Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513009

RESUMO

Antimicrobial resistance is increasing despite new treatments being employed, so novel strategies are required to ensure that bacterial infections remain treatable. Bacteriophages (phages; bacteria viruses) have the potential to be used as natural antimicrobial methods to control bacterial pathogens such as Salmonella spp. A Salmonella phage, Wara, was isolated from environmental water samples at the Subaé River Basin, Salvador de Bahia, Brazil. The basin has environmental impacts in its main watercourses arising from the dumping of domestic and industrial effluents and agricultural and anthropological activities. The phage genome sequence was determined by Oxford Nanopore Technologies (ONT) MinION and Illumina HiSeq sequencing, and assembly was carried out by Racon (MinION) and Unicycler (Illumina, Illumina + MinION). The genome was annotated and compared to other Salmonella phages using various bioinformatics approaches. MinION DNA sequencing combined with Racon assembly gave the best complete genome sequence. Phylogenetic analysis revealed that Wara is a member of the Tequintavirus genus. A lack of lysogeny genes, antimicrobial resistance, and virulence genes indicated that Wara has therapeutic and biocontrol potential against Salmonella species in healthcare and agriculture.

2.
Appl Environ Microbiol ; 88(17): e0089522, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35969059

RESUMO

The high host specificity of phages is a real challenge in the therapy applications of the individual phages. This study aimed to edit the long tail fiber proteins (pb1) of a T5-like phage to obtain the engineered phages with expanded plaquing host range. Two T5-like Salmonella phages with high genome sequence homology but different plaquing host ranges, narrow-host range phage vB STyj5-1 (STyj5-1) and wide-host range phage vB BD13 (BD13), were isolated and characterized. The pb1 parts of STyj5-1 were replaced by the corresponding part of BD13 using homologous recombination method to obtain the engineered phages. The alterations of the whole pb1 part or the N-terminal amino acids 1-400 of pb1 of STyj5-1 could expand their plaquing host ranges (from 20 strains to 30 strains) and improve their absorption rates (from 0.28-28.84% to 28.10-99.49%). Besides, the one-step growth curves of these engineered phages with modified pb1 parts were more similar to that of STyj5-1. The burst sizes of phages BD13, STyj5-1 and the engineered phages were 250, 236, 166, and 223 PFU per cell, respectively. The expanded plaquing host range and improved absorption rates of these engineered phages revealed that the pb1 part might be the primary determinant of the host specificities of some T5-like phages. IMPORTANCE Genetic editing can be used to change or expand the host range of phages and have been successfully applied in T2, T4 and other phages to obtain engineered phages. However, there are hardly any similar reports on T5-like phages due to that the determinant regions related to their host ranges have not been completely clarified and the editing of T5-like phages is more difficult compared to other phages. This study attempted and successfully expanded the host range of a narrow-host range T5-like phage (STyj5-1) by exchanging its whole pb1 part or the N-terminal 1-400aa of that part by a broad-host range phage (BD13). These demonstrated the pb1 part might be the primary determinant of the host specificities for some T5-like phages and provided an effective method of extension plaquing host range of these phages.


Assuntos
Bacteriófagos , Fagos de Salmonella , Bacteriófagos/química , Genoma Viral , Especificidade de Hospedeiro , Myoviridae/genética , Fagos de Salmonella/genética
3.
Viruses ; 8(1)2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26805872

RESUMO

The T5-like siphoviruses DT57C and DT571/2, isolated from horse feces, are very closely related to each other, and most of their structural proteins are also nearly identical to T5 phage. Their LTFs (L-shaped tail fibers), however, are composed of two proteins, LtfA and LtfB, instead of the single Ltf of bacteriophage T5. In silico and mutant analysis suggests a possible branched structure of DT57C and DT571/2 LTFs, where the LtfB protein is connected to the phage tail via the LtfA protein and with both proteins carrying receptor recognition domains. Such adhesin arrangement has not been previously recognized in siphoviruses. The LtfA proteins of our phages are found to recognize different host O-antigen types: E. coli O22-like for DT57C phage and E. coli O87 for DT571/2. LtfB proteins are identical in both phages and recognize another host receptor, most probably lipopolysaccharide (LPS) of E. coli O81 type. In these two bacteriophages, LTF function is essential to penetrate the shield of the host's O-antigens. We also demonstrate that LTF-mediated adsorption becomes superfluous when the non-specific cell protection by O-antigen is missing, allowing the phages to bind directly to their common secondary receptor, the outer membrane protein BtuB. The LTF independent adsorption was also demonstrated on an O22-like host mutant missing O-antigen O-acetylation, thus showing the biological value of this O-antigen modification for cell protection against phages.


Assuntos
Bacteriófagos/genética , Bacteriófagos/metabolismo , Siphoviridae/genética , Siphoviridae/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Bacteriófagos/química , Dados de Sequência Molecular , Alinhamento de Sequência , Siphoviridae/química , Proteínas Virais/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...