Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Exp Hematol Oncol ; 13(1): 96, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350256

RESUMO

Chimeric antigen receptor (CAR) T cell therapy, which targets tumors with high specificity through the recognition of particular antigens, has emerged as one of the most rapidly advancing modalities in immunotherapy, demonstrating substantial success against hematological malignancies. However, previous generations of CAR-T cell therapy encountered numerous challenges in treating solid tumors, such as the lack of suitable targets, high immunosuppression, suboptimal persistence, and insufficient infiltration owing to the complexities of the tumor microenvironment, all of which limited their efficacy. In this review, we focus on the current therapeutic targets of fourth-generation CAR-T cells, also known as armored CAR-T cells, and explore the mechanisms by which these engineered cells navigate the tumor microenvironment by targeting its various components. Enhancing CAR-T cells with these therapeutic targets holds promise for improving their effectiveness against solid tumors, thus achieving substantial clinical value and advancing the field of CAR-T cell therapy. Additionally, we discuss potential strategies to overcome existing challenges and highlight novel targets that could further enhance the efficacy of CAR-T cell therapy in treating solid tumors.

2.
Proc Natl Acad Sci U S A ; 121(40): e2318687121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39312667

RESUMO

The CD4 T cell, when engineered with a chimeric antigen receptor (CAR) containing specific intracellular domains, has been transformed into a zero-order drug-delivery platform. This introduces the capability of prolonged, disease-specific engineered protein biologics production, at the disease site. Experimental findings demonstrate that CD4 T cells offer a solution when modified with a CAR that includes 4-1BB but excludes CD28 intracellular domain. In this configuration, they achieve ~3X transduction efficiency of CD8 T cells, ~2X expansion rates, generating ~5X more biologic, and exhibit minimal cytolytic activity. Cumulatively, this addresses two main hurdles in the translation of cell-based drug delivery: scaling the production of engineered T cell ex vivo and generating sufficient biologics in vivo. When programmed to induce IFNß upon engaging the target antigen, the CD4 T cells outperforms CD8 T cells, effectively suppressing cancer cell growth in vitro and in vivo. In summary, this platform enables precise targeting of disease sites with engineered protein-based therapeutics while minimizing healthy tissue exposure. Leveraging CD4 T cells' persistence could enhance disease management by reducing drug administration frequency, addressing critical challenges in cell-based therapy.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Receptores de Antígenos Quiméricos , Linfócitos T CD4-Positivos/imunologia , Animais , Humanos , Receptores de Antígenos Quiméricos/imunologia , Camundongos , Linfócitos T CD8-Positivos/imunologia , Sistemas de Liberação de Medicamentos/métodos , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Linhagem Celular Tumoral , Engenharia de Proteínas/métodos
3.
Cancer Immunol Immunother ; 73(6): 100, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630291

RESUMO

In multiple myeloma (MM), B cell maturation antigen (BCMA)-directed CAR T cells have emerged as a novel therapy with potential for long-term disease control. Anti-BCMA CAR T cells with a CD8-based transmembrane (TM) and CD137 (41BB) as intracellular costimulatory domain are in routine clinical use. As the CAR construct architecture can differentially impact performance and efficacy, the optimal construction of a BCMA-targeting CAR remains to be elucidated. Here, we hypothesized that varying the constituents of the CAR structure known to impact performance could shed light on how to improve established anti-BCMA CAR constructs. CD8TM.41BBIC-based anti-BCMA CAR vectors with either a long linker or a short linker between the light and heavy scFv chain, CD28TM.41BBIC-based and CD28TM.CD28IC-based anti-BCMA CAR vector systems were used in primary human T cells. MM cell lines were used as target cells. The short linker anti-BCMA CAR demonstrated higher cytokine production, whereas in vitro cytotoxicity, T cell differentiation upon activation and proliferation were superior for the CD28TM.CD28IC-based CAR. While CD28TM.CD28IC-based CAR T cells killed MM cells faster, the persistence of 41BBIC-based constructs was superior in vivo. While CD28 and 41BB costimulation come with different in vitro and in vivo advantages, this did not translate into a superior outcome for either tested model. In conclusion, this study showcases the need to study the influence of different CAR architectures based on an identical scFv individually. It indicates that current scFv-based anti-BCMA CAR with clinical utility may already be at their functional optimum regarding the known structural variations of the scFv linker.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Antígeno de Maturação de Linfócitos B , Anticorpos , Antígenos CD28 , Terapia Baseada em Transplante de Células e Tecidos
4.
Biol Chem ; 405(7-8): 517-529, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666334

RESUMO

T-cell therapy has emerged as an effective approach for treating viral infections and cancers. However, a significant challenge is the selection of T-cell receptors (TCRs) that exhibit the desired functionality. Conventionally in vitro techniques, such as peptide sensitivity measurements and cytotoxicity assays, provide valuable insights into TCR potency but are labor-intensive. In contrast, measuring ligand binding properties (z-Movi technology) could provide an accelerated processing while showing robust correlations with T-cell functions. In this study, we assessed whether cell avidity can predict functionality also in the context of TCR-engineered T cells. To this end, we developed a flexible system for TCR re-expression by generating a Jurkat-derived T cell clone lacking TCR and CD3 expression through CRISPR-Cas9-mediated TRBC knockout. The knockin of a transgenic TCR into the TRAC locus restored TCR/CD3 expression, allowing for CD3-based purification of TCR-engineered T cells. Subsequently, we characterized these engineered cell lines by functional readouts, and assessment of binding properties through the z-Movi technology. Our findings revealed a strong correlation between the cell avidities and functional sensitivities of Jurkat TCR-T cells. Altogether, by integrating cell avidity measurements with our versatile T cell engineering platform, we established an accelerated system for enhancing the in vitro selection of clinically relevant TCRs.


Assuntos
Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Células Jurkat , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/citologia , Sistemas CRISPR-Cas/genética , Complexo CD3/metabolismo , Complexo CD3/imunologia
5.
Acta Biomater ; 177: 157-164, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364929

RESUMO

Efficient T cell engineering is central to the success of CAR T cell therapy but involves multiple time-consuming manipulations, including T cell isolation, activation, and transduction. These steps add complexity and delay CAR T cell manufacturing, which takes a mean time of 4 weeks. To streamline T cell engineering, we strategically combine two critical engineering solutions - T cell-specific lentiviral vectors and macroporous scaffolds - that enable T cell activation and transduction in a simple, single step. The T cell-specific lentiviral vectors (referred to as STAT virus) target T cells through the display of an anti-CD3 antibody and the CD80 extracellular domain on their surface and provide robust T cell activation. Biocompatible macroporous scaffolds (referred to as Drydux) mediate robust transduction by providing effective interaction between naïve T cells and viral vectors. We show that when unstimulated peripheral blood mononuclear cells (PBMCs) are seeded together with STAT lentivirus on Drydux scaffolds, T cells are activated, selectively transduced, and reprogrammed in a single step. Further, we show that the Drydux platform seeded with PBMCs and STAT lentivirus generates tumor-specific functional CAR T cells. This potent combination of engineered lentivirus and biomaterial scaffold holds promise for an effective, simple, and safe avenue for in vitro and in vivo T cell engineering. STATEMENT OF SIGNIFICANCE: Manufacturing T cell therapies involves lengthy and labor-intensive steps, including T cell selection, activation, and transduction. These steps add complexity to current CAR T cell manufacturing protocols and limit widespread patient access to this revolutionary therapy. In this work, we demonstrate the combination of engineered virus and biomaterial platform that, together, enables selective T cell activation and transduction in a single step, eliminating multistep T cell engineering protocols and significantly simplifying the manufacturing process.


Assuntos
Leucócitos Mononucleares , Linfócitos T , Humanos , Transdução Genética , Terapia Genética , Imunoterapia Adotiva/métodos , Lentivirus/genética , Vetores Genéticos
6.
Methods Mol Biol ; 2748: 151-165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38070114

RESUMO

CAR-T cell therapy is revolutionizing the treatment of hematologic malignancies. However, there are still many challenges ahead before CAR-T cells can be used effectively to treat solid tumors and certain hematologic cancers, such as T-cell malignancies. Next-generation CAR-T cells containing further genetic modifications are being developed to overcome some of the current limitations of this therapy. In this regard, genome editing is being explored to knock out or knock in genes with the goal of enhancing CAR-T cell efficacy or increasing access. In this chapter, we describe in detail a protocol to knock out genes on CAR-T cells using CRISPR-Cas9 technology. Among various gene editing protocols, due to its simplicity, versatility, and reduced toxicity, we focused on the electroporation of ribonucleoprotein complexes containing the Cas9 protein together with sgRNA. All together, these protocols allow for the design of the knockout strategy, CAR-T cell expansion and genome editing, and analysis of knockout efficiency.


Assuntos
Edição de Genes , Neoplasias , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Proteína 9 Associada à CRISPR/genética , Linfócitos T , Neoplasias/genética
7.
Front Immunol ; 14: 1258156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022548

RESUMO

Introduction: Chimeric antigen receptors (CARs) can redirect T cells against antigen-expressing tumors, and each component plays an important role in the function and anti-tumor efficacy. It has been reported that using human sequences or a low affinity of CAR single-chain variable fragments (scFvs) in the CAR binding domains is a potential way to enhance the function of CAR-T cells. However, it remains largely unknown how a lower affinity of CARs using humanized scFvs affects the function of CAR-T cells until recently. Methods: We used different humanized anti-HER2 antibodies as the extracellular domain of CARs and further constructed a series of the CAR-T cells with different affinity. Results: We have observed that moderately reducing the affinity of CARs (light chain variable domain (VL)-based CAR-T) could maintain the anti-tumor efficacy, and improved the safety of CAR therapy both in vitro and in vivo compared with high-affinity CAR-T cells. Moreover, T cells expressing the VL domain only antibody exhibited long-lasting tumor elimination capability after multiple challenges in vitro, longer persistence and lower cytokine levels in vivo. Discussion: Our findings provide an alternative option for CAR-T optimization with the potential to widen the use of CAR T cells.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Anticorpos de Domínio Único , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo , Linfócitos T
8.
Mol Ther Methods Clin Dev ; 31: 101139, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38027056

RESUMO

Engineered T cells expressing chimeric antigen receptors (CARs) have been proven as efficacious therapies against selected hematological malignancies. However, the approved CAR T cell therapeutics strictly rely on viral transduction, a time- and cost-intensive procedure with possible safety issues. Therefore, the direct transfer of in vitro transcribed CAR-mRNA into T cells is pursued as a promising strategy for CAR T cell engineering. Electroporation (EP) is currently used as mRNA delivery method for the generation of CAR T cells in clinical trials but achieving only poor anti-tumor responses. Here, lipid nanoparticles (LNPs) were examined for ex vivo CAR-mRNA delivery and compared with EP. LNP-CAR T cells showed a significantly prolonged efficacy in vitro in comparison with EP-CAR T cells as a result of extended CAR-mRNA persistence and CAR expression, attributed to a different delivery mechanism with less cytotoxicity and slower CAR T cell proliferation. Moreover, CAR expression and in vitro functionality of mRNA-LNP-derived CAR T cells were comparable to stably transduced CAR T cells but were less exhausted. These results show that LNPs outperform EP and underline the great potential of mRNA-LNP delivery for ex vivo CAR T cell modification as next-generation transient approach for clinical studies.

9.
Nano Lett ; 23(22): 10179-10188, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37906000

RESUMO

Cell-based therapies for autoimmune diseases have gained significant traction, with several approaches centered around the regulatory T (Treg) cell─a well-known immunosuppressive cell characterized by its expression of the transcription factor Foxp3. Unfortunately, due to low numbers of Treg cells available in circulation, harvesting and culturing Treg cells remains a challenge. It has been reported that engineering Foxp3 expression in CD4+ T cells can result in a Treg-like phenotype; however, current methods result in the inefficient engineering of these cells. Here, we develop an ionizable lipid nanoparticle (LNP) platform to effectively deliver Foxp3 mRNA to CD4+ T cells. We successfully engineer CD4+ T cells into Foxp3-T (FP3T) cells that transiently exhibit an immunosuppressive phenotype and functionally suppress the proliferation of effector T cells. These results demonstrate the promise of an LNP platform for engineering immunosuppressive T cells with potential applications in autoimmunity therapies.


Assuntos
Doenças Autoimunes , Linfócitos T Reguladores , Humanos , Linfócitos T Reguladores/metabolismo , Autoimunidade , Doenças Autoimunes/terapia , Doenças Autoimunes/genética , Imunossupressores/uso terapêutico , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
10.
Immunobiology ; 228(5): 152720, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37541134

RESUMO

INTRODUCTION: Treatment of severe COVID-19 disease can be challenging in immunocompromized patients due to newly emerging virus variants of concern (VOC) escaping the humoral response. Thus, T cells recognizing to date unmutated epitopes are not only relevant for patients' immune responses against VOC, but might also serve as a therapeutic option for patients with severe COVID-19 disease in the future, e.g. following allogenic stem cell transplantation. METHODS: To this purpose, the activation, cytokine profile and specificity of T-cell clones against unmutated and omicron Spike (S)-protein was analyzed, HLA restriction was determined and most promising T-cell receptor (TCR) was introduced into allogeneic T cells via CRISPR/Cas9-mediated orthotopic TCR replacement. Finally, T-cell responses of engineered T cells was determined and durability of the TCR replacement measured. PERSPECTIVE: SARS-CoV-2 specific engineered T cells recognizing a genomically stable region of the S-protein of all SARS-CoV 2 variants were successfully generated. Such transgenic T cells exhibit favorable effector functions and provide a treatment option of immunocompromised COVID-19 patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , COVID-19/terapia , Receptores de Antígenos de Linfócitos T/genética , Animais Geneticamente Modificados , Epitopos
11.
Nano Lett ; 23(16): 7341-7349, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37506062

RESUMO

Effective tumor regression has been observed with chimeric antigen receptor (CAR) T cells; however, the development of an affordable, safe, and effective CAR-T cell treatment remains a challenge. One of the major obstacles is that the suboptimal genetic modification of T cells reduces their yield and antitumor activity, necessitating the development of a next-generation T cell engineering approach. In this study, we developed a nonviral T cell nanoengineering system that allows highly efficient delivery of diverse functional nanomaterials into primary human T cells in a genetically stable and scalable manner. Our platform leverages the unique cell deformation and restoration process induced by the intrinsic inertial flow in a microchannel to create nanopores in the cellular membrane for macromolecule internalization, leading to effective transfection with high scalability and viability. The proposed approach demonstrates considerable potential as a practical alternative technique for improving the current CAR-T cell manufacturing process.


Assuntos
Imunoterapia Adotiva , Linfócitos T , Humanos , Imunoterapia Adotiva/métodos , Transfecção , Receptores de Antígenos de Linfócitos T/genética
12.
Cell Rep Methods ; 3(4): 100459, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159666

RESUMO

T cell receptor (TCR) technologies, including repertoire analyses and T cell engineering, are increasingly important in the clinical management of cellular immunity in cancer, transplantation, and other immune diseases. However, sensitive and reliable methods for repertoire analyses and TCR cloning are still lacking. Here, we report on SEQTR, a high-throughput approach to analyze human and mouse repertoires that is more sensitive, reproducible, and accurate as compared with commonly used assays, and thus more reliably captures the complexity of blood and tumor TCR repertoires. We also present a TCR cloning strategy to specifically amplify TCRs from T cell populations. Positioned downstream of single-cell or bulk TCR sequencing, it allows time- and cost-effective discovery, cloning, screening, and engineering of tumor-specific TCRs. Together, these methods will accelerate TCR repertoire analyses in discovery, translational, and clinical settings and permit fast TCR engineering for cellular therapies.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Humanos , Animais , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Neoplasias/genética , Bioensaio , Engenharia Celular , Clonagem Molecular
13.
Front Immunol ; 14: 1114770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215108

RESUMO

Background: The overall 5-year survival rate of hepatocellular carcinoma (HCC), a major form of liver cancer, is merely 20%, underscoring the need for more effective therapies. We recently identified T cell receptors (TCR) specific for the HLA-A2/alpha fetoprotein amino acids 158-166 (AFP158) and showed that these TCR engineered T cells could control HCC xenografts in NSG mice. However, their efficacy was limited by poor expansion, loss of function, and short persistence of the TCR T cells. Here, we studied whether overexpression of c-Jun, a transcription factor required for T cell activation, in the TCR T cells could enhance their expansion, function, and persistence in HCC tumor models. Methods: Recombinant lentiviral vectors (lv), expressing either the HLA-A2/AFP158-specific TCR or both the TCR and c-Jun (TCR-JUN), were constructed and used to transduce primary human T cells to generate the TCR or TCR-JUN T cells, respectively. We compared the expansion, effector function, and exhaustion status of the TCR and TCR-JUN T cells in vitro after HCC tumor stimulation. Additionally, we studied the persistence and antitumor effects of the TCR and TCR-JUN T cells using the HCC xenografts in NSG mice. Results: We could effectively transduce primary human T cells to express both TCR and c-Jun. Compared to the HLA-A2/AFP158 TCR T cells, the TCR-JUN T cells have better expansion potential in culture, with enhanced functional capacity against HCC tumor cells. In addition, the TCR-JUN T cells were less apoptotic and more resistant to exhaustion after HepG2 tumor stimulation. In the HCC xenograft tumor model, c-Jun overexpression enhanced the TCR T cell expansion and increased the overall survival rate of the treated mice. Importantly, the TCR-JUN T cells were less exhausted in the tumor lesions and demonstrated enhanced tumor infiltration, functionality, and persistence. Conclusion: c-Jun overexpression can enhance the expansion, function, and persistence of the A2/AFP158 TCR engineered T cells. The c-Jun gene co-delivery has the potential to enhance the antitumor efficacy of AFP specific TCR T cells when treating patients with HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , alfa-Fetoproteínas/genética , Antígeno HLA-A2/genética , Antígeno HLA-A2/metabolismo , Genes jun , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T
14.
Mol Ther Methods Clin Dev ; 29: 120-132, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37007608

RESUMO

Clinical success in T cell therapy has stimulated widespread efforts to increase safety and potency and to extend this technology to solid tumors. Yet progress in cell therapy remains restricted by the limited payload capacity, specificity of target cell transduction, and transgenic gene expression efficiency of applied viral vectors. This renders complex reprogramming or direct in vivo applications difficult. Here, we developed a synergistic combination of trimeric adapter constructs enabling T cell-directed transduction by the human adenoviral vector serotype C5 in vitro and in vivo. Rationally chosen binding partners showed receptor-specific transduction of otherwise non-susceptible human T cells by exploiting activation stimuli. This platform remains compatible with high-capacity vectors for up to 37 kb DNA delivery, increasing payload capacity and safety because of the removal of all viral genes. Together, these findings provide a tool for targeted delivery of large payloads in T cells as a potential avenue to overcome current limitations of T cell therapy.

15.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498890

RESUMO

T cell-based immunotherapy has demonstrated great therapeutic potential in recent decades, on the one hand, by using tumor-infiltrating lymphocytes (TILs) and, on the other hand, by engineering T cells to obtain anti-tumor specificities through the introduction of either engineered T cell receptors (TCRs) or chimeric antigen receptors (CARs). Given the distinct design of both receptors and the type of antigen that is encountered, the requirements for proper antigen engagement and downstream signal transduction by TCRs and CARs differ. Synapse formation and signal transduction of CAR T cells, despite further refinement of CAR T cell designs, still do not fully recapitulate that of TCR T cells and might limit CAR T cell persistence and functionality. Thus, deep knowledge about the molecular differences in CAR and TCR T cell signaling would greatly advance the further optimization of CAR designs and elucidate under which circumstances a combination of both receptors would improve the functionality of T cells for cancer treatment. Herein, we provide a comprehensive review about similarities and differences by directly comparing the architecture, synapse formation and signaling of TCRs and CARs, highlighting the knowns and unknowns. In the second part of the review, we discuss the current status of combining CAR and TCR technologies, encouraging a change in perspective from "TCR versus CAR" to "TCR and CAR".


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T , Neoplasias/metabolismo
16.
Front Immunol ; 13: 1032403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325345

RESUMO

The overall efficacy of chimeric antigen receptor modified T cells (CARTs) remain limited in solid tumors despite intensive studies that aim at targeting multiple antigens, enhancing migration, reducing tonic signaling, and improving tumor microenvironment. On the other hand, how the affinity and engaging kinetics of antigen-binding domain (ABD) affects the CART's efficacy has not been carefully investigated. In this article, we first analyzed 38 published solid tumor CART trials and correlated the response rate to their ABD affinity. Not surprisingly, majority (25 trials) of the CARTs utilized high-affinity ABDs, but generated merely 5.7% response rate. In contrast, 35% of the patients treated with the CARTs built from moderate-affinity ABDs had clinical responses. Thus, CARTs with moderate-affinity ABDs not only have less off-target toxicity, but also are more effective. We then reviewed the effects of ABD affinity on the biology and function of CARTs, providing further evidence that moderate-affinity ABDs may be better in CART development. In the end, we propose that a fast-on/fast-off (high Kon and Koff ) kinetics of CART-target engagement in solid tumor allow CARTs to generate sufficient signaling to kill tumor cells without being driven to exhaustion. We believe that studying the ABD affinity and the kinetics of CART-tumor interaction may hold a key to designing effective CARTs for solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos de Linfócitos T , Imunoterapia Adotiva/efeitos adversos , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Microambiente Tumoral
17.
Front Immunol ; 13: 976628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203587

RESUMO

Despite the tremendous success of adoptive T-cell therapies (ACT) in fighting certain hematologic malignancies, not all patients respond, a proportion experience relapse, and effective ACT of most solid tumors remains elusive. In order to improve responses to ACT suppressive barriers in the solid tumor microenvironment (TME) including insufficient nutrient availability must be overcome. Here we explored how enforced expression of the high-affinity glucose transporter GLUT3 impacted tumor-directed T cells. Overexpression of GLUT3 in primary murine CD8+ T cells enhanced glucose uptake and increased glycogen and fatty acid storage, and was associated with increased mitochondrial fitness, reduced ROS levels, higher abundance of the anti-apoptotic protein Mcl-1, and better resistance to stress. Importantly, GLUT3-OT1 T cells conferred superior control of B16-OVA melanoma tumors and, in this same model, significantly improved survival. Moreover, a proportion of treated mice were cured and protected from re-challenge, indicative of long-term T cell persistence and memory formation. Enforcing expression of GLUT3 is thus a promising strategy to improve metabolic fitness and sustaining CD8+ T cell effector function in the context of ACT.


Assuntos
Linfócitos T CD8-Positivos , Transportador de Glucose Tipo 3/metabolismo , Melanoma Experimental , Animais , Ácidos Graxos , Glucose , Transportador de Glucose Tipo 3/genética , Glicogênio , Memória Imunológica , Melanoma Experimental/terapia , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Recidiva Local de Neoplasia , Espécies Reativas de Oxigênio , Microambiente Tumoral
18.
Bio Protoc ; 12(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36245799

RESUMO

Type 1 regulatory T (Tr1) cells are an immunoregulatory CD4 + Foxp3- IL-10 high T cell subset with therapeutic potential for various inflammatory diseases. Retroviral (RV) transduction has been a valuable tool in defining the signaling pathways and transcription factors that regulate Tr1 differentiation and suppressive function. This protocol describes a method for RV transduction of naïve CD4 + T cells differentiating under Tr1 conditions, without the use of reagents such as polybrene or RetroNectin. A major advantage of this protocol over others is that it allows for the role of genes of interest on both differentiation and function of Tr1 cells to be interrogated. This is due to the high efficiency of RV transduction combined with the use of an IL10 GFP /Foxp3 RFP dual reporter mouse model, which enables successfully transduced Tr1 cells to be identified and sorted for functional assays. In addition, this protocol may be utilized for dual/multiple transduction approaches and transduction of other lymphocyte populations, such as CD8 + T cells.

19.
Biomolecules ; 12(9)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139142

RESUMO

T cell engineering strategies have emerged as successful immunotherapeutic approaches for the treatment of human cancer. Chimeric Antigen Receptor T (CAR-T) cell therapy represents a prominent synthetic biology approach to re-direct the specificity of a patient's autologous T cells toward a desired tumor antigen. CAR-T therapy is currently FDA approved for the treatment of hematological malignancies, including subsets of B cell lymphoma, acute lymphoblastic leukemia (ALL) and multiple myeloma. Mechanistically, CAR-mediated recognition of a tumor antigen results in propagation of T cell activation signals, including a co-stimulatory signal, resulting in CAR-T cell activation, proliferation, evasion of apoptosis, and acquisition of effector functions. The importance of including a co-stimulatory domain in CARs was recognized following limited success of early iteration CAR-T cell designs lacking co-stimulation. Today, all CAR-T cells in clinical use contain either a CD28 or 4-1BB co-stimulatory domain. Preclinical investigations are exploring utility of including additional co-stimulatory molecules such as ICOS, OX40 and CD27 or various combinations of multiple co-stimulatory domains. Clinical and preclinical evidence implicates the co-stimulatory signal in several aspects of CAR-T cell therapy including response kinetics, persistence and durability, and toxicity profiles each of which impact the safety and anti-tumor efficacy of this immunotherapy. Herein we provide an overview of CAR-T cell co-stimulation by the prototypical receptors and discuss current and emerging strategies to modulate co-stimulatory signals to enhance CAR-T cell function.


Assuntos
Receptores de Antígenos Quiméricos , Antígenos de Neoplasias , Antígenos CD28 , Linhagem Celular Tumoral , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/uso terapêutico , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Proc Natl Acad Sci U S A ; 119(40): e2208436119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161919

RESUMO

Engineered regulatory T cell (Treg cell) therapy is a promising strategy to treat patients suffering from inflammatory diseases, autoimmunity, and transplant rejection. However, in many cases, disease-related antigens that can be targeted by Treg cells are not available. In this study, we introduce a class of synthetic biosensors, named artificial immune receptors (AIRs), for murine and human Treg cells. AIRs consist of three domains: (a) extracellular binding domain of a tumor necrosis factor (TNF)-receptor superfamily member, (b) intracellular costimulatory signaling domain of CD28, and (c) T cell receptor signaling domain of CD3-ζ chain. These AIR receptors equip Treg cells with an inflammation-sensing machinery and translate this environmental information into a CD3-ζ chain-dependent TCR-activation program. Different AIRs were generated, recognizing the inflammatory ligands of the TNF-receptor superfamily, including LIGHT, TNFα, and TNF-like ligand 1A (TL1A), leading to activation, differentiation, and proliferation of AIR-Treg cells. In a graft-versus-host disease model, Treg cells expressing lymphotoxin ß receptor-AIR, which can be activated by the ligand LIGHT, protect significantly better than control Treg cells. Expression and signaling of the corresponding human AIR in human Treg cells prove that this concept can be translated. Engineering Treg cells that target inflammatory ligands leading to TCR signaling and activation might be used as a Treg cell-based therapy approach for a broad range of inflammation-driven diseases.


Assuntos
Técnicas Biossensoriais , Engenharia Celular , Terapia Baseada em Transplante de Células e Tecidos , Inflamação , Linfócitos T Reguladores , Animais , Antígenos CD28/metabolismo , Humanos , Inflamação/terapia , Ligantes , Receptor beta de Linfotoxina/metabolismo , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Linfócitos T Reguladores/transplante , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...