Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339395

RESUMO

In this study, we examined 130 patients with pituitary adenomas (PAs) and 320 healthy subjects, using DNA samples from peripheral blood leukocytes purified through the DNA salting-out method. Real-time polymerase chain reaction (RT-PCR) was used to assess single nucleotide polymorphisms (SNPs) and relative leukocyte telomere lengths (RLTLs), while enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of TERF1, TERF2, TNKS2, CTC1, and ZNF676 in blood serum. Our findings reveal several significant associations. Genetic associations with pituitary adenoma occurrence: the TERF1 rs1545827 CT + TT genotypes were linked to 2.9-fold decreased odds of PA occurrence. Conversely, the TNKS2 rs10509637 GG genotype showed 6.5-fold increased odds of PA occurrence. Gender-specific genetic associations with PA occurrence: in females, the TERF1 rs1545827 CC + TT genotypes indicated 3.1-fold decreased odds of PA occurrence, while the TNKS2 rs10509637 AA genotype was associated with 4.6-fold increased odds. In males, the presence of the TERF1 rs1545827 T allele was associated with 2.2-fold decreased odds of PA occurrence, while the TNKS2 rs10509637 AA genotype was linked to a substantial 10.6-fold increase in odds. Associations with pituitary adenoma recurrence: the TNKS2 rs10509637 AA genotype was associated with 4.2-fold increased odds of PA recurrence. On the other hand, the TERF1 rs1545827 CT + TT genotypes were linked to 3.5-fold decreased odds of PA without recurrence, while the TNKS2 rs10509637 AA genotype was associated with 6.4-fold increased odds of PA without recurrence. Serum TERF2 and TERF1 levels: patients with PA exhibited elevated serum TERF2 levels compared to the reference group. Conversely, patients with PA had decreased TERF1 serum levels compared to the reference group. Relative leukocyte telomere length (RLTL): a significant difference in RLTL between the PA group and the reference group was observed, with PA patients having longer telomeres. Genetic associations with telomere shortening: the TERF1 rs1545827 T allele was associated with 1.4-fold decreased odds of telomere shortening. In contrast, the CTC1 rs3027234 TT genotype was linked to 4.8-fold increased odds of telomere shortening. These findings suggest a complex interplay between genetic factors, telomere length, and pituitary adenoma occurrence and recurrence, with potential gender-specific effects. Furthermore, variations in TERF1 and TNKS2 genes may play crucial roles in telomere length regulation and disease susceptibility.

2.
Chem Biol Drug Des ; 103(1): e14360, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37814809

RESUMO

A new series of flavonoids and quinolone derivatives were designed, synthesized and, evaluated for their biological activity. Among them, compound 14e showed better inhibition potency against TNKS2 in comparison with G007-LK, one of the most potent preclinical stage TNKS inhibitor. Molecular docking results showed that 14e occupied both the adenosine and nicotinamide pockets and formed a hydrogen bond with Met1054 of TNKS2. This study provides a lead for the design and discovery of potent and selective TNKS2 inhibitors.


Assuntos
Tanquirases , Simulação de Acoplamento Molecular , Tanquirases/química
3.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069287

RESUMO

Tankyrases, a versatile protein group within the poly(ADP-ribose) polymerase family, are essential for post-translational poly(ADP-ribosyl)ation, influencing various cellular functions and contributing to diseases, particularly cancer. Consequently, tankyrases have become important targets for anti-cancer drug development. Emerging approaches in drug discovery aim to disrupt interactions between tankyrases and their binding partners, which hinge on tankyrase-binding motifs (TBMs) within partner proteins and ankyrin repeat cluster domains within tankyrases. Our study addresses the challenge of identifying and ranking TBMs. We have conducted a comprehensive review of the existing literature, classifying TBMs into three distinct groups, each with its own scoring system. To facilitate this process, we introduce TBM Hunter-an accessible, web-based tool. This user-friendly platform provides a cost-free and efficient means to screen and assess potential TBMs within any given protein. TBM Hunter can handle individual proteins or lists of proteins simultaneously. Notably, our results demonstrate that TBM Hunter not only identifies known TBMs but also uncovers novel ones. In summary, our study offers an all-encompassing perspective on TBMs and presents an easy-to-use, precise, and free tool for identifying and evaluating potential TBMs in any protein, thereby enhancing research and drug development efforts focused on tankyrases.


Assuntos
Tanquirases , Tanquirases/metabolismo , Repetição de Anquirina , Poli ADP Ribosilação
4.
Artigo em Inglês | MEDLINE | ID: mdl-37581526

RESUMO

BACKGROUND: Blocking the oncogenic Wnt//ß-catenin pathway has of late been investigated as a viable therapeutic approach in the treatment of cancer. This involves the multi-targeting of certain members of the tankyrase-kinase family; tankyrase 2 (TNKS2), protein kinase B (AKT), and cyclin-dependent kinase 9 (CDK9), which propagate the oncogenic Wnt/ß-catenin signalling pathway. METHODS: During a recent investigation, the pharmacological activity of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one was repurposed to serve as a 'triple-target' inhibitor of TNKS2, AKT and CDK9. Yet, the molecular mechanism that surrounds its multi-targeting activity remains unanswered. As such, this study aims to explore the pan-inhibitory mechanism of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one towards AKT, CDK9, and TNKS2, using in silico techniques. RESULTS: Results revealed favourable binding affinities of -34.17 kcal/mol, -28.74 kcal/mol, and -27.30 kcal/mol for 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one towards TNKS2, CDK9, and AKT, respectively. Pan-inhibitory binding of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one is illustrated by close interaction with specific residues on tankyrase-kinase. Structurally, 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one had an impact on the flexibility, solvent-accessible surface area, and stability of all three proteins, which was illustrated by numerous modifications observed in the unbound as well as the bound states of the structures, which evidenced the disruption of their biological function. Prediction of the pharmacokinetics and physicochemical properties of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one further established its inhibitory potential, evidenced by the favourable absorption, metabolism, excretion, and minimal toxicity properties. CONCLUSION: The following structural insights provide a starting point for understanding the pan-inhibitory activity of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one. Determining the criticality of the interactions that exist between the pyrimidine ring and catalytic residues could offer insight into the structure-based design of innovative tankyrase-kinase inhibitors with enhanced therapeutic effects.

5.
Cells ; 11(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36497103

RESUMO

Telomere shortening is well known to be associated with ageing. Age is the most decisive risk factor for age-related macular degeneration (AMD) development. The older the individual, the higher the AMD risk. For this reason, we aimed to find any associations between telomere length, distribution of genetic variants in telomere-related genes (TERT, TERT-CLPTM1, TRF1, TRF2, and TNKS2), and serum TERF-1 and TERF2 levels on AMD development. METHODS: Our study enrolled 342 patients with AMD and 177 healthy controls. Samples of DNA from peripheral blood leukocytes were extracted by DNA salting-out method. The genotyping of TERT rs2736098, rs401681 in TERT-CLPTM1 locus, TRF1 rs1545827, rs10107605, TNKS2 rs10509637, rs10509639, and TRF2 rs251796 and relative leukocyte telomere length (T/S) measurement were carried out using the real-time polymerase chain reaction method. Serum TERF-1 and TERF2 levels were measured by enzymatic immunoassay (ELISA). RESULTS: We found longer telomeres in early AMD patients compared to the control group. Additionally, we revealed that minor allele C at TRF1 rs10107605 was associated with decreases the odds of both early and exudative AMD. Each minor allele G at TRF2 rs251796 and TRF1 rs1545827 C/T genotype and C/T+T/T genotypes, compared to the C/C genotype, increases the odds of having shorter telomeres. Furthermore, we found elevated TERF1 serum levels in the early AMD group compared to the control group. CONCLUSIONS: In conclusion, these results suggest that relative leukocyte telomere length and genetic variants of TRF1 and TRF2 play a role in AMD development. Additionally, TERF1 is likely to be associated with early AMD.


Assuntos
Degeneração Macular , Tanquirases , Telomerase , Humanos , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Telomerase/genética , Telomerase/metabolismo , Leucócitos/metabolismo , Degeneração Macular/genética , DNA
6.
Front Oncol ; 12: 940926, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185280

RESUMO

Purpose: Despite various therapy advances, ovarian cancer remains an incurable disease for which survival rates have only modestly improved. Natural products are important sources of anti-cancer lead compounds. Icariin exhibited broad anti-cancer efficacy. However, the mechanism of icariin against ovarian cancer is poorly elucidated. Methods: Cell viability was detected to evaluate the effect of icariin on SKOV-3 cells. The cell cycle and apoptosis were analyzed. The transcript of SKOV-3 cells was profiled by RNA-seq. GSEA and DEGs analyses were performed to interpret gene expression data. Western blot and TOP/FOP flash assay were applied to detect Wnt/ß-catenin signaling. MiRDB database and dual-luciferase reporter assay was applied to study the regulation of miR-1-3p on TNKS2. Anti-tumor efficacy of icariin was evaluated by xenograft mouse model. Immunohistochemistry was performed with antibodies against Ki67. Results: Icariin significantly suppressed the proliferation of SKOV-3 cells. Furthermore, icariin stalled cell cycle and induced apoptosis by blocking TNKS2/Wnt/ß-catenin pathway through upregulating the level of miR-1-3p. Finally, icariin dramatically suppressed tumor growth in vivo. Conclusions: In this study, we demonstrated for the first time that icariin significantly attenuated the growth of ovarian tumor in xenograft mouse model. Furthermore, we systematically revealed that icariin attenuates the tumor progression by suppressing TNKS2/Wnt/ß-catenin signaling via upregulating the level of miR-1-3p in ovarian cancer with transcriptome analysis.

7.
Genes Genomics ; 44(6): 747-756, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34357507

RESUMO

BACKGROUND: Metastasis and chemo-resistance are still important factors that limit the overall efficacy of colorectal cancer treatment. Understanding the detailed molecular mechanism and identifying potential biomarkers are of great value in prognosis prediction and risk stratification. OBJECTIVE: We investigated the role of miR-582-5p in colorectal cancer pathogenesis, progression and chemo-resistance. Furthermore, we explored the underlying molecular mechanism of miR-582-5p in modulation of malignant behaviors of colorectal cancer cells. METHODS: Clinical samples and colorectal cancer cell lines were applied to explore miR-582-5p expression level and its significance on tumor cell metastasis and chemo-resistance. Transwell study and cellular survivability study were performed to explore the influences of miR-582-5p expression modulation on tumor cell chemo-resistance and invasion/migration. Dual-luciferase reporter gene assay was conducted to explore the influences of miR-582-5p on its target gene TNKS2. RESULTS: Colorectal cancer patients with lymph node or distal organ metastatic diseases exhibited significantly lower level of miR-582-5p. In vitro studies have indicated that miR-582-5p inhibition significantly increased migration and chemo-resistant capabilities of tumor cells. And dual-luciferase reporter gene assay demonstrated that miR-582-5p exhibited its influences on the biological behavior of tumor cells by targeting TNKS2. CONCLUSIONS: Our study demonstrated for the first time that miR-582-5p played an important role for colorectal tumor cell metastasis and chemo-resistance. Our research also indicated that miR-582-5p and its target gene TNKS2 could be novel biomarkers for metastatic disease prediction, overall prognosis evaluation, as well as potential therapeutic target for colorectal cancer patients.


Assuntos
Neoplasias Colorretais , MicroRNAs , Tanquirases , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Tanquirases/genética , Tanquirases/metabolismo
8.
Innate Immun ; 28(1): 11-18, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861798

RESUMO

Macrophage autophagy plays a major role in the control and elimination of invading Mycobacterium tuberculosis. However, the function and mechanism of circRNA on macrophage autophagy in tuberculosis remain unclear. Therefore, this study aimed to explore the role of circRNA underlying macrophage autophagy in tuberculosis. Quantitative real-time polymerase chain reaction was used to detect the expression of hsa_circ_0045474, miR-582-5p and TNKS2. Autophagy was detected by LC3B immunofluorescence and transmission electron microscopy. Dual-luciferase reporter assays were used to detect the relationship of miR-582-5p and hsa_circ_0045474 or TNKS2. Western blot was used to detect the expression of LC3-І and LC3-ІІ. The results showed that hsa_circ_0045474 was down-regulated in monocytes from patients with tuberculosis and induced autophagy in macrophages. hsa_circ_0045474 sponged miR-582-5p and negatively regulated miR-582-5p expression. Overexpression of miR-582-5p affected by hsa_circ_0045474 induced autophagy in macrophages. TNKS2 served as a target of miR-582-5p and down-regulation of TNKS2 induced autophagy in macrophages regulated by miR-582-5p. In conclusion, our results demonstrated that hsa_circ_0045474 down-regulation induced macrophage autophagy in tuberculosis via miR-582-5p/ TNKS2 axis, implying a novel strategy to treat the occurrence of active pulmonary tuberculosis caused by immune escape of M. tuberculosis.


Assuntos
MicroRNAs , RNA Circular , Tanquirases , Tuberculose Pulmonar , Autofagia/genética , Proliferação de Células , Regulação para Baixo , Humanos , Macrófagos/metabolismo , MicroRNAs/genética , RNA Circular/genética , Tanquirases/genética , Tanquirases/metabolismo , Tuberculose Pulmonar/genética
9.
Acta Pharm Sin B ; 11(7): 1931-1946, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34386329

RESUMO

We herein describe AncPhore, a versatile tool for drug discovery, which is characterized by pharmacophore feature analysis and anchor pharmacophore (i.e., most important pharmacophore features) steered molecular fitting and virtual screening. Comparative analyses of numerous protein-ligand complexes using AncPhore revealed that anchor pharmacophore features are biologically important, commonly associated with protein conservative characteristics, and have significant contributions to the binding affinity. Performance evaluation of AncPhore showed that it had substantially improved prediction ability on different types of target proteins including metalloenzymes by considering the specific contributions and diversity of anchor pharmacophore features. To demonstrate the practicability of AncPhore, we screened commercially available chemical compounds and discovered a set of structurally diverse inhibitors for clinically relevant metallo-ß-lactamases (MBLs); of them, 4 and 6 manifested potent inhibitory activity to VIM-2, NDM-1 and IMP-1 MBLs. Crystallographic analyses of VIM-2:4 complex revealed the precise inhibition mode of 4 with VIM-2, highly consistent with the defined anchor pharmacophore features. Besides, we also identified new hit compounds by using AncPhore for indoleamine/tryptophan 2,3-dioxygenases (IDO/TDO), another class of clinically relevant metalloenzymes. This work reveals anchor pharmacophore as a valuable concept for target-centered drug discovery and illustrates the potential of AncPhore to efficiently identify new inhibitors for different types of protein targets.

10.
World J Surg Oncol ; 19(1): 117, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849554

RESUMO

OBJECTIVE: Colorectal cancer is one of the most common malignancy in the world. The oncogenesis of colorectal cancer is still not fully elucidated. It was reported that microRNA-490-3p (miR-490-3p) was closely related to the regulation of cancers. However, if miR-490-3p could also affect colorectal cancer and the specific mechanism remains unclear. METHODS: qRT-PCR was conducted to examine the expression of miR-490-3p. DIANA, miRDB, and TargetScan databases were used to identify target genes. LOVO and SW480 cells were transfected by miR-490-3p mimics and inhibitors. Transwell assay was used to measure cell invasion and migration. Cisplatin and fluorouracil were administered to investigate chemotherapy resistance. Western blot was used to measure TNKS2 protein expression. Binding sites were verified using the double luciferase assay. RESULTS: miR-490-3p expression was low in the colorectal cancer cells. The level of miR-490-3p was negatively correlated with cell migration and invasion of cancer cells. miR-490-3p could bind to TNKS2 mRNA 3'UTR directly. miR-490-3p can suppress cell viability and resistance to chemotherapy in colorectal cancer cells through targeting TNKS2. CONCLUSIONS: miR-490-3p could affect colorectal cancer by targeting TNKS2. This study may provide a potential therapeutic target for colorectal cancer.


Assuntos
Neoplasias Colorretais , MicroRNAs , Tanquirases , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Prognóstico
11.
Cancer Genomics Proteomics ; 17(4): 431-439, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32576588

RESUMO

BACKGROUND/AIM: The study aimed to evaluate associations of relative leukocyte telomere length (LTL) and polymorphisms of telomere length-associated genes TERT (rs2736098), TERT-CLPTM1L (rs401681), TRF1 (rs1545827, rs10107605) and TNKS2 (rs10509637, rs10509639) in patients with laryngeal squamous cell carcinoma (LSCC). MATERIALS AND METHODS: The study consisted of 300 patients with LSCC and 369 healthy control subjects. Genotyping and relative LTL measuring were carried out using qPCR. RESULTS: Relative LTL was statistically significantly shorter in the G3 (tumor differentiation grade) subgroup of patients with LSCC compared to the G1 and G2 subgroups. Significant differences were found in genotype distributions of TERT rs401681 and TNKS2 rs10509639 between the study groups. TERT rs401681 C/T and T/T genotypes were associated with approximately 30% decreased odds of LSCC development. CONCLUSION: LTL was shorter in the G3 subgroup compared to the G2 and G1 subgroups of LSCC patients. TERT rs401681 and its C/T and T/T genotypes were associated with decreased odds of overall LSCC development.


Assuntos
Biomarcadores Tumorais/genética , Polimorfismo de Nucleotídeo Único , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Tanquirases/genética , Telomerase/genética , Homeostase do Telômero/genética , Proteínas de Ligação a Telômeros/genética , Estudos de Casos e Controles , Feminino , Seguimentos , Predisposição Genética para Doença , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Leucócitos/metabolismo , Leucócitos/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Complexo Shelterina , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
12.
Mol Cell Biochem ; 471(1-2): 15-27, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32472322

RESUMO

The biological activity of vascular endothelial growth factor (VEGF), the major cytokine regulating the process of angiogenesis is tightly controlled at multiple levels including processes involving post-translational modification such as ADP-ribosylation and glycosylation. ADP-ribosylation is a reversible NAD+-dependent modification, catalyzed by poly ADP-ribose polymerase (PARP) or ADP-ribosyl transferase (ADPRTs) and has been reported by us and others as a modification that reduces the biological activity of VEGF. The factors responsible for any such modification should occur in the secretory pathway, i.e., in the endoplasmic reticulum and Golgi. Our investigation carried out in this direction revealed that ADP-ribosylation of VEGF requires the interplay between members of poly ADP-ribose polymerase (PARP) family in the secretory pathway, viz., ER associated PARP-16 and Golgi associated Tankyrase-2 (TNKS-2). The data presented in this manuscript suggest that PARP-16 catalysis the priming mono ADP-ribosylation of VEGF which is a prerequisite for poly ADP-ribosylation of VEGF by TNKS-2.


Assuntos
Poli ADP Ribosilação , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional , Tanquirases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Embrião de Galinha , Humanos , Poli(ADP-Ribose) Polimerases/genética , Tanquirases/genética
13.
Dig Dis Sci ; 65(10): 2949-2958, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31858324

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a serious threat to human lives and is usually diagnosed at the late stages. Recently, there has been a rapid advancement in the treatment options for HCC, but novel therapeutic targets are still needed, especially for precision medicine. AIMS: We aimed to investigate the involvement of non-coding RNA RP11-81H3.2 in HCC. METHODS: The expression of RP11-81H3.2 was examined in the blood samples of HCC patients, and in the human HCC cell lines, including HepG2, Smmc-7721, and Huh7. Cell proliferation was determined using the CCK-8 and EdU assay, and cell invasion and migration were determined using the transwell/wound healing assay. The effects of RP11-81H3.2 knockdown on in vivo tumor growth were evaluated utilizing the nude mice HepG2 tumor xenograft model. RESULTS: Here, we have identified a long non-coding RNA, RP11-81H3.2, which is enriched in HCC and can promote its proliferation, migration, and invasion both in vitro and in vivo. In addition, our results showed that RP11-81H3.2 binds to and regulate miR-490-3p expression in the HCC cells. Moreover, we found that RP11-81H3.2 regulates the expression of TNKS2 via miR-490-3p. Further, we found that RP11-81H3.2 and miR-490-3p form a regulatory loop; the release of RP11-81H3.2 leads to the suppression of miR-490-3p expression, thus, further enhancing the expression of RP11-81H3.2. CONCLUSIONS: Our data have provided a novel target for the diagnosis and treatment of HCC, and sheds light on the lncRNA-miRNA regulatory nexus that can control the HCC related pathogenesis.


Assuntos
Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , MicroRNAs/metabolismo , Oncogenes , RNA Longo não Codificante/metabolismo , Tanquirases/biossíntese , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , RNA Longo não Codificante/genética , Transdução de Sinais , Tanquirases/genética , Carga Tumoral
14.
Gene ; 593(1): 41-47, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27506313

RESUMO

Identification of key genes driving the aggressiveness of triple-negative breast cancer (TNBC) is important to develop effective therapies. In this study, we examined the expression and biological roles of microRNA (miR)-490-3p in TNBC. Our data showed that miR-490-3p-3p was underexpressed in TNBC compared with non-TNBC tissues (P=0.0021). Similarly, this miRNA was expressed at lower levels in TNBC cell lines than in non-TNBC cell lines. Gain-of-function studies revealed that miR-490-3p-3p overexpression inhibited cell growth and invasion in both MDA-MB-231 and MDA-MB-436 TNBC cells and impaired tumorigenesis of MDA-MB-231 cells in nude mice. Mechanistically, we found that miR-490-3p negatively regulated the expression of tankyrase 2 (TNKS2) via binding to its 3'-untranslated region and then blocked the activation of ß-catenin signaling. Importantly, overexpression of a miR-490-3p-resistant form of TNKS2 reversed miR-490-3p-mediated suppression of TNBC cell proliferation and invasion. Knockdown of TNKS2 via small interfering RNA technology was found to mimic the suppressive activity of miR-490-3p in MDA-MB-231 cells. Taken together, miR-490-3p is downregulated in TNBC and plays a suppressive role in cancer cell proliferation, invasion, and tumorigenesis. The tumor suppressive activity of miR-490-3p is largely mediated through downregulation of TNKS2 and inactivation of ß-catenin signaling. Thus, miR-490-3p may represent a potential therapeutic target for TNBC.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Proteínas de Neoplasias/biossíntese , RNA Neoplásico/metabolismo , Tanquirases/biossíntese , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Transplante de Neoplasias , RNA Neoplásico/genética , Tanquirases/genética
15.
Pathol Res Pract ; 211(10): 766-71, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26293798

RESUMO

OBJECTIVES: We investigated the association between poly(ADP-ribose) polymerase Tankyrase 2 (TNKS2) single-nucleotide polymorphisms (SNPs) and the risk of developing non-small cell lung cancer (NSCLC) in a Han Chinese population. METHODS: Five-hundred NSCLC cases and 500 healthy controls were genotyped for four TNKS2 tagging SNPs (rs1538833, rs1538833, rs1340420, and rs1340420). The association between genotype and NSCLC risk was evaluated by computing the odds ratio (OR) and 95% confidence interval (CI) using multivariate unconditional logistic regression analyses. RESULTS: Individual alleles of the four TNKS2 SNPs were not associated with NSCLC risk in the studied Chinese population. However, patients carrying TNKS2 rs1340420 G/G and A/G genotypes were associated with a lower risk of developing NSCLC and adenocarcinoma (OR=0.14; 95% CI=0.02-1.15 and OR=0.11; 95% CI=0.03-0.91, respectively), whereas females patients homozygous for the TNKS2 rs1770474 T allele, a rare type, were associated with a higher risk of developing squamous-cell carcinoma (SCC) (OR=4.67; 95% CI=0.87-25.01). CONCLUSION: TNKS2 rs1340420 SNP was associated with lower NSCLC risk, whereas rs1770474 SNP was associated with higher SCC risk, suggesting that these two SNPs may be useful predictors of risk of developing NSCLC and SCC in this Chinese population.


Assuntos
Povo Asiático/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Predisposição Genética para Doença , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único/genética , Tanquirases/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Fatores de Risco
16.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2740-53, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286857

RESUMO

The poly(ADP-ribose) polymerase (PARP) family represents a new class of therapeutic targets with diverse potential disease indications. PARP1 and PARP2 inhibitors have been developed for breast and ovarian tumors manifesting double-stranded DNA-repair defects, whereas tankyrase 1 and 2 (TNKS1 and TNKS2, also known as PARP5a and PARP5b, respectively) inhibitors have been developed for tumors with elevated ß-catenin activity. As the clinical relevance of PARP inhibitors continues to be actively explored, there is heightened interest in the design of selective inhibitors based on the detailed structural features of how small-molecule inhibitors bind to each of the PARP family members. Here, the high-resolution crystal structures of the human TNKS2 PARP domain in complex with 16 various PARP inhibitors are reported, including the compounds BSI-201, AZD-2281 and ABT-888, which are currently in Phase 2 or 3 clinical trials. These structures provide insight into the inhibitor-binding modes for the tankyrase PARP domain and valuable information to guide the rational design of future tankyrase-specific inhibitors.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Tanquirases/antagonistas & inibidores , Tanquirases/química , Benzamidas/química , Benzamidas/metabolismo , Benzimidazóis/química , Benzimidazóis/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ftalazinas/química , Ftalazinas/metabolismo , Piperazinas/química , Piperazinas/metabolismo , Conformação Proteica , Pirimidinonas/química , Pirimidinonas/metabolismo , Quinazolinas/química , Quinazolinas/metabolismo , Tanquirases/genética , Tanquirases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...