Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
mLife ; 3(1): 14-20, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38827507

RESUMO

Clostridioides difficile is a leading cause of healthcare-associated infections, causing billions of economic losses every year. Its symptoms range from mild diarrhea to life-threatening damage to the colon. Transmission and recurrence of C. difficile infection (CDI) are mediated by the metabolically dormant spores, while the virulence of C. difficile is mainly due to the two large clostridial toxins, TcdA and TcdB. Producing toxins or forming spores are two different strategies for C. difficile to cope with harsh environmental conditions. It is of great significance to understand the molecular mechanisms for C. difficile to skew to either of the cellular processes. Here, we summarize the current understanding of the regulation and connections between toxin production and sporulation in C. difficile and further discuss the potential solutions for yet-to-be-answered questions.

2.
Toxins (Basel) ; 16(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38922136

RESUMO

Clostridioides difficile, a Gram-positive anaerobic bacterium, is the leading cause of hospital-acquired antibiotic-associated diarrhea worldwide. The severity of C. difficile infection (CDI) varies, ranging from mild diarrhea to life-threatening conditions such as pseudomembranous colitis and toxic megacolon. Central to the pathogenesis of the infection are toxins produced by C. difficile, with toxin A (TcdA) and toxin B (TcdB) as the main virulence factors. Additionally, some strains produce a third toxin known as C. difficile transferase (CDT). Toxins damage the colonic epithelium, initiating a cascade of cellular events that lead to inflammation, fluid secretion, and further tissue damage within the colon. Mechanistically, the toxins bind to cell surface receptors, internalize, and then inactivate GTPase proteins, disrupting the organization of the cytoskeleton and affecting various Rho-dependent cellular processes. This results in a loss of epithelial barrier functions and the induction of cell death. The third toxin, CDT, however, functions as a binary actin-ADP-ribosylating toxin, causing actin depolymerization and inducing the formation of microtubule-based protrusions. In this review, we summarize our current understanding of the interaction between C. difficile toxins and host cells, elucidating the functional consequences of their actions. Furthermore, we will outline how this knowledge forms the basis for developing innovative, toxin-based strategies for treating and preventing CDI.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Interações entre Hospedeiro e Microrganismos , Clostridioides difficile/genética , Clostridioides difficile/patogenicidade , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Ordem dos Genes , Inflamação/patologia , Humanos , Animais
3.
Microbiol Spectr ; 12(6): e0035424, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38709085

RESUMO

Paeniclostridium sordellii hemorrhagic toxin (TcsH) and Clostridioides difficile toxin A (TcdA) are two major members of the large clostridial toxin (LCT) family. These two toxins share ~87% similarity and are known to cause severe hemorrhagic pathology in animals. Yet, the pathogenesis of their hemorrhagic toxicity has been mysterious for decades. Here, we examined the liver injury after systemic exposure to different LCTs and found that only TcsH and TcdA induce overt hepatic hemorrhage. By investigating the chimeric and truncated toxins, we demonstrated that the enzymatic domain of TcsH alone is not sufficient to determine its potent hepatic hemorrhagic toxicity in mice. Likewise, the combined repetitive oligopeptide (CROP) domain of TcsH/TcdA alone also failed to explain their strong hemorrhagic activity in mice. Lastly, we showed that disrupting the first two short repeats of CROPs in TcsH and TcdA impaired hemorrhagic toxicity without causing overt changes in cytotoxicity and lethality. These findings lead to a deeper understanding of toxin-induced hemorrhage and the pathogenesis of LCTs and could be insightful in developing therapeutic avenues against clostridial infections. IMPORTANCE: Paeniclostridium sordellii and Clostridioides difficile infections often cause hemorrhage in the affected tissues and organs, which is mainly attributed to their hemorrhagic toxins, TcsH and TcdA. In this study, we demonstrate that TcsH and TcdA, but not other related toxins. including Clostridioides difficile toxin B and TcsL, induce severe hepatic hemorrhage in mice. We further determine that a small region in TcsH and TcdA is critical for the hemorrhagic toxicity but not cytotoxicity or lethality of these toxins. Based on these results, we propose that the hemorrhagic toxicity of TcsH and TcdA is due to an uncharacterized mechanism, such as the presence of an unknown receptor, and future studies to identify the interactive host factors are warranted.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Enterotoxinas , Hemorragia , Animais , Camundongos , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/patogenicidade , Enterotoxinas/toxicidade , Enterotoxinas/genética , Enterotoxinas/metabolismo , Fígado/patologia , Infecções por Clostridium/microbiologia , Humanos , Feminino
4.
Vaccine ; 42(7): 1582-1592, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38336558

RESUMO

Clostridioides difficile infection (CDI) is a serious healthcare-associated disease, causing symptoms such as diarrhea and pseudomembranous colitis. The major virulence factors responsible for the disease symptoms are two secreted cytotoxic proteins, TcdA and TcdB. A parenteral vaccine based on formaldehyde-inactivated TcdA and TcdB supplemented with alum adjuvant, has previously been investigated in humans but resulted in an insufficient immune response. In search for an improved response, we investigated a novel toxin inactivation method and a novel, potent adjuvant. Inactivation of toxins by metal-catalyzed oxidation (MCO) was previously shown to preserve neutralizing epitopes and to annihilate reversion to toxicity. The immunogenicity and safety of TcdA and TcdB inactivated by MCO and combined with a novel carbohydrate fatty acid monosulphate ester-based (CMS) adjuvant were investigated in rabbits. Two or three intramuscular immunizations generated high serum IgG and neutralizing antibody titers against both toxins. The CMS adjuvant increased antibody responses to both toxins while an alum adjuvant control was effective only against TcdA. Systemic safety was evaluated by monitoring body weight, body temperature, and analysis of red and white blood cell counts shortly after immunization. Local safety was assessed by histopathologic examination of the injection site at the end of the study. Body weight gain was constant in all groups. Body temperature increased up to 1 ˚C one day after the first immunization but less after the second or third immunization. White blood cell counts, and percentage of neutrophils increased one day after immunization with CMS-adjuvanted vaccines, but not with alum. Histopathology of the injection sites 42 days after the last injection did not reveal any abnormal tissue reactions. From this study, we conclude that TcdA and TcdB inactivated by MCO and combined with CMS adjuvant demonstrated promising immunogenicity and safety in rabbits and could be a candidate for a vaccine against CDI.


Assuntos
Compostos de Alúmen , Toxinas Bacterianas , Compostos de Boro , Cefalosporinas , Clostridioides difficile , Infecções por Clostridium , Animais , Coelhos , Adjuvantes Imunológicos , Proteínas de Bactérias , Vacinas Bacterianas/efeitos adversos , Peso Corporal , Infecções por Clostridium/prevenção & controle , Enterotoxinas , Toxoides
5.
ACS Infect Dis ; 10(3): 928-937, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38334357

RESUMO

Clostridioides difficile causes life-threatening diarrhea and is one of the leading causes of nosocomial infections. During infection, C. difficile releases two gut-damaging toxins, TcdA and TcdB, which are the primary determinants of disease pathogenesis and are important therapeutic targets. Once in the cytosol of mammalian cells, TcdA and TcdB use UDP-glucose to glucosylate host Rho GTPases, which leads to cytoskeletal changes that result in a loss of intestinal integrity. Isofagomine inhibits TcdA and TcdB as a mimic of the glucocation transition state of the glucosyltransferase reaction. However, sequence variants of TcdA and TcdB across the clades of infective C. difficile continue to be identified, and therefore, evaluation of isofagomine inhibition against multiple toxin variants is required. Here, we show that isofagomine inhibits the glucosyltransferase domain of multiple TcdB variants and protects TcdB-induced cell rounding of the most common full-length toxin variants. Furthermore, we demonstrate that isofagomine protects against C. difficile-induced mortality in two murine models of C. difficile infection. Isofagomine treatment of mouse C. difficile infection also permitted the recovery of the gastrointestinal microbiota, an important barrier to preventing recurring C. difficile infection. The broad specificity of isofagomine supports its potential as a prophylactic to protect against C. difficile-induced morbidity and mortality.


Assuntos
Toxinas Bacterianas , Compostos de Boro , Clostridioides difficile , Imino Piranoses , Animais , Camundongos , Toxinas Bacterianas/genética , Enterotoxinas , Clostridioides difficile/genética , Proteínas de Bactérias/genética , Glucosiltransferases/genética , Mamíferos
6.
Toxins (Basel) ; 16(1)2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38251254

RESUMO

The major virulence factors of Clostridioides difficile (C. difficile) are enterotoxins A (TcdA) and B (TcdB). The study of toxins is a crucial step in exploring the virulence of this pathogen. Currently, the toxin purification process is either laborious and time-consuming in C. difficile or performed in heterologous hosts. Therefore, we propose a streamlined method to obtain functional toxins in C. difficile. Two C. difficile strains were generated, each harboring a sequence encoding a His-tag at the 3' end of C. difficile 630∆erm tcdA or tcdB genes. Each toxin gene is expressed using the Ptet promoter, which is inducible by anhydro-tetracycline. The obtained purification yields were 0.28 mg and 0.1 mg per liter for rTcdA and rTcdB, respectively. In this study, we successfully developed a simple routine method that allows the production and purification of biologically active rTcdA and rTcdB toxins with similar activities compared to native toxins.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Clostridioides difficile/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Enterotoxinas/genética , Enterotoxinas/toxicidade , Fatores de Virulência , Antibacterianos
7.
bioRxiv ; 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986930

RESUMO

Secretory (S) Immunoglobin (Ig) A is the predominant mucosal antibody, which mediates host interactions with commensal and pathogenic microbes, including Clostridioides difficile. SIgA adopts a polymeric IgA structure that is bound by secretory component (SC). Despite significance, how SIgA supports diverse effector mechanisms is poorly characterized and SIgA-based therapies nonexistent. We engineered chimeric (c) SIgAs, in which we replaced SC domain D2 with a single domain antibody or a monomeric fluorescent protein, allowing us to investigate and enhance SIgA effector mechanisms. cSIgAs exhibited increased neutralization potency against C. difficile toxins, promoted bacterial clumping and cell rupture, and decreased cytotoxicity. cSIgA also allowed us to visualize and/or quantify C. difficile morphological changes and clumping events. Results reveal mechanisms by which SIgA combats C. difficile infection, demonstrate that cSIgA design can modulate these mechanisms, and demonstrate cSIgA's adaptability to modifications that might target a broad range of antigens and effector mechanisms.

8.
Toxins (Basel) ; 15(10)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37888617

RESUMO

Clostridioides difficile infection is expected to become the most common healthcare-associated infection worldwide. C. difficile-induced pathogenicity is significantly attributed to its enterotoxin, TcdA, which primarily targets Rho-GTPases involved in regulating cytoskeletal and tight junction (TJ) dynamics, thus leading to cytoskeleton breakdown and ultimately increased intestinal permeability. This study investigated whether two non-digestible oligosaccharides (NDOs), alginate (AOS) and chitosan (COS) oligosaccharides, possess antipathogenic and barrier-protective properties against C. difficile bacteria and TcdA toxin, respectively. Both NDOs significantly reduced C. difficile growth, while cell cytotoxicity assays demonstrated that neither COS nor AOS significantly attenuated the TcdA-induced cell death 24 h post-exposure. The challenge of Caco-2 monolayers with increasing TcdA concentrations increased paracellular permeability, as measured by TEER and LY flux assays. In this experimental setup, COS completely abolished, and AOS mitigated, the deleterious effects of TcdA on the monolayer's integrity. These events were not accompanied by alterations in ZO-1 and occludin protein levels; however, immunofluorescence microscopy revealed that both AOS and COS prevented the TcdA-induced occludin mislocalization. Finally, both NDOs accelerated TJ reassembly upon a calcium-switch assay. Overall, this study established the antipathogenic and barrier-protective capacity of AOS and COS against C. difficile and its toxin, TcdA, while revealing their ability to promote TJ reassembly in Caco-2 cells.


Assuntos
Toxinas Bacterianas , Quitosana , Clostridioides difficile , Humanos , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Células CACO-2 , Quitosana/farmacologia , Clostridioides/metabolismo , Alginatos/farmacologia , Ocludina , Enterotoxinas/toxicidade , Enterotoxinas/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo
9.
Microbiol Spectr ; : e0531022, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668373

RESUMO

TcdA and TcdB are known as the major virulence attributes of Clostridioides difficile. Hence, neutralizing the TcdA and TcdB activities can be considered as an efficient therapeutic approach against C. difficile infection (CDI). In this work, we utilized phage display technique to select single-chain fragment variable (scFv) fragments as recombinant antibodies displayed on the surface of phages, which specifically target native TcdA, or TcdB (nTcdA and nTcdB), and their recombinant C-terminal combined repetitive oligopeptide (CROP) domains (rTcdA and rTcdB). After three rounds of biopanning, abundance of phage clones displaying high reactivity with TcdA or TcdB was quantified through enzyme-linked immunosorbent assay (ELISA). Furthermore, selected scFvs were characterized by cell viability and neutralization assays. The gene expression of immunological markers, IL-8 and TNF-α, was examined in treated Caco-2 cells by RT-qPCR. The epitopes of neutralizing scFvs were also identified by molecular docking. Totally, 18 scFv antibodies (seven for TcdA and 11 for TcdB) were identified by ELISA. Among selected scFvs, two clones for TcdA (rA-C2, A-C9) and three clones for TcdB (rB-B4, B-F5, B-F11) exhibited the highest neutralizing activity in Caco-2 and Vero cells. Moreover, the cocktail of anti-TcdA and anti-TcdB antibodies notably decreased the mRNA expression of TNF-α and IL-8 in Caco-2 cells. Molecular docking revealed that the interaction between scFv and toxin was mostly restricted to CROP domain of TcdA or TcdB. Our results collectively provided more insights for the development of neutralizing scFvs against C. difficile toxins using phage display. Further research is needed to meticulously evaluate the potential of scFvs as an alternative treatment for CDI using animal models and clinical trials.IMPORTANCETargeting the major toxins of Clostridioides difficile by neutralizing antibodies is a novel therapeutic approach for CDI. Here, we report a panel of new anti-TcdA (rA-C2, A-C9) and anti-TcdB (rB-B4, B-F5, and B-F11) recombinant antibody fragments (scFvs) isolated from Tomlinson I and J libraries using phage display technique. These scFv antibodies were capable of neutralizing their respective toxin and showed promise as potential therapeutics against TcdA and TcdB of C. difficile in different in vitro models. In addition, in silico analysis showed that at least two neutralization mechanisms, including inhibiting cell surface binding of toxins and inhibiting toxin internalization can be proposed for the isolated scFvs in this work. These findings provide more insights for the applicability of specific scFvs toward C. difficile toxins at in vitro level. However, further research is required to evaluate the potential application of these scFvs as therapeutic agents for CDI treatment in clinical setting.

10.
Methods Mol Biol ; 2641: 37-47, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37074640

RESUMO

The pyrin inflammasome detects bacterial toxins and effectors that inhibit RhoA GTPases and triggers inflammatory cytokine release and a fast cell death termed pyroptosis. In addition, various endogenous molecules, drugs, synthetic molecules, or mutations can trigger pyrin inflammasome activation. The pyrin protein differs between humans and mice, and the repertoire of pyrin activators is also species-specific. Here, we present the various pyrin inflammasome activators, inhibitors, the kinetics of pyrin activation in response to the various activators, and their species specificity. In addition, we present different methods to monitor pyrin-mediated pyroptosis.


Assuntos
Toxinas Bacterianas , Inflamassomos , Humanos , Camundongos , Animais , Inflamassomos/metabolismo , Pirina , Piroptose , Toxinas Bacterianas/genética , Morte Celular , Proteína 3 que Contém Domínio de Pirina da Família NLR
11.
Front Immunol ; 13: 978858, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466927

RESUMO

Toxin A (TcdA) and toxin B (TcdB) are two key virulence factors secreted by Clostridioides difficile, which is listed as an urgent threat by the CDC. These two large homologous exotoxins are mainly responsible for diseases associated with C. difficile infection (CDI) with symptoms ranging from diarrhea to life threatening pseudomembranous colitis. Single-domain camelid antibodies (VHHs) AH3 and AA6 are two potent antitoxins against TcdA, which when combined with two TcdB-targeting VHHs showed effective protection against both primary and recurrent CDI in animal models. Here, we report the co-crystal structures of AH3 and AA6 when they form complexes with the glucosyltransferase domain (GTD) and a fragment of the delivery and receptor-binding domain (DRBD) of TcdA, respectively. Based on these structures, we find that AH3 binding enhances the overall stability of the GTD and interferes with its unfolding at acidic pH, and AA6 may inhibit the pH-dependent conformational changes in the DRBD that is necessary for pore formation of TcdA. These studies reveal two functionally critical epitopes on TcdA and shed new insights into neutralizing mechanisms and potential development of epitope-focused vaccines against TcdA.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Anticorpos de Domínio Único , Animais , Epitopos
12.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077344

RESUMO

C. novyi type A produces the alpha-toxin (TcnA) that belongs to the large clostridial glucosylating toxins (LCGTs) and is able to modify small GTPases by N-acetylglucosamination on conserved threonine residues. In contrast, other LCGTs including Clostridioides difficile toxin A and toxin B (TcdA; TcdB) modify small GTPases by mono-o-glucosylation. Both modifications inactivate the GTPases and cause strong effects on GTPase-dependent signal transduction pathways and the consequent reorganization of the actin cytoskeleton leading to cell rounding and finally cell death. However, the effect of TcnA on target cells is largely unexplored. Therefore, we performed a comprehensive screening approach of TcnA treated HEp-2 cells and analyzed their proteome and their phosphoproteome using LC-MS-based methods. With this data-dependent acquisition (DDA) approach, 5086 proteins and 9427 phosphosites could be identified and quantified. Of these, 35 proteins were found to be significantly altered after toxin treatment, and 1832 phosphosites were responsive to TcnA treatment. By analyzing the TcnA-induced proteomic effects of HEp-2 cells, 23 common signaling pathways were identified to be altered, including Actin Cytoskeleton Signaling, Epithelial Adherens Junction Signaling, and Signaling by Rho Family GTPases. All these pathways are also regulated after application of TcdA or TcdB of C. difficile. After TcnA treatment the regulation on phosphorylation level was much stronger compared to the proteome level, in terms of both strength of regulation and the number of regulated phosphosites. Interestingly, various signaling pathways such as Signaling by Rho Family GTPases or Integrin Signaling were activated on proteome level while being inhibited on phosphorylation level or vice versa as observed for the Role of BRCA1 in DNA Damage Response. ZIP kinase, as well as Calmodulin-dependent protein kinases IV & II, were observed as activated while Aurora-A kinase and CDK kinases tended to be inhibited in cells treated with TcnA based on their substrate regulation pattern.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Proteínas Monoméricas de Ligação ao GTP , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Enterotoxinas/química , Glicosilação , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Fosfolipases Tipo C/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
13.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562899

RESUMO

Rising incidences and mortalities have drawn attention to Clostridioides difficile infections (CDIs) in recent years. The main virulence factors of this bacterium are the exotoxins TcdA and TcdB, which glucosylate Rho-GTPases and thereby inhibit Rho/actin-mediated processes in cells. This results in cell rounding, gut barrier disruption and characteristic clinical symptoms. So far, treatment of CDIs is limited and mainly restricted to some antibiotics, often leading to a vicious circle of antibiotic-induced disease recurrence. Here, we demonstrate the protective effect of the human antimicrobial peptide α-defensin-6 against TcdA, TcdB and the combination of both toxins in vitro and in vivo and unravel the underlying molecular mechanism. The defensin prevented toxin-mediated glucosylation of Rho-GTPases in cells and protected human cells, model epithelial barriers as well as zebrafish embryos from toxic effects. In vitro analyses revealed direct binding to TcdB in an SPR approach and the rapid formation of TcdB/α-defensin-6 complexes, as analyzed with fluorescent TcdB by time-lapse microscopy. In conclusion, the results imply that α-defensin-6 rapidly sequesters the toxin into complexes, which prevents its cytotoxic activity. These findings extend the understanding of how human peptides neutralize bacterial protein toxins and might be a starting point for the development of novel therapeutic options against CDIs.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , alfa-Defensinas , Animais , Antibacterianos/farmacologia , Anticorpos Antibacterianos , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Infecções por Clostridium/microbiologia , Enterotoxinas/química , Humanos , Peixe-Zebra/metabolismo , alfa-Defensinas/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo
14.
Curr Protein Pept Sci ; 23(3): 192-209, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35585826

RESUMO

BACKGROUND: Clostridiodes (or Clostridium) difficile is a spore-forming, Gram-positive anaerobic bacterium that may cause symptoms ranging from diarrhea to pseudomembranous colitis. During the C. difficile infection (CDI), the two primary bacterial toxins, toxin A (TcdA) or toxin B (TcdB), disrupt host cell function mainly through the inactivation of small GTPases that regulate the actin cytoskeleton. Both toxins have complex structural organization containing several functional domains. METHODS: Analytical bioinformatics tools are used to compare the extent of disorder within TcdA and TcdB proteins, and to see if the existence of structural disorder can be used to explain the difference in the functionality of these toxins. RESULTS: This paper's aim is to offer an overall review of the structural and functional differences between TcdA and TcdB. CONCLUSION: Results of our multifactorial bioinformatics analysis revealed that intrinsic disorder may play a role in the multifunctionality of C. difficile major toxins TcdA and TcdB, suggesting that intrinsic disorder may be related to their pathogenic mechanisms.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Composição de Bases , Enterotoxinas/metabolismo , Enterotoxinas/toxicidade , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA
15.
Anaerobe ; 75: 102575, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35477095

RESUMO

The aims of this study were to isolate and identify Clostridioides difficile from cattle feces and carcasses, and slaughterhouse samples, and to determine the molecular characteristics and antibacterial susceptibility of the recovered isolates. A total of 220 samples, including 100 cattle fecal samples, 100 cattle carcass surface samples, and 20 slaughterhouse samples were used as the study material. In total, 12 (5.45%) samples, including 11 (11%) cattle fecal samples and 1 (5%) slaughterhouse sample, were found to be positive for C. difficile. On the other hand, all of the carcass samples were negative for C. difficile. A total of 11 (91.66%) isolates, including 10 fecal isolates and 1 slaughterhouse wastewater isolate, were found to be positive for the presence of the toxin genes tcdA and tcdB, whilst 1 fecal isolate was found to be negative for both genes. In addition, 3 different ERIC-PCR profiles were identified in the 11 fecal isolates. The ERIC-PCR profile of the slaughterhouse wastewater isolate was found to be similar to one of the ERIC-PCR profiles obtained from the fecal isolates. All of the isolates were resistant to ciprofloxacin and levofloxacin. Considering that the agent is a spore-forming bacterium shed in feces, the detection of C. difficile isolates of different genotypes, some carrying toxin genes, suggests that feces and slaughterhouse wastewater carrying this bacterium may pose a risk for the contamination of carcasses. The current study revealed that hygiene conditions should be performed to the maximum extent in slaughterhouses.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Matadouros , Animais , Antibacterianos/farmacologia , Toxinas Bacterianas/análise , Toxinas Bacterianas/genética , Bovinos , Clostridioides , Clostridioides difficile/genética , Fezes/microbiologia , Águas Residuárias
16.
Int J Mol Sci ; 23(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35457076

RESUMO

A Clostridioides difficile infection (CDI) is the most common nosocomial infection worldwide. The main virulence factors of pathogenic C. difficile are TcdA and TcdB, which inhibit small Rho-GTPases. The inhibition of small Rho-GTPases leads to the so-called cytopathic effect, a reorganization of the actin cytoskeleton, an impairment of the colon epithelium barrier function and inflammation. Additionally, TcdB induces a necrotic cell death termed pyknosis in vitro independently from its glucosyltransferases, which are characterized by chromatin condensation and ROS production. To understand the underlying mechanism of this pyknotic effect, we conducted a large-scale phosphoproteomic study. We included the analysis of alterations in the phosphoproteome after treatment with TcdA, which was investigated for the first time. TcdA exhibited no glucosyltransferase-independent necrotic effect and was, thus, a good control to elucidate the underlying mechanism of the glucosyltransferase-independent effect of TcdB. We found RAS to be a central upstream regulator of the glucosyltransferase-independent effect of TcdB. The inhibition of RAS led to a 68% reduction in necrosis. Further analysis revealed apolipoprotein C-III (APOC3) as a possible crucial factor of CDI-induced inflammation in vivo.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides , Enterotoxinas/metabolismo , Células Epiteliais/metabolismo , GTP Fosfo-Hidrolases , Glucosiltransferases/metabolismo , Humanos , Inflamação , Necrose
17.
AMB Express ; 12(1): 42, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35412160

RESUMO

This study investigated the prevalence of Clostridioides difficile by culture, multiplex polymerase chain reaction (M-PCR), and loop mediated isothermal amplification (LAMP) in patients with suspected C. difficile infections (CDIs). Also, the results of three methods were compared. All stool specimens collected from CDI suspected patients were cultured on selective C. difficile cycloserine-cefoxitin fructose agar and incubated in an anaerobic jar up to 7 days. The bacterial isolates were identified using standard tests. Multiplex-PCR (M-PCR) was performed for detection of tcdA, tcdB, and tpi genes. The LAMP assay was performed to detect the tcdB gene of C. difficile. C. difficile was isolated from 20.0% (n = 10/50) of samples by culture. M-PCR showed that 34.0% (n = 17/50) of the specimens were positive for C. difficile based on the presence of tpi gene. Out of the 17 C. difficile, 13 strains (76.0%) were positive for tcdB gene using M-PCR. However, the LAMP assay showed that 30.0% (15/50) of specimens were positive for the presence of tcdB gene. M-PCR and LAMP methods showed 100.0% sensitivity compared to the culture method. However, the specificity of the LAMP (87.5%) was relatively higher than the M-PCR (82.5%) compared to the culture. Based on the results of this study, the prevalence of toxigenic C. difficile strains was high in suspected CDI patients. So, the differentiation between toxigenic and non-toxigenic strains is necessary. Our data showed that the LAMP assay is a good method for direct detection of toxigenic C. difficile strains from stool specimens.

18.
Front Cell Infect Microbiol ; 12: 1033698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619751

RESUMO

Introduction: One of the challenges in treating Clostridioides difficile infection (CDI) is that the bacterium forms biofilms, a critical virulence mechanism known to promote antibiotic resistance and, as a result, consequently, a higher recurrence of the disease. The goal of this study was to compare the ability of three MLST Clade 2 strains to form a biofilm in vitro: ICC-45 (ribotype SLO231/UK[CE]821), a ST41 toxinotype IXb isolated in Brazil; and two epidemic NAP1/027/ST01 strains: NAP1/027/ST01 (LIBA5756), isolated during a 2010 outbreak in Costa Rica and the reference epidemic strain NAP1/027/ST01 (R20291); and ATCC700057, a non-toxigenic strain. Methods: The ability of strains to form biofilm was evaluated using crystal violet staining. In addition, samples were stained with the Film Tracer biofilm matrix (Invitrogen®) and the biofilm matrix thickness was measured using confocal microscopy. The matrix architecture was determined using Scanning electron microscop. Confocal microscopy was used to detect the presence of toxin A (tcdA) using an anti-Clostridioides difficile TcdA antibody. The expression of virulence genes (tcdA, tcdB, tcdC, cdtB, spo0A, slpA, cwp66 and cwp84) was examined, as well as the effect of antibiotics metronidazole (MTZ) and vancomycin (VAN) on biofilm growth. Results: All of the strains tested formed a moderate biofilm with 1.1 3.5. After 72h, biofilm biomass of the NAP1/027/ST01 epidemic strains (LIBA5756 and R20291) was significantly higher than ICC-45 and ATCC 700057 biofilms, as confirmed by electron and confocal microscopy. At 120h, the LIBA5756 biofilm biomass decreased compared to other strains. The toxigenic strains R20291 or LIBA 5756 had higher expression of genes tcdA, tcdB, tcdC, cdtA, slpA and spo0A than ICC-45, but there were no significant differences in the expression levels of cdtB, cwp66 and cwp84. In epidemic strains, VAN and MTZ inhibited biofilm formation; however, in the ICC-45 strain, MIC concentrations of VAN and MIC and 4MIC of MTZ did not inhibit biofilm formation. Conclusion: The three MLST Clade 2 isolated from different rybotipes, two of which were isolated from Latin America, are competent biofilm-forming bacteria, indicating their ability to induce C. difficile infection recurrence, making treatment difficult.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Biofilmes , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Infecções por Clostridium/microbiologia , América Latina , Tipagem de Sequências Multilocus , Vancomicina/farmacologia
19.
EMBO Rep ; 23(1): e53597, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34817920

RESUMO

Clostridioides difficile infections have emerged as the leading cause of healthcare-associated infectious diarrhea. Disease symptoms are mainly caused by the virulence factors, TcdA and TcdB, which are large homologous multidomain proteins. Here, we report a 2.8 Å resolution cryo-EM structure of native TcdA, unveiling its conformation at neutral pH. The structure uncovers the dynamic movement of the CROPs domain which is induced in response to environmental acidification. Furthermore, the structure reveals detailed information about the interaction area between the CROPs domain and the tip of the delivery and receptor-binding domain, which likely serves to shield the C-terminal part of the hydrophobic pore-forming region from solvent exposure. Similarly, extensive interactions between the globular subdomain and the N-terminal part of the pore-forming region suggest that the globular subdomain shields the upper part of the pore-forming region from exposure to the surrounding solvent. Hence, the TcdA structure provides insights into the mechanism of preventing premature unfolding of the pore-forming region at neutral pH, as well as the pH-induced inter-domain dynamics.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides , Enterotoxinas/química , Enterotoxinas/metabolismo
20.
Antibiotics (Basel) ; 10(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572675

RESUMO

Cloistridioides difficile (CD) represents a major public healthcare-associated infection causing significant morbidity and mortality. The pathogenic effects of CD are mainly caused by the release of two exotoxins into the intestine: toxin A (TcdA) and toxin B (TcdB). CD infection (CDI) can also cause toxemia, explaining the systemic complications of life-threatening cases. Currently, there is a lack of sensitive assays to detect exotoxins circulating in the blood. Here, we report a new semi-quantitative diagnostic method to measure CD toxins serum levels. The dot-blot assay was modified to separately detect TcdA and TcdB in human serum with a limit of detection at the pg/mL levels. TcdA and TcdB concentrations in the plasma of 35 CDI patients were measured at the time of CDI diagnosis and at the fourth and tenth day after CDI diagnosis and initiation of anti-CDI treatment. TcdA and TcdB levels were compared to those determined in nine healthy blood donors. Toxemia was detected in the plasma of 33 out of the 35 CDI cases. We also assessed the relationship between TcdA serum levels and CDI severity, reporting that at the time of CDI diagnosis the proportion of severe CDI cases with a TcdA serum level > 60 pg/µL was higher than in mild CDI cases (29.4% versus 66.6%, p = 0.04). In conclusion, data reported here demonstrate for the first time that toxemia is much more frequent than expected in CDI patients, and specifically that high serum levels of TcdA correlate with disease severity in patients with CDI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...