RESUMO
BACKGROUND: Loss of heterozygosity (LOH) diminishes genetic diversity within cancer genomes. A tumour arising in an individual heterozygous for a functional and a loss-of-function (LoF) allele of a gene occasionally retain only the LoF allele. This can result in deficiency of specific protein activities in cancer cells, creating unique differences between tumour cells and normal cells of the individual. Such differences may constitute vulnerabilities that can be exploited through allele-specific therapies. METHODS: To discover frequently lost genes with prevalent LoF alleles, we mined the 1000 Genomes dataset for SNVs causing protein truncation through base substitution, indels or splice site disruptions, resulting in 60 LoF variants in 60 genes. From these, the variant rs3892097 in the liver enzyme CYP2D6 was selected because it is located within a genomic region that frequently undergoes LOH in several tumor types including hepatocellular cancers. To evaluate the relationship between CYP2D6 activity and the toxicities of anticancer agents, we screened 525 compounds currently in clinical use or undergoing clinical trials using cell model systems with or without CYP2D6 activity. FINDINGS: We identified 12 compounds, AZD-3463, CYC-116, etoposide, everolimus, GDC-0349, lenvatinib, MK-8776, PHA-680632, talazoparib, tyrphostin 9, VX-702, and WZ-3146, using an engineered HEK293T cell model. Of these, talazoparib and MK-8776 demonstrated consistently heightened cytotoxic effects against cells with compromised CYP2D6 activity in engineered hepatocellular cancer cell models. Moreover, talazoparib displayed CYP2D6 genotype dependent effects on primary hepatocellular carcinoma organoids. INTERPRETATION: Exploiting the loss of drug-metabolizing enzyme gene activity in tumor cells following loss of heterozygosity could present a promising therapeutic strategy for targeted cancer treatment. FUNDING: This work was funded by Barncancerfonden (T.S, PR2022-0099 and PR2020-0171, X.Z, TJ2021-0111), Cancerfonden (T.S, 211719Pj and D.G, 222449Pj), Vetenskapsrådet (T.S, 2020-02371 and D.G, 2020-04707), and the Erling Persson Foundation (T.S, 2020-0037 and T.S, 2023-0113).
RESUMO
BACKGROUND: Talazoparib plus enzalutamide (TALAâ +â ENZA) has demonstrated antitumor activity in the phase 3 clinical trial (TALAPRO-2; NCT03395197) as first-line (1L) therapy in men with asymptomatic or mildly symptomatic metastatic castration-resistant prostate cancer (mCRPC). Although many active interventions are available, randomized controlled trials (RCTs) involving talazoparib have only been conducted to assess its efficacy and safety compared to enzalutamide. To estimate comparisons between all relevant interventions, indirect comparisons are needed. OBJECTIVE: To estimate the comparative efficacy and safety of TALAâ +â ENZA in 1L patients with mCRPC by conducting a systematic literature review and network meta-analyses (NMAs). METHODS: Databases were searched using Ovid, along with several gray literature sources to identify RCTs evaluating treatments in 1L mCRPC (PROSPERO registration: CRD42021283512). Feasibility assessment evaluated trial suitability for NMA inclusion and Bayesian or frequentist NMAs were conducted for evaluable efficacy and safety outcomes, respectively. RESULTS: Thirty-three RCTs met the eligibility criteria and were feasible for NMAs. Across multiple efficacy outcomes assessed, except for overall survival (OS), TALAâ +â ENZA was ranked the most efficacious treatment. For OS, TALAâ +â ENZA showed the second-highest probability of being the most effective treatment; second to docetaxel 50 mg plus prednisolone 10 mg. With respect to safety outcomes, TALAâ +â ENZA, in general, showed increased rates of hematological adverse events. CONCLUSIONS: TALAâ +â ENZA showed favorable results across multiple efficacy endpoints, but not across hematological toxicities compared with other 1L treatments in asymptomatic or mildly symptomatic mCRPC in the all-comers patient population.
RESUMO
Metastatic castrate-resistant prostate cancer (mCRPC) is associated with poor prognosis. DNA damage response (DDR) genes are commonly altered in mCRPC rendering them as promising therapeutic targets. Poly (ADP ribose) polymerase inhibitors (PARPi) demonstrated antitumor activity in mCRPC patients with DDR gene mutations through synthetic lethality. Multiple clinical trials with PARPi monotherapy exhibited encouraging clinical outcomes in selected patients with mCRPC. More recently, three Phase III randomized clinical trials (RCTs) combining PARPi with androgen receptor signaling inhibitors (ARSIs) demonstrated improved antitumor activity compared to ARSI monotherapy in mCRPC patients as the first-line therapy. Clinical benefit was more pronounced in patients harboring DDR alterations, specifically BRCA1/2. Interestingly, antitumor activity was also observed irrespective of DDR gene mutations, highlighting BRCAness phenotype with androgen receptor blockade resulting in synergistic activity between ARSIs and PARPi. In this review, we discuss the clinical efficacy and safety data of the combination of PARPi plus ARSI in all Phase 3 randomized controlled trials (RCTs), emphasizing strategies for patient selection and highlighting emerging trends based on clinical trial data.
RESUMO
BACKGROUND: About one-quarter of patients with advanced prostate cancer have alterations in homologous recombination repair (HRR) genes. In a global phase 3 study, talazoparib plus enzalutamide significantly improved progression-free survival in patients with HRR-deficient metastatic castration-resistant prostate cancer (mCRPC). OBJECTIVES: This article reviews the role of oncology nurses and advanced practice providers (APPs) in administering talazoparib plus enzalutamide in patients with mCRPC. METHODS: This review and hypothetical case study illustrate the role of oncology nurses and APPs in the administration of talazoparib plus enzalutamide and the management of adverse events to ensure safe and effective use in clinical practice. FINDINGS: Oncology nurses and APPs play an important role in the dosing and administration of talazoparib plus enzalutamide and can recognize and manage adverse events in patients with HRR-deficient mCRPC.
Assuntos
Benzamidas , Nitrilas , Enfermagem Oncológica , Feniltioidantoína , Ftalazinas , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzamidas/uso terapêutico , Nitrilas/uso terapêutico , Feniltioidantoína/uso terapêutico , Ftalazinas/uso terapêutico , Ftalazinas/administração & dosagem , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/enfermagem , Neoplasias de Próstata Resistentes à Castração/patologiaRESUMO
INTRODUCTION: Around 25% of patients with advanced prostate cancer harbor alterations in the homologous recombination/DNA damage repair (HRR) pathway. Inhibiting poly (ADP-ribose) polymerase (PARP) in these patients leads to synthetic lethality, making PARP inhibitors (PARPi), including talazoparib, a promising treatment for metastatic castration-resistant prostate cancer (mCRPC) and potentially for metastatic hormone-sensitive prostate cancer (mHSPC). AREAS COVERED: This article examines the mechanism of action, chemical properties, pharmacokinetics, pharmacodynamics, and clinical safety and efficacy data of different PARPis, including talazoparib in prostate cancer. It reviews the TALAPRO-1 and TALAPRO-2 clinical trials and the ongoing TALAPRO-3 trial. EXPERT OPINION: Despite recent therapeutic advancements, mCRPC remains a lethal disease. Androgen receptor pathway inhibitors (ARPIs) are approved for patients with mCRPC and mHSPC, yet most patients first receive these agents in the castration-resistant setting. Real-world data indicate that around half of patients with mCRPC do not receive subsequent lines of therapy, underscoring the efficacy of upfront combination therapies. The combinations of ARPI plus PARPi are indicated for patients with mCRPC harboring HRR mutations, though identifying these patients is challenging due to limited genomic testing. Further research and improved access to genomic testing are essential to optimize treatment strategies.
Assuntos
Ftalazinas , Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Ftalazinas/uso terapêutico , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , AnimaisRESUMO
BACKGROUND AND PURPOSE: The PARP inhibitor (PARPi), Talazoparib (BMN673), effectively and specifically radiosensitizes cancer cells. Radiosensitization is mediated by a shift in the repair of ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) toward PARP1-independent, alternative end-joining (alt-EJ). DNA polymerase theta (Polθ) is a key component of this PARP1-independent alt-EJ pathway and we show here that its inhibition can further radiosensitize talazoparib-treated cells. The purpose of the present work is to explore mechanisms and dynamics underpinning enhanced talazoparib radiosensitization by Polθ inhibitors in HR-proficient cancer cells. METHODS AND MATERIALS: Radiosensitization to PARPis, talazoparib, olaparib, rucaparib and veliparib was assessed by clonogenic survival. Polθ-proficient and -deficient cells were treated with PARPis and/or with the Polθ inhibitors ART558 or novobiocin. The role of DNA end-resection was studied by down-regulating CtIP and MRE11 expression using siRNAs. DSB repair was assessed by scoring γH2AX foci. The formation of chromosomal abnormalities was assessed as evidence of alt-EJ function using G2-specific cytogenetic analysis. RESULTS: Talazoparib exerted pronounced radiosensitization that varied among the tested cancer cell lines; however, radiosensitization was undetectable in normal cells. Other commonly used PARPis, olaparib, veliparib, or rucaparib were ineffective radiosensitizers under our experimental conditions. Although genetic ablation or pharmacological inhibition of Polθ only mildly radiosensitized cancer cells, talazoparib-treated cells were markedly further radiosensitized. Mechanistically, talazoparib shunted DSBs to Polθ-dependent alt-EJ by enhancing DNA end-resection in a CtIP- and MRE11-dependent manner - an effect detectable at low, but not high IR doses. Chromosomal translocation analysis in talazoparib-treated cells exposed to Polθ inhibitors suggested that PARP1- and Polθ-dependent alt-EJ pathways may complement, but also back up each other. CONCLUSION: We propose that talazoparib promotes low-dose, CtIP/MRE11-dependent resection and increases the reliance of irradiated HR-proficient cancer cells, on Polθ-mediated alt-EJ. The combination of Polθ inhibitors with talazoparib suppresses this option and causes further radiosensitization. The results suggest that Polθ inhibition may be exploited to maximize talazoparib radiosensitization of HR-proficient tumors in the clinic.
Assuntos
Quebras de DNA de Cadeia Dupla , DNA Polimerase teta , Ftalazinas , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Ftalazinas/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Linhagem Celular Tumoral , Radiossensibilizantes/farmacologia , Piperazinas/farmacologia , Indóis/farmacologia , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , BenzimidazóisRESUMO
BACKGROUND: Talazoparib was approved for the treatment of breast cancer. However, the safety of talazoparib in a large population sample over an extended period remained uncertain. The objective of this study is to offer guidance for the secure utilization of talazoparib in clinical settings. METHODS: Four algorithms were used to quantify the signals of talazoparib associated adverse events(AEs), using data from the food and drug administration adverse event reporting system(FAERS) between fourth quater of 2018 and second quater of 2023. RESULTS: A total of 7,186,517 records were reported, with 737 indicating talazoparib as the primary suspected (PS) AEs. A total of 40 significant preferred terms (PTs) that adhere to the four algorithms were simultaneously retained. There is a possibility of experiencing unforeseen and noteworthy AEs, including embolism(0.46%), pulmonary embolism(1.06%), hyponatremia(0.46%), hypokalemia(0.40%), hematuria(0.33%), and pericardial effusion(0.26%). Most of the AEs related to talazoparib occurred within the initial month of starting the medication, with a median onset time of 79 days (IQR: 22-207 days). CONCLUSION: Results of our study were consistent with clinical observations, and we also found potential new and unexpected AEs signals for talazoparib, suggesting prospective clinical studies were needed to confirm these results and illustrate their relationship. Our results may provide valuable evidence for further safety studies of talazoparib.
RESUMO
BACKGROUND: Talazoparib monotherapy in patients with germline BRCA-mutated, early-stage triple-negative breast cancer (TNBC) showed activity in the neoadjuvant setting in the phase II NEOTALA study (NCT03499353). These biomarker analyses further assessed the mutational landscape of the patients enrolled in the NEOTALA study. METHODS: Baseline tumor tissue from the NEOTALA study was tested retrospectively using FoundationOne®CDx. To further hypothesis-driven correlative analyses, agnostic heat-map visualizations of the FoundationOne®CDx tumor dataset were used to assess overall mutational landscape and identify additional candidate predictive biomarkers of response. RESULTS: All patients enrolled (N = 61) had TNBC. In the biomarker analysis population, 75.0% (39/52) and 25.0% (13/52) of patients exhibited BRCA1 and BRCA2 mutations, respectively. Strong concordance (97.8%) was observed between tumor BRCA and germline BRCA mutations, and 90.5% (38/42) of patients with tumor BRCA mutations evaluable for somatic-germline-zygosity were predicted to exhibit BRCA loss of heterozygosity (LOH). No patients had non-BRCA germline DNA damage response (DDR) gene variants with known/likely pathogenicity, based on a panel of 14 non-BRCA DDR genes. Ninety-eight percent of patients had TP53 mutations. Genomic LOH, assessed continuously or categorically, was not associated with response. CONCLUSION: The results from this exploratory biomarker analysis support the central role of BRCA and TP53 mutations in tumor pathobiology. Furthermore, these data support assessing germline BRCA mutational status for molecular eligibility for talazoparib in patients with TNBC.
Assuntos
Proteína BRCA1 , Proteína BRCA2 , Mutação em Linhagem Germinativa , Terapia Neoadjuvante , Ftalazinas , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Ftalazinas/uso terapêutico , Ftalazinas/administração & dosagem , Proteína BRCA2/genética , Proteína BRCA1/genética , Terapia Neoadjuvante/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto , Biomarcadores Tumorais/genética , Idoso , Perda de HeterozigosidadeRESUMO
Breast cancer is one of the tumors with the highest prevalence rate among women in the world, and its BRCA1/2 gene is a common mutation site. Talazoparib, as a targeted PARP inhibitor, can effectively control the occurrence and development of breast cancer with BRCA1/2 gene mutation, and play a therapeutic role. Based on the findings from the Phase III EMBRACE trial (NCT01945775 clinical trial), our analysis reveals that the talazoparib group demonstrated a significant extension in progression-free survival, along with improved response markers and patient-reported outcomes when compared to conventional therapies. This study aims to assess the cost-effectiveness of talazoparib for treating advanced breast cancer with germline BRCA1/2 mutations and HER2 negativity, considering the perspectives of health services in China and the United States. The results obtained will serve as a valuable reference for promoting rational drug utilization and enhancing medical resource efficiency. To evaluate the cost-effectiveness of Talazoparib more scientifically and provide clinicians with chemotherapy options, this paper developed a Markov model based on the EMBRACA clinical trial (clinical Trails.gov No., NCT01945775) to simulate the survival events of breast cancer patients in the Talazoparib group and the standard treatment group. The state transition probability and clinical data of breast cancer patients during treatment were extracted from the phase III EMBRACA clinical trial. The cost data generated during the treatment process comes from local hospital pricing, other references, and expert consultation. This article uses US dollars to calculate the treatment cost and incremental cost-effectiveness ratio. Health outcomes are expressed in Quality Adjusted Life Years (QALYs). In addition, Outcomes were measured in quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratio, which robustness was evaluated by deterministic and probabilistic sensitivity analyses. This article establishes a Markov model for single-item sensitivity analysis. The results show that the economic benefits of using Talazoparib as a new treatment strategy in both China and the United States are higher than other drugs, and it is cost-effective. Compared to the control group, the incremental cost incurred by the Talazoparib treatment group in China was $2484.48/QALY, with an incremental QALY of 1.5. However, Talazoparib in the United States holds a dominant position, saving costs of $10,223.43 and increasing QALYs by 1.5. The clinical treatment effect of Talazoparib group in BRCA1/2 mutant advanced breast cancer patients is better than that of the standard treatment group, and the progression free survival period is significantly prolonged. From the perspective of medical and health services in China and the United States, the Talazoparib group is more economical than the standard treatment group in treating patients with BRCA1/2 mutant advanced breast cancer.
Assuntos
Proteína BRCA1 , Proteína BRCA2 , Neoplasias da Mama , Análise Custo-Benefício , Mutação em Linhagem Germinativa , Ftalazinas , Receptor ErbB-2 , Humanos , Feminino , Ftalazinas/uso terapêutico , Ftalazinas/economia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/economia , Neoplasias da Mama/patologia , China , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteína BRCA2/genética , Estados Unidos , Proteína BRCA1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/economia , Anos de Vida Ajustados por Qualidade de Vida , Pessoa de Meia-Idade , Cadeias de Markov , Adulto , Intervalo Livre de ProgressãoRESUMO
Inotuzumab ozogamicin (IO), a novel therapeutic drug for relapsed or refractory acute lymphoblastic leukemia (RR)(ALL), is a humanized anticluster of differentiation (CD) 22 monoclonal antibody conjugated with calicheamicin that causes DNA single and doublestrand breaks. Although the efficacy of IO is significantly improved compared with that of conventional chemotherapies, the prognosis for RRALL remains poor, highlighting the need for more effective treatment strategies. The present study examined the role of DNA damage repair inhibition using the poly (ADPribose) polymerase (PARP) inhibitors olaparib or talazoparib on the enhancement of the antitumor effects of IO on BALL cells in vitro. The Reh, Philadelphia (Ph)BALL and the SUPB15 Ph+ BALL cell lines were used for experiments. Both cell lines were ~90% CD22+. The halfmaximal inhibitory concentration (IC50) values of IO were 5.3 and 49.7 ng/ml for Reh and SUPB15 cells, respectively. The IC50 values of IO combined with minimally toxic concentrations of olaparib or talazoparib were 0.8 and 2.9 ng/ml for Reh cells, respectively, and 36.1 and 39.6 ng/ml for SUPB15 cells, respectively. The combination index of IO with olaparib and talazoparib were 0.19 and 0.56 for Reh cells and 0.76 and 0.89 for SUPB15 cells, demonstrating synergistic effects in all combinations. Moreover, the addition of minimally toxic concentrations of PARP inhibitors augmented IOinduced apoptosis. The alkaline comet assay, which quantitates the amount of DNA strand breaks, was used to investigate the degree to which DNA damage observed 1 h after IO administration was repaired 6 h later, reflecting successful repair of DNA strand breaks. However, DNA strand breaks persisted 6 h after IO administration combined with olaparib or talazoparib, suggesting inhibition of the repair processes by PARP inhibitors. Adding olaparib or talazoparib thus synergized the antitumor effects of IO by inhibiting DNA strand break repair via the inhibition of PARP.
Assuntos
Reparo do DNA , Sinergismo Farmacológico , Inotuzumab Ozogamicina , Ftalazinas , Piperazinas , Inibidores de Poli(ADP-Ribose) Polimerases , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Piperazinas/farmacologia , Piperazinas/administração & dosagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , Inotuzumab Ozogamicina/farmacologia , Apoptose/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Indóis/farmacologiaRESUMO
Urothelial carcinoma (UC) urgently requires new therapeutic options. Histone deacetylases (HDAC) are frequently dysregulated in UC and constitute interesting targets for the development of alternative therapy options. Thus, we investigated the effect of the second generation HDAC inhibitor (HDACi) quisinostat in five UC cell lines (UCC) and two normal control cell lines in comparison to romidepsin, a well characterized HDACi which was previously shown to induce cell death and cell cycle arrest. In UCC, quisinostat led to cell cycle alterations, cell death induction and DNA damage, but was well tolerated by normal cells. Combinations of quisinostat with cisplatin or the PARP inhibitor talazoparib led to decrease in cell viability and significant synergistic effect in five UCCs and platinum-resistant sublines allowing dose reduction. Further analyses in UM-UC-3 and J82 at low dose ratio revealed that the mechanisms included cell cycle disturbance, apoptosis induction and DNA damage. These combinations appeared to be well tolerated in normal cells. In conclusion, our results suggest new promising combination regimes for treatment of UC, also in the cisplatin-resistant setting.
Assuntos
Apoptose , Inibidores de Histona Desacetilases , Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias da Bexiga Urinária , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Sinergismo Farmacológico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/patologiaRESUMO
Bladder cancer (BC) poses a significant health challenge, particularly in metastatic cases, where the prognosis is unfavorable and therapeutic options are limited. Poly ADP-ribose polymerase (PARP) inhibitors have gained approval for use in various cancer types, but their application in BC remains controversial, despite the notable prevalence of DNA damage response alterations in advanced or metastatic urothelial carcinomas. In this report, we describe a 66-year-old heavy-smoking female diagnosed with muscle-invasive BC. She underwent multiple rounds of chemotherapy and radiation, yet her disease remained poorly controlled, leading to metastasis in the left obturator internus muscle. Comprehensive genomic profiling through FoundationOne® Liquid CDx, examining a 324-gene panel using circulating tumor DNA from blood samples, revealed a pathogenic ATM gene alteration (p.Q654fs*10, c.1960delC), suggesting potential eligibility for PARP inhibitor therapy. Remarkably, the patient achieved a complete response to talazoparib, prompting an optimal investigation into BC candidates for this promising therapy.
A new hope for advanced bladder cancer treatment: a case study on the success of PARP inhibitors Bladder cancer is a significant health problem, particularly when it spreads to other parts of the body. The outcome for these advanced cases is often poor and treatment options are limited. One type of treatment, called PARP inhibitors, has shown success in treating other types of cancer, but its use in bladder cancer is still under investigation. This article presents the case of a 66-year-old heavy-smoker woman who was diagnosed with an aggressive form of bladder cancer. Despite several rounds of chemotherapy and radiation, her cancer was not well-controlled and spread to a hip muscle. A detailed genetic analysis revealed specific alterations that suggested she might benefit from treatment with a PARP inhibitor. This type of treatment works by blocking a protein that cancer cells need to repair their DNA, causing the cancer cells to die. The patient was treated with a PARP inhibitor called talazoparib and her cancer completely disappeared with this treatment. This positive response highlights the potential of PARP inhibitors as a promising treatment for bladder cancer, especially in patients who don't respond to conventional treatments and whose cancer has specific genetic changes. Our study also provides an overview of clinical trials evaluating PARP inhibitors in bladder cancer and summaries reported bladder cancer cases in the literature showing a good response to PARP inhibitors, along with their respective genetic alterations. In conclusion, this case study contributes to the growing understanding of personalized medicine, where treatment is tailored to the specific genetic mutations of each patient's cancer. It emphasizes the importance of identifying bladder cancer patients who could benefit most from PARP inhibitor therapy, offering a potential lifeline for those who haven't responded to initial treatment.
RESUMO
INTRODUCTION: Metastatic castration-resistant prostate cancer (mCRPC) remains incurable and develops from biochemically recurrent PC treated with androgen deprivation therapy (ADT) following definitive therapy for localized PC, or from metastatic castration-sensitive PC (mCSPC). In the mCSPC setting, treatment intensification of ADT plus androgen receptor (AR)-signaling inhibitors (ARSIs), with or without chemotherapy, improves outcomes vs ADT alone. Despite multiple phase 3 trials demonstrating a survival benefit of treatment intensification in PC, there remains high use of ADT monotherapy in real-world clinical practice. Prior studies indicate that co-inhibition of AR and poly(ADP-ribose) polymerase (PARP) may result in enhanced benefit in treating tumors regardless of alterations in DNA damage response genes involved either directly or indirectly in homologous recombination repair (HRR). Three recent phase 3 studies evaluated the combination of a PARP inhibitor (PARPi) with an ARSI as first-line treatment for mCRPC: TALAPRO-2, talazoparib plus enzalutamide; PROpel, olaparib plus abiraterone acetate and prednisone (AAP); and MAGNITUDE, niraparib plus AAP. Results from these studies have led to the recent approval in the United States of talazoparib plus enzalutamide for the treatment of mCRPC with any HRR alteration, and of both olaparib and niraparib indicated in combination with AAP for the treatment of mCRPC with BRCA alterations. SUMMARY: Here, we review the newly approved PARPi plus ARSI treatments within the context of the mCRPC treatment landscape, provide an overview of practical considerations for the combinations in clinical practice, highlight the importance of HRR testing, and discuss the benefits of treatment intensification for patients with mCRPC.
Assuntos
Antagonistas de Receptores de Andrógenos , Protocolos de Quimioterapia Combinada Antineoplásica , Nitrilas , Piperazinas , Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias de Próstata Resistentes à Castração , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antagonistas de Receptores de Andrógenos/uso terapêutico , Nitrilas/uso terapêutico , Piperazinas/uso terapêutico , Piperazinas/administração & dosagem , Ftalazinas/uso terapêutico , Feniltioidantoína/uso terapêutico , Feniltioidantoína/análogos & derivados , Estados Unidos , Receptores Androgênicos/genética , Benzamidas/uso terapêutico , Piperidinas/uso terapêutico , Indazóis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Reparo de DNA por Recombinação/efeitos dos fármacosRESUMO
AIMS: The overexpression of ABC transporters on cancer cell membranes is one of the most common causes of multidrug resistance (MDR). This study investigates the impact of ABCC1 and ABCG2 on the resistance to talazoparib (BMN-673), a potent poly (ADP-ribose) polymerase (PARP) inhibitor, in ovarian cancer treatment. METHODS: The cell viability test was used to indicate the effect of talazoparib in different cell lines. Computational molecular docking analysis was conducted to simulate the interaction between talazoparib and ABCC1 or ABCG2. The mechanism of talazoparib resistance was investigated by constructing talazoparib-resistant subline A2780/T4 from A2780 through drug selection with gradually increasing talazoparib concentration. RESULTS: Talazoparib cytotoxicity decreased in drug-selected or gene-transfected cell lines overexpressing ABCC1 or ABCG2 but can be restored by ABCC1 or ABCG2 inhibitors. Talazoparib competitively inhibited substrate drug efflux activity of ABCC1 or ABCG2. Upregulated ABCC1 and ABCG2 protein expression on the plasma membrane of A2780/T4 cells enhances resistance to other substrate drugs, which could be overcome by the knockout of either gene. In vivo experiments confirmed the retention of drug-resistant characteristics in tumor xenograft mouse models. CONCLUSIONS: The therapeutic efficacy of talazoparib in cancer may be compromised by its susceptibility to MDR, which is attributed to its interactions with the ABCC1 or ABCG2 transporters. The overexpression of these transporters can potentially diminish the therapeutic impact of talazoparib in cancer treatment.
Assuntos
Antineoplásicos , Neoplasias Ovarianas , Ftalazinas , Humanos , Animais , Feminino , Camundongos , Ribose/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de NeoplasiasRESUMO
The relatively high prevalence of alterations in the homologous recombination repair (HRR) pathway described in advanced prostate cancer provides a unique opportunity to develop therapeutic strategies that take advantage of the decreased tumor ability to repair DNA damage. Poly ADP-ribose polymerase (PARP) inhibitors have been demonstrated to improve the outcomes of metastatic castration-resistant prostate cancer (mCRPC) patients with HRR defects, particularly in those with BRCA1/2 alterations. To expand the benefit of PARPi to patients without detectable HRR alterations, multiple studies are addressing potential synergies between PARP inhibition (PARPi) and androgen receptor pathway inhibitors (ARSi), radiation, radioligand therapy, chemotherapy, or immunotherapy, and these strategies are also being evaluated in the hormone-sensitive setting. In this review, we summarize the development of PARPi in prostate cancer, the potential synergies, and combinations being investigated as well as the future directions of PARPi for the management of the disease.
Development of PARP inhibitors in advanced prostate cancer Alterations in the mechanisms responsible for repairing damaged DNA are frequently altered in advanced prostate cancer. This provides a unique opportunity to develop therapies that exploit the decreased ability of these prostate tumours to repair DNA. Poly ADP-ribose polymerase (PARP) inhibitors have been successfully used to treat other tumor types with similar deficiencies and recently, multiple studies have demonstrated its efficacy also in prostate cancer, particularly in tumors with BRCA1/2 alterations. To expand the benefit of PARPi to patients without detectable DNA repair alterations, multiple studies are addressing potential synergies between PARP inhibition (PARPi) and androgen receptor pathway inhibitors (ARSi), radiation, radiopharmaceuticals, chemotherapy and immunotherapy in different disease stages. In this review, we summarize the development of PARPi in prostate cancer, the potential synergies and combinations being evaluated as well as the future directions of PARPi for the management of the disease.
RESUMO
CONTEXT: PARP inhibitors (PARPi) are established treatments for metastatic castration-resistant prostate cancer (mCRPC) with homologous recombination repair (HRR) deficiency after androgen receptor signalling inhibitor (ARSI) failure. New PARPi + ARSI combinations have been tested in all comers, although their clinical relevance in HRR-proficient tumours remains uncertain. OBJECTIVE: To quantitatively synthesise evidence from randomised trials assessing the efficacy and safety of PARPi + ARSI combinations for first-line treatment of mCRPC. EVIDENCE ACQUISITION: We searched the PubMed, EMBASE, SCOPUS, and Cochrane Library databases up to February 28, 2023. Randomised controlled trials (RCTs) comparing PARPi + ARSI versus placebo + ARSI for first-line treatment of mCRPC were eligible. Two reviewers independently performed screening and data extraction and assessed the risk of bias, while a third reviewer evaluated the eligibility criteria. EVIDENCE SYNTHESIS: Overall, three phase 3 RCTs were included in the systematic review: PROPEL, MAGNITUDE, and TALAPRO-2. A total of 2601 patients with mCRPC were enrolled. Two of these trials (PROPEL and TALAPRO-2) assessed the radiographic progression-free survival benefit of PARPi + ARSI for first-line treatment of mCRPC, independent of HRR status. The pooled hazard ratio was 0.62 (95% confidence interval 0.53-0.72). The pooled hazard ratio for overall survival was 0.84 (95% confidence interval 0.72-0.98), indicating a 16% reduction in the risk of death among patients who received the combination. CONCLUSIONS: Results from this meta-analysis support the use of ARSI + PARPi combinations in biomarker-unselected mCRPC. However, such combinations might be less clinically relevant in HRR-proficient cancers, especially considering the change in treatment landscape for mCRPC. PATIENT SUMMARY: We looked at outcomes from trials testing combinations of two classes of drugs (PARP inhibitors and ARSI) in advanced prostate cancer. We found that these combinations seem to work regardless of gene mutations identified as biomarkers of response to PARP inhibitors when used on their own.
Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Antagonistas de Androgênios/uso terapêutico , Intervalo Livre de ProgressãoRESUMO
Poly(ADP-ribose) polymerase inhibitors in combination with androgen-receptor signaling inhibitors are a promising therapeutic option for patients with metastatic castration-sensitive prostate cancer (mCSPC) and homologous recombination repair (HRR) gene alterations. Here, we describe the design and rationale of the multinational, phase III, TALAPRO-3 study comparing talazoparib plus enzalutamide versus placebo plus enzalutamide in patients with mCSPC and HRR gene alterations. The primary end point is investigator-assessed radiographic progression-free survival (rPFS) per RECIST 1.1 in soft tissue, or per PCWG3 criteria in bone. The TALAPRO-3 study will demonstrate whether the addition of talazoparib can improve the efficacy of enzalutamide as assessed by rPFS in patients with mCSPC and HRR gene alterations undergoing androgen deprivation therapy. Clinical Trial Registration:NCT04821622 (ClinicalTrials.gov) Registry Name: Study of Talazoparib With Enzalutamide in Men With DDR Gene Mutated mCSPC. Date of Registration: 29 March 2021.
Assuntos
Benzamidas , Feniltioidantoína , Ftalazinas , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Antagonistas de Androgênios/uso terapêutico , Androgênios , Nitrilas/uso terapêutico , Castração , Ensaios Clínicos Fase III como AssuntoRESUMO
A rapid, sensitive, and simple UHPLC-MS/MS method for the determination of the PARP inhibitor talazoparib in mouse plasma was developed and validated using [13C,2H4]-talazoparib as an internal standard (IS). The assay procedure involved extraction of talazoparib and the IS from plasma using a single-step deproteination and separation of the analytes was achieved on an ACQUITY UPLC RP18 HSS T3 column with a mobile phase gradient at a flow rate of 0.4 mL/min in a run time of 5 min. The calibration curve was linear (r2 > 0.99) over the concentration range of 0.5-100 ng/mL, and 10-fold dilution of samples could be accurately quantitated. The matrix effect and mean extraction recovery for talazoparib were between 93.7-109% and 87.7-105%, respectively. Precision and percent bias of quality control samples were always less than ±15%, indicating reproducibility and accuracy of the method. Talazoparib demonstrated bench-top stability at room temperature for 6 h, auto-sampler and reinjection stability at 4 °C for at least 24 h, and no significant degradation was observed after three freeze-thaw cycles. The developed method was successfully applied to pharmacokinetic studies involving serial blood sampling after oral administration of talazoparib to wild-type mice and animals with a genetic deficiency of the efflux transporters ABCB1 (P-gp) and ABCG2 (BCRP). Together, our results demonstrate the successful development of a suitable analytical method for talazoparib in mouse plasma and suggest that mice are a useful model to evaluate transporter-mediated drug-drug interactions involving therapy with talazoparib.