering the detrimental effects of NMDA. The study also analyzed synaptic changes by examining both postsynaptic density 95 (PSD95) and synaptophysin-targeted imaging, showing that Lico-A treatment resulted in a significant increase in synaptic puncta, contrasting with the reduction observed under NMDA exposure. Furthermore, levels of phosphorylated mixed lineage kinase domain-like pseudokinase (P-MLKL) and phosphorylated receptor-interacting serine/threonine-protein kinase 3 (P-RIP3), key necroptosis regulators, were measured using Western blotting. The results showed an increase in P-MLKL and P-RIP3 in neurons exposed to NMDA, which was reduced following Lico-A treatment. The response of astrocyte and microglia was also evaluated by immunostaining for glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (IBA-1) and tumor necrosis factor alpha (TNF-α). These markers exhibited heightened expression in the NMDA group, which was substantially reduced by Lico-A treatment. These findings suggest that Lico-A has neuroprotective effects against NMDA-induced neurotoxicity, potentially contributing to synaptic preservation, inhibition of neuronal necroptosis, and modulation of glial activation. Therefore, Lico-A shows promise as a neuroprotective agent for conditions associated with NMDA-related neurotoxicity.

5.
Small ; : e2404733, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39139061

RESUMO

Fractal assembly technology enables scalable construction of organic crystal patterns for emerging nanoelectronics and optoelectronics. Here, a polymer-templating assembly strategy is presented for centimeter-scale patterned growth of fractal organic crystals (FOCs). These structures are formed by drop-coating perylene solution directly onto a gelatin-modified surface, resulting in the formation of crisscross fractal patterns. By adjusting the tilt angle of the template, the morphology of FOCs can be effectively controlled, with the diameter distribution of each level branch ranging from hundreds to ten micrometers. The planar FOC device exhibits flexible photoreception and photosynaptic capabilities, with a high specific detectivity of 1.35 × 109 Jones and paired-pulse facilitation (PPF) index of 104%, withstanding a 0.5 cm bending radius during bending test. These findings present a reliable route for large-scale assembly of flexible organic crystalline materials toward neuromorphic electronics.

6.
Front Cell Neurosci ; 18: 1423471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100896

RESUMO

GABAA receptors (γ-aminobutyric acid-gated receptors type A; GABAARs), the major structural and functional postsynaptic components of inhibitory synapses in the mammalian brain, belong to a family of GABA-gated Cl-/HCO3 - ion channels. They are assembled as heteropentamers from a family of subunits including: α (1-6), ß(1-3), γ(1-3), δ, ε, π, θ and ρ(1-3). GABAARs together with the postsynaptic adhesion protein Neuroligin 2 (NL2) and many other pre- and post-synaptic proteins guide the initiation and functional maturation of inhibitory GABAergic synapses. This study examined how GABAARs and NL2 interact with each other to initiate the formation of synapses. Two functionally distinct GABAAR subtypes, the synaptic type α2ß2γ2-GABAARs versus extrasynaptic type α4ß3δ-GABAARs were expressed in HEK293 cells alone or together with NL2 and co-cultured with striatal GABAergic medium spiny neurons to enable innervation of HEK293 cells by GABAergic axons. When expressed alone, only the synaptic α2ß2γ2-GABAARs induced innervation of HEK293 cells. However, when GABAARs were co-expressed with NL2, the effect on synapse formation exceeded the individual effects of these proteins indicating a synergistic interaction, with α2ß2γ2-GABAAR/NL2 showing a significantly greater synaptogenic activity than α4ß3δ-GABAAR/NL2 or NL2 alone. To investigate the molecular basis of this interaction, different combinations of GABAAR subunits and NL2 were co-expressed, and the degree of innervation and synaptic activity assessed, revealing a key role of the γ2 subunit. In biochemical assays, the interaction between NL2 and α2ß2γ2-GABAAR was established and mapped to the large intracellular domain of the γ2 subunit.

7.
Transl Stroke Res ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103660

RESUMO

The direct interplay between the immune and nervous systems is now well established. Within the brain, these interactions take place between neurons and resident glial cells, i.e., microglia and astrocytes, or infiltrating immune cells, influenced by systemic factors. A special form of physical cell-cell interactions is the so-called "neuroimmunological (NI) synapse." There is compelling evidence that the same signaling pathways that regulate inflammatory responses to injury or ischemia also play potent roles in brain development, plasticity, and function. Proper synaptic wiring is as important during development as it is during disease states, as it is necessary for activity-dependent refinement of neuronal circuits. Since the process of forming synaptic connections in the brain is highly dynamic, with constant changes in strength and connectivity, the immune component is perfectly suited for the regulatory task as it is in constant turnover. Many cellular and molecular players in this interaction remain to be uncovered, especially in pathological states. In this review, we discuss and propose possible communication hubs between components of the adaptive and innate immune systems and the synaptic element in ischemic stroke pathology.

8.
J Neurochem ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39091022

RESUMO

Following exocytosis, the recapture of plasma membrane-stranded vesicular proteins into recycling synaptic vesicles (SVs) is essential for sustaining neurotransmission. Surface clustering of vesicular proteins has been proposed to act as a 'pre-assembly' mechanism for endocytosis that ensures high-fidelity retrieval of SV cargo. Here, we used single-molecule imaging to examine the nanoclustering of synaptotagmin-1 (Syt1) and synaptic vesicle protein 2A (SV2A) in hippocampal neurons. Syt1 forms surface nanoclusters through the interaction of its C2B domain with SV2A, which are sensitive to mutations in this domain (Syt1K326A/K328A) and SV2A knockdown. SV2A co-clustering with Syt1 is reduced by blocking SV2A's cognate interaction with Syt1 (SV2AT84A). Surprisingly, impairing SV2A-Syt1 nanoclustering enhanced the plasma membrane recruitment of key endocytic protein dynamin-1, causing accelerated Syt1 endocytosis, altered intracellular sorting and decreased trafficking of Syt1 to Rab5-positive endocytic compartments. Therefore, SV2A and Syt1 are segregated from the endocytic machinery in surface nanoclusters, limiting dynamin recruitment and negatively regulating Syt1 entry into recycling SVs.

9.
J Neurophysiol ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110512

RESUMO

How cellular adaptations give rise to opioid analgesic tolerance to opioids like morphine is not well understood. For one, pain is a complex phenomenon comprised of both sensory and affective components, largely mediated through separate circuits. Glutamatergic projections from the medial thalamus (MThal) to the anterior cingulate cortex (ACC) are implicated in processing of affective pain, a relatively understudied component of the pain experience. The goal of this study was to determine the effects of chronic morphine exposure on mu-opioid receptor (MOR) signaling on MThal-ACC synaptic transmission within the excitatory and feedforward inhibitory pathways. Using whole-cell patch clamp electrophysiology and optogenetics to selectively target these projections, we measured morphine-mediated inhibition of optically evoked postsynaptic currents in ACC layer V pyramidal neurons in drug-naïve and chronically morphine treated mice. We found that that morphine perfusion inhibited the excitatory and feedforward inhibitory pathways similarly in females but caused greater inhibition of the inhibitory pathway in males. Chronic morphine treatment robustly attenuated morphine presynaptic inhibition within the inhibitory pathway in males, but not females, and mildly attenuated presynaptic inhibition within the excitatory pathway in both sexes. These effects were not observed in MOR phosphorylation-deficient mice. This study indicates that chronic morphine treatment induces cellular tolerance to morphine within a thalamo-cortical circuit relevant to pain and opioid analgesia. Furthermore, it suggests this tolerance may be driven by MOR phosphorylation. Overall, these findings improve our understanding of how chronic opioid exposure alters cellular signaling in ways that may contribute to opioid analgesic tolerance.

10.
Cells ; 13(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39120329

RESUMO

The pathogenic expansion of the intronic GGGGCC hexanucleotide located in the non-coding region of the C9orf72 gene represents the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This mutation leads to the accumulation of toxic RNA foci and dipeptide repeats (DPRs), as well as reduced levels of the C9orf72 protein. Thus, both gain and loss of function are coexisting pathogenic aspects linked to C9orf72-ALS/FTD. Synaptic alterations have been largely described in C9orf72 models, but it is still not clear which aspect of the pathology mostly contributes to these impairments. To address this question, we investigated the dynamic changes occurring over time at the synapse upon accumulation of poly(GA), the most abundant DPR. Overexpression of this toxic form induced a drastic loss of synaptic proteins in primary neuron cultures, anticipating autophagic defects. Surprisingly, the dramatic impairment characterizing the synaptic proteome was not fully matched by changes in network properties. In fact, high-density multi-electrode array analysis highlighted only minor reductions in the spike number and firing rate of poly(GA) neurons. Our data show that the toxic gain of function linked to C9orf72 affects the synaptic proteome but exerts only minor effects on the network activity.


Assuntos
Autofagia , Proteína C9orf72 , Neurônios , Sinapses , Neurônios/metabolismo , Animais , Sinapses/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Células Cultivadas , Peptídeos/metabolismo , Humanos , Agregados Proteicos
11.
Front Immunol ; 15: 1411957, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114656

RESUMO

Introduction: CD8+ cytotoxic T lymphocytes (CTLs) are highly effective in defending against viral infections and tumours. They are activated through the recognition of peptide-MHC-I complex by the T-cell receptor (TCR) and co-stimulation. This cognate interaction promotes the organisation of intimate cell-cell connections that involve cytoskeleton rearrangement to enable effector function and clearance of the target cell. This is key for the asymmetric transport and mobilisation of lytic granules to the cell-cell contact, promoting directed secretion of lytic mediators such as granzymes and perforin. Mitochondria play a role in regulating CTL function by controlling processes such as calcium flux, providing the necessary energy through oxidative phosphorylation, and its own protein translation on 70S ribosomes. However, the effect of acute inhibition of cytosolic translation in the rapid response after TCR has not been studied in mature CTLs. Methods: Here, we investigated the importance of cytosolic protein synthesis in human CTLs after early TCR activation and CD28 co-stimulation for the dynamic reorganisation of the cytoskeleton, mitochondria, and lytic granules through short-term chemical inhibition of 80S ribosomes by cycloheximide and 80S and 70S by puromycin. Results: We observed that eukaryotic ribosome function is required to allow proper asymmetric reorganisation of the tubulin cytoskeleton and mitochondria and mTOR pathway activation early upon TCR activation in human primary CTLs. Discussion: Cytosolic protein translation is required to increase glucose metabolism and degranulation capacity upon TCR activation and thus to regulate the full effector function of human CTLs.


Assuntos
Linfócitos T CD8-Positivos , Citosol , Ativação Linfocitária , Mitocôndrias , Biossíntese de Proteínas , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Ativação Linfocitária/imunologia , Citosol/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/imunologia , Citoesqueleto/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Ribossomos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
12.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125997

RESUMO

The transmembrane protein ß-amyloid precursor protein (APP) is central to the pathophysiology of Alzheimer's disease (AD). The ß-amyloid hypothesis posits that aberrant processing of APP forms neurotoxic ß-amyloid aggregates, which lead to the cognitive impairments observed in AD. Although numerous additional factors contribute to AD, there is a need to better understand the synaptic function of APP. We have found that Drosophila APP-like (APPL) has both shared and non-shared roles at the synapse with Kismet (Kis), a chromatin helicase binding domain (CHD) protein. Kis is the homolog of CHD7 and CHD8, both of which are implicated in neurodevelopmental disorders including CHARGE Syndrome and autism spectrum disorders, respectively. Loss of function mutations in kis and animals expressing human APP and BACE in their central nervous system show reductions in the glutamate receptor subunit, GluRIIC, the GTPase Rab11, and the bone morphogenetic protein (BMP), pMad, at the Drosophila larval neuromuscular junction (NMJ). Similarly, processes like endocytosis, larval locomotion, and neurotransmission are deficient in these animals. Our pharmacological and epistasis experiments indicate that there is a functional relationship between Kis and APPL, but Kis does not regulate appl expression at the larval NMJ. Instead, Kis likely influences the synaptic localization of APPL, possibly by promoting rab11 transcription. These data identify a potential mechanistic connection between chromatin remodeling proteins and aberrant synaptic function in AD.


Assuntos
Precursor de Proteína beta-Amiloide , Proteínas de Drosophila , Junção Neuromuscular , Proteínas rab de Ligação ao GTP , Animais , Junção Neuromuscular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Transmissão Sináptica , Sinapses/metabolismo , Receptores de Glutamato/metabolismo , Receptores de Glutamato/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , DNA Helicases/metabolismo , DNA Helicases/genética , Proteínas de Membrana , Proteínas do Tecido Nervoso , Proteínas de Homeodomínio , Receptores Ionotrópicos de Glutamato
13.
Artigo em Inglês | MEDLINE | ID: mdl-39178336

RESUMO

Metal-organic frameworks (MOFs) have attained broad research attention in the areas of sensors, resistive memories, and optoelectronic synapses on the merits of their intriguing physical and chemical properties. In this review, recent progress on the synthesis of MOFs and their electronic applications is introduced and discussed. Initially, the crystal structures and properties of MOFs encompassing optical, electrical, and chemical properties are discussed in brief. Subsequently, advanced synthesis methods for MOFs are introduced, categorized into hydrothermal approach, microwave synthesis, mechanochemical synthesis, and electrochemical deposition. After that, the various roles of MOFs in widespread applications, including sensing, information storage, optoelectronic synapses, machine learning, and artificial intelligence, are discussed, highlighting their versatility and the innovative solutions they provide to long-standing challenges. Finally, an outlook on remaining challenges and a future perspective for MOFs are proposed.

14.
IBRO Neurosci Rep ; 17: 138-144, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39170059

RESUMO

Optomotor responses are a popular way to assess sub-cortical visual responses in mice. We studied photoreceptor inputs into optomotor circuits using genetically-modified mice lacking the exocytotic calcium sensors synaptotagmin 1 (Syt1) and 7 (Syt7) in rods or cones. We also tested mice that in which cone transducin, GNAT2, had been eliminated. We studied spatial frequency sensitivity under mesopic conditions by varying the spatial frequency of a grating rotating at 12 deg/s and contrast sensitivity by varying luminance contrast of 0.2c/deg gratings. We found that eliminating Syt1 from rods reduced responses to a low spatial frequency grating (0.05c/deg) consistent with low resolution in this pathway. Conversely, eliminating the ability of cones to respond to light (by eliminating GNAT2) or transmit light responses (by selectively eliminating Syt1) showed weaker responses to a high spatial frequency grating (3c/deg). Eliminating Syt7 from the entire optomotor pathway in a global knockout had no significant effect on optomotor responses. We isolated the secondary rod pathway involving transmission of rod responses to cones via gap junctions by simultaneously eliminating Syt1 from rods and GNAT2 from cones. We found that the secondary rod pathway is sufficient to drive robust optomotor responses under mesopic conditions. Finally, eliminating Syt1 from both rods and cones almost completely abolished optomotor responses, but we detected weak responses to large, bright rotating gratings that are likely driven by input from intrinsically photosensitive retinal ganglion cells.

15.
ACS Nano ; 18(33): 21685-21713, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39110686

RESUMO

Neuromorphic computing seeks to replicate the capabilities of parallel processing, progressive learning, and inference while retaining low power consumption by drawing inspiration from the human brain. By further overcoming the constraints imposed by the traditional von Neumann architecture, this innovative approach has the potential to revolutionize modern computing systems. Memristors have emerged as a solution to implement neuromorphic computing in hardware, with research based on developing functional materials for resistive switching performance enhancement. Recently, two-dimensional MXenes, a family of transition metal carbides, nitrides, and carbonitrides, have begun to be integrated into these devices to achieve synaptic emulation. MXene-based memristors have already demonstrated diverse neuromorphic characteristics while enhancing the stability and reducing power consumption. The possibility of changing the physicochemical properties through modifications of the surface terminations, bandgap, interlayer spacing, and oxidation for each existing MXene makes them very promising. Here, recent advancements in MXene synthesis, device fabrication, and characterization of MXene-based neuromorphic artificial synapses are discussed. Then, we focus on understanding the resistive switching mechanisms and how they connect with theoretical and experimental data, along with the innovations made during the fabrication process. Additionally, we provide an in-depth review of the neuromorphic performance, making a connection with the resistive switching mechanism, along with a compendium of each relevant performance factor for nonvolatile and volatile applications. Finally, we state the remaining challenges in MXene-based devices for artificial synapses and the next steps that could be taken for future development.

16.
Chemphyschem ; : e202400265, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119992

RESUMO

Iontronic fluidic ionic/electronic components are emerging as promising elements for artificial brain-like computation systems. Nanopore ionic rectifiers can be operated as a synapse element, exhibiting conductance modulation in response to a train of voltage impulses, thus producing programmable resistive states. We propose a model that replicates hysteresis, rectification, and time domain response properties, based on conductance modulation between two conducting modes and a relaxation time of the state variable. We show that the kinetic effects observed in hysteresis loops govern the potentiation phenomena related to conductivity modulation. To illustrate the efficacy of the model, we apply it to replicate rectification, hysteresis and conductance modulation of two different experimental systems: a polymer membrane with conical pores, and a blind-hole nanoporous anodic alumina membrane with a barrier oxide layer. We show that the time transient analysis of the model develops the observed potentiation and depression phenomena of the synaptic properties.

17.
Adv Neurobiol ; 39: 95-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39190073

RESUMO

Astrocytes, a major class of glial cells, are an important element at the synapse where they engage in bidirectional crosstalk with neurons to regulate numerous aspects of neurotransmission, circuit function, and behavior. Mutations in synapse-related genes expressed in both neurons and astrocytes are central factors in a vast number of neurological disorders, making the proteins that they encode prominent targets for therapeutic intervention. Yet, while the roles of many of these synaptic proteins in neurons are well established, the functions of the same proteins in astrocytes are largely unknown. This gap in knowledge must be addressed to refine therapeutic approaches. In this chapter, we integrate multiomic meta-analysis and a comprehensive overview of current literature to show that astrocytes express an astounding number of genes that overlap with the neuronal and synaptic transcriptomes. Further, we highlight recent reports that characterize the expression patterns and potential novel roles of these genes in astrocytes in both physiological and pathological conditions, underscoring the importance of considering both cell types when investigating the function and regulation of synaptic proteins.


Assuntos
Astrócitos , Neurônios , Sinapses , Astrócitos/metabolismo , Sinapses/metabolismo , Humanos , Neurônios/metabolismo , Animais , Expressão Gênica , Transmissão Sináptica , Transcriptoma
18.
Adv Neurobiol ; 39: 165-191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39190075

RESUMO

Engagement of astrocytes within the brain's reward circuitry has been apparent for approximately 30 years, when noncontingent drug administration was observed to lead to cytological markers of reactive astrocytes. Since that time, advanced approaches in rodent behavior and astrocyte monitoring have revealed complex interactions between astrocytes with drug type, animal sex, brain region, and dose and duration of drug administration. A number of studies now collectively reveal that rodent drug self-administration followed by prolonged abstinence results in decreased features of structure and synaptic colocalization of astrocytes. In addition, stimulation of astrocytes in the nucleus accumbens with DREADD receptors or pharmacological compounds opposes drug-seeking behavior. These findings provide a clear path for ongoing investigation into astrocytes as mediators of drug action in the brain and underscore the potential therapeutic utility of astrocytes in the regulation of drug craving and relapse vulnerability.


Assuntos
Astrócitos , Neurônios , Transtornos Relacionados ao Uso de Substâncias , Astrócitos/metabolismo , Animais , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Humanos , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Comportamento de Procura de Droga , Encéfalo/metabolismo , Recompensa , Comunicação Celular/fisiologia
19.
ACS Appl Mater Interfaces ; 16(33): 43816-43826, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39129500

RESUMO

We report on hybrid memristor devices consisting of germanium dioxide nanoparticles (GeO2 NP) embedded within a poly(methyl methacrylate) (PMMA) thin film. Besides exhibiting forming-free resistive switching and an uncommon "ON" state in pristine conditions, the hybrid (nanocomposite) devices demonstrate a unique form of mixed-mode switching. The observed stopping voltage-dependent switching enables state-of-the-art bifunctional synaptic behavior with short-term (volatile/temporal) and long-term (nonvolatile/nontemporal) modes that are switchable depending on the stopping voltage applied. The short-term memory mode device is demonstrated to further emulate important synaptic functions such as short-term potentiation (STP), short-term depression (STD), paired-pulse facilitation (PPF), post-tetanic potentiation (PTP), spike-voltage-dependent plasticity (SVDP), spike-duration-dependent plasticity (SDDP), and, more importantly, the "learning-forgetting-rehearsal" behavior. The long-term memory mode gives additional long-term potentiation (LTP) and long-term depression (LTD) characteristics for long-term plasticity applications. The work shows a unique coexistence of the two resistive switching modes, providing greater flexibility in device design for future adaptive and reconfigurable neuromorphic computing systems at the hardware level.

20.
Neurobiol Dis ; 200: 106630, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106928

RESUMO

Despite growing descriptions of wild-type Huntingtin (wt-HTT) roles in both adult brain function and, more recently, development, several clinical trials are exploring HTT-lowering approaches that target both wt-HTT and the mutant isoform (mut-HTT) responsible for Huntington's disease (HD). This non-selective targeting is based on the autosomal dominant inheritance of HD, supporting the idea that mut-HTT exerts its harmful effects through a toxic gain-of-function or a dominant-negative mechanism. However, the precise amount of wt-HTT needed for healthy neurons in adults and during development remains unclear. In this study, we address this question by examining how wt-HTT loss affects human neuronal network formation, synaptic maturation, and homeostasis in vitro. Our findings establish a role of wt-HTT in the maturation of dendritic arborization and the acquisition of network-wide synchronized activity by human cortical neuronal networks modeled in vitro. Interestingly, the network synchronization defects only became apparent when more than two-thirds of the wt-HTT protein was depleted. Our study underscores the critical need to precisely understand wt-HTT role in neuronal health. It also emphasizes the potential risks of excessive wt-HTT loss associated with non-selective therapeutic approaches targeting both wt- and mut-HTT isoforms in HD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...